1
|
Tamaoki Y, Pasapula V, Danaphongse TT, Reyes AR, Chandler CR, Borland MS, Riley JR, Carroll AM, Engineer CT. Pairing tones with vagus nerve stimulation improves brain stem responses to speech in the valproic acid model of autism. J Neurophysiol 2024; 132:1426-1436. [PMID: 39319784 DOI: 10.1152/jn.00325.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Receptive language deficits and aberrant auditory processing are often observed in individuals with autism spectrum disorders (ASD). Symptoms associated with ASD are observed in rodents prenatally exposed to valproic acid (VPA), including deficits in speech sound discrimination ability. These perceptual difficulties are accompanied by changes in neural activity patterns. In both cortical and subcortical levels of the auditory pathway, VPA-exposed rats have impaired responses to speech sounds. Developing a method to improve these neural deficits throughout the auditory pathway is necessary. The purpose of this study was to investigate the ability of vagus nerve stimulation (VNS) paired with sounds to restore degraded inferior colliculus (IC) responses in VPA-exposed rats. VNS paired with the speech sound "dad" was presented to a group of VPA-exposed rats 300 times per day for 20 days. Another group of VPA-exposed rats were presented with VNS paired with multiple tone frequencies for 20 days. The IC responses were recorded from 19 saline-exposed control rats and 18 VPA-exposed with no VNS, 8 VNS-speech paired VPA-exposed, and 7 VNS-tone paired VPA-exposed female and male rats. Pairing VNS with tones increased the IC response strength to speech sounds by 44% compared to VPA-exposed rats alone. Contrarily, VNS-speech pairing significantly decreased the IC response to speech compared with VPA-exposed rats by 5%. The present research indicates that pairing VNS with tones improved sound processing in rats exposed to VPA and suggests that auditory processing can be improved through targeted plasticity.NEW & NOTEWORTHY Pairing vagus nerve stimulation (VNS) with sounds has improved auditory processing in the auditory cortex of normal-hearing rats and autism models of rats. This study tests the ability of VNS-sound pairing to restore auditory processing in the inferior colliculus (IC) of valproic acid (VPA)-exposed rats. Pairing VNS with tones significantly reversed the degraded sound processing in the IC in VPA-exposed rats. The findings provide evidence that auditory processing in autism rat models can be improved through VNS.
Collapse
Affiliation(s)
- Yuko Tamaoki
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| | - Varun Pasapula
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| | - Tanya T Danaphongse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| | - Alfonso R Reyes
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| | - Collin R Chandler
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| | - Michael S Borland
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| | - Jonathan R Riley
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| | - Alan M Carroll
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| | - Crystal T Engineer
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, United States
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States
| |
Collapse
|
2
|
Carroll AM, Pruitt DT, Riley JR, Danaphongse TT, Rennaker RL, Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation during training fails to improve learning in healthy rats. Sci Rep 2024; 14:18955. [PMID: 39147873 PMCID: PMC11327266 DOI: 10.1038/s41598-024-69666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Learning new skills requires neuroplasticity. Vagus nerve stimulation (VNS) during sensory and motor events can increase neuroplasticity in networks related to these events and might therefore serve to facilitate learning on sensory and motor tasks. We tested if VNS could broadly improve learning on a wide variety of tasks across different skill domains in healthy, female adult rats. VNS was paired with presentation of stimuli or on successful trials during training, strategies known to facilitate plasticity and improve recovery in models of neurological disorders. VNS failed to improve either rate of learning or performance for any of the tested tasks, which included skilled forelimb motor control, speech sound discrimination, and paired-associates learning. These results contrast recent findings from multiple labs which found VNS pairing during training produced learning enhancements across motor, auditory, and cognitive domains. We speculate that these contrasting results may be explained by key differences in task designs, training timelines and animal handling approaches, and that while VNS may be able to facilitate rapid and early learning processes in healthy subjects, it does not broadly enhance learning for difficult tasks.
Collapse
Affiliation(s)
- Alan M Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - David T Pruitt
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jonathan R Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Tanya T Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
3
|
Riley M, Tala FNU, Johnson KJ, Johnson BC. Multi-Channel Microscale Nerve Cuffs for Spatially Selective Neuromodulation. MICROMACHINES 2024; 15:1036. [PMID: 39203687 PMCID: PMC11356344 DOI: 10.3390/mi15081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024]
Abstract
Peripheral nerve modulation via electrical stimulation shows promise for treating several diseases, but current approaches lack selectivity, leading to side effects. Exploring selective neuromodulation with commercially available nerve cuffs is impractical due to their high cost and limited spatial resolution. While custom cuffs reported in the literature achieve high spatial resolutions, they require specialized microfabrication equipment and significant effort to produce even a single design. This inability to rapidly and cost-effectively prototype novel cuff designs impedes research into selective neuromodulation therapies in acute studies. To address this, we developed a reproducible method to easily create multi-channel epineural nerve cuffs for selective fascicular neuromodulation. Leveraging commercial flexible printed circuit (FPC) technology, we created cuffs with high spatial resolution (50 μm) and customizable parameters like electrode size, channel count, and cuff diameter. We designed cuffs to accommodate adult mouse or rat sciatic nerves (300-1500 μm diameter). We coated the electrodes with PEDOT:PSS to improve the charge injection capacity. We demonstrated selective neuromodulation in both rats and mice, achieving preferential activation of the tibialis anterior (TA) and lateral gastrocnemius (LG) muscles. Selectivity was confirmed through micro-computed tomography (μCT) and quantified through a selectivity index. These results demonstrate the potential of this fabrication method for enabling selective neuromodulation studies while significantly reducing production time and costs compared to traditional approaches.
Collapse
Affiliation(s)
- Morgan Riley
- Biomedical Engineering Doctoral Program, Boise State University, Boise, ID 83725, USA
| | - FNU Tala
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | | | - Benjamin C. Johnson
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
4
|
Carroll AM, Riley JR, Borland MS, Danaphongse TT, Hays SA, Kilgard MP, Engineer CT. Bursts of vagus nerve stimulation paired with auditory rehabilitation fail to improve speech sound perception in rats with hearing loss. iScience 2024; 27:109527. [PMID: 38585658 PMCID: PMC10995867 DOI: 10.1016/j.isci.2024.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/09/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Hearing loss can lead to long-lasting effects on the central nervous system, and current therapies, such as auditory training and rehabilitation, show mixed success in improving perception and speech comprehension. Vagus nerve stimulation (VNS) is an adjunctive therapy that can be paired with rehabilitation to facilitate behavioral recovery after neural injury. However, VNS for auditory recovery has not been tested after severe hearing loss or significant damage to peripheral receptors. This study investigated the utility of pairing VNS with passive or active auditory rehabilitation in a rat model of noise-induced hearing loss. Although auditory rehabilitation helped rats improve their frequency discrimination, learn novel speech discrimination tasks, and achieve speech-in-noise performance similar to normal hearing controls, VNS did not enhance recovery of speech sound perception. These results highlight the limitations of VNS as an adjunctive therapy for hearing loss rehabilitation and suggest that optimal benefits from neuromodulation may require restored peripheral signaling.
Collapse
Affiliation(s)
- Alan M. Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Jonathan R. Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael S. Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Tanya T. Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Seth A. Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael P. Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Crystal T. Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
5
|
Malley KM, Ruiz AD, Darrow MJ, Danaphongse T, Shiers S, Ahmad FN, Beltran CM, Stanislav BT, Price T, Ii RLR, Kilgard MP, Hays SA. Neural Mechanisms Responsible for Vagus Nerve Stimulation-Dependent Enhancement of Somatosensory Recovery. RESEARCH SQUARE 2024:rs.3.rs-3873435. [PMID: 38352490 PMCID: PMC10862979 DOI: 10.21203/rs.3.rs-3873435/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Impairments in somatosensory function are a common and often debilitating consequence of neurological injury, with few effective interventions. Building on success in rehabilitation for motor dysfunction, the delivery of vagus nerve stimulation (VNS) combined with tactile rehabilitation has emerged as a potential approach to enhance recovery of somatosensation. In order to maximize the effectiveness of VNS therapy and promote translation to clinical implementation, we sought to optimize the stimulation paradigm and identify neural mechanisms that underlie VNS-dependent recovery. To do so, we characterized the effect of tactile rehabilitation combined with VNS across a range of stimulation intensities on recovery of somatosensory function in a rat model of chronic sensory loss in the forelimb. Consistent with previous studies in other applications, we find that moderate intensity VNS yields the most effective restoration of somatosensation, and both lower and higher VNS intensities fail to enhance recovery compared to rehabilitation without VNS. We next used the optimized intensity to evaluate the mechanisms that underlie recovery. We find that moderate intensity VNS enhances transcription of Arc, a canonical mediator of synaptic plasticity, in the cortex, and that transcript levels were correlated with the degree of somatosensory recovery. Moreover, we observe that blocking plasticity by depleting acetylcholine in the cortex prevents the VNS-dependent enhancement of somatosensory recovery. Collectively, these findings identify neural mechanisms that subserve VNS-dependent somatosensation recovery and provide a basis for selecting optimal stimulation parameters in order to facilitate translation of this potential intervention.
Collapse
|
6
|
Ruiz AD, Malley KM, Danaphongse TT, Ahmad FN, Beltran CM, White ML, Baghdadi S, Pruitt DT, Rennaker RL, Kilgard MP, Hays SA. Vagus Nerve Stimulation Must Occur During Tactile Rehabilitation to Enhance Somatosensory Recovery. Neuroscience 2023; 532:79-86. [PMID: 37778688 DOI: 10.1016/j.neuroscience.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Chronic sensory loss is a common and undertreated consequence of many forms of neurological injury. Emerging evidence indicates that vagus nerve stimulation (VNS) delivered during tactile rehabilitation promotes recovery of somatosensation. Here, we systematically varied the timing of VNS relative to tactile rehabilitation to determine the paradigm that yields the greatest degree of somatosensory recovery after peripheral nerve injury (PNI). The medial and ulnar nerves in rats were transected, causing chronic sensory loss. Eight weeks after injury, rats were given a VNS implant followed by four weeks of tactile rehabilitation sessions consisting of repeated mechanical stimuli to the previously denervated forepaw. Rats received VNS before, during, or after tactile rehabilitation. Delivery of VNS during rehabilitative training generates robust, significant recovery compared to rehabilitative training without stimulation (56 ± 14% improvement over sham stimulation). A matched amount of VNS before training, immediately after training, or two hours after training is significantly less effective than VNS during rehabilitative training and fails to improve recovery compared to rehabilitative training alone (5 ± 10%, 4 ± 11%, and -7 ± 22% improvement over sham stimulation, respectively). These findings indicate that concurrent delivery of VNS during rehabilitative training is most effective and illustrate the importance of considering stimulation timing for clinical implementation of VNS therapy.
Collapse
Affiliation(s)
- Andrea D Ruiz
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
| | - Kaitlyn M Malley
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tanya T Danaphongse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Fatima N Ahmad
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Clareth Mota Beltran
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Megan L White
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sahba Baghdadi
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - David T Pruitt
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
7
|
Wariyar SS, Ward PJ. Application of Electrical Stimulation to Enhance Axon Regeneration Following Peripheral Nerve Injury. Bio Protoc 2023; 13:e4833. [PMID: 37817898 PMCID: PMC10560632 DOI: 10.21769/bioprotoc.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Enhancing axon regeneration is a major focus of peripheral nerve injury research. Although peripheral axons possess a limited ability to regenerate, their functional recovery is very poor. Various activity-based therapies like exercise, optical stimulation, and electrical stimulation as well as pharmacologic treatments can enhance spontaneous axon regeneration. In this protocol, we use a custom-built cuff to electrically stimulate the whole sciatic nerve for an hour prior to transection and repair. We used a Thy-1-YFP-H mouse to visualize regenerating axon profiles. We compared the regeneration of axons from nerves that were electrically stimulated to nerves that were not stimulated (untreated). Electrically stimulated nerves had longer axon growth than the untreated nerves. We detail how variations of this method can be used to measure acute axon growth.
Collapse
Affiliation(s)
- Supriya S. Wariyar
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Patricia J. Ward
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Borland MS, Buell EP, Riley JR, Carroll AM, Moreno NA, Sharma P, Grasse KM, Buell JM, Kilgard MP, Engineer CT. Precise sound characteristics drive plasticity in the primary auditory cortex with VNS-sound pairing. Front Neurosci 2023; 17:1248936. [PMID: 37732302 PMCID: PMC10508341 DOI: 10.3389/fnins.2023.1248936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Repeatedly pairing a tone with vagus nerve stimulation (VNS) alters frequency tuning across the auditory pathway. Pairing VNS with speech sounds selectively enhances the primary auditory cortex response to the paired sounds. It is not yet known how altering the speech sounds paired with VNS alters responses. In this study, we test the hypothesis that the sounds that are presented and paired with VNS will influence the neural plasticity observed following VNS-sound pairing. Methods To explore the relationship between acoustic experience and neural plasticity, responses were recorded from primary auditory cortex (A1) after VNS was repeatedly paired with the speech sounds 'rad' and 'lad' or paired with only the speech sound 'rad' while 'lad' was an unpaired background sound. Results Pairing both sounds with VNS increased the response strength and neural discriminability of the paired sounds in the primary auditory cortex. Surprisingly, pairing only 'rad' with VNS did not alter A1 responses. Discussion These results suggest that the specific acoustic contrasts associated with VNS can powerfully shape neural activity in the auditory pathway. Methods to promote plasticity in the central auditory system represent a new therapeutic avenue to treat auditory processing disorders. Understanding how different sound contrasts and neural activity patterns shape plasticity could have important clinical implications.
Collapse
Affiliation(s)
- Michael S. Borland
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Elizabeth P. Buell
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Jonathan R. Riley
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Alan M. Carroll
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Nicole A. Moreno
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Pryanka Sharma
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Katelyn M. Grasse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
| | - John M. Buell
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Michael P. Kilgard
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Crystal T. Engineer
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
9
|
Ruiz AD, Malley KM, Danaphongse TT, Ahmad FN, Mota Beltran C, Rennaker RL, Kilgard MP, Hays SA. Effective Delivery of Vagus Nerve Stimulation Requires Many Stimulations Per Session and Many Sessions Per Week Over Many Weeks to Improve Recovery of Somatosensation. Neurorehabil Neural Repair 2023; 37:652-661. [PMID: 37694568 PMCID: PMC10523825 DOI: 10.1177/15459683231197412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND Chronic sensory loss is a common and undertreated consequence of many forms of neurological injury. Emerging evidence indicates that vagus nerve stimulation (VNS) delivered during tactile rehabilitation promotes recovery of somatosensation. OBJECTIVE Here, we characterize the amount, intensity, frequency, and duration of VNS therapy paradigms to determine the optimal dosage for VNS-dependent enhancement of recovery in a model of peripheral nerve injury (PNI). METHODS Rats underwent transection of the medial and ulnar nerves in the forelimb, resulting in chronic sensory loss in the paw. Eight weeks after injury, rats were implanted with a VNS cuff and received tactile rehabilitation sessions consisting of repeated mechanical stimulation of the previously denervated forepaw paired with short bursts of VNS. Rats received VNS therapy in 1 of 6 systematically varied dosing schedules to identify a paradigm that balanced therapy effectiveness with a shorter regimen. RESULTS Delivering 200 VNS pairings a day 4 days a week for 4 weeks produced the greatest percent improvement in somatosensory function compared to any of the 6 other groups (One Way analysis of variance at the end of therapy, F[4 70] P = .005). CONCLUSIONS Our findings demonstrate that an effective VNS therapy dosage delivers many stimulations per session, with many sessions per week, over many weeks. These results provide a framework to inform the development of VNS-based therapies for sensory restoration.
Collapse
Affiliation(s)
- Andrea D. Ruiz
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Kaitlyn M. Malley
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tanya T. Danaphongse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Fatima N. Ahmad
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Clareth Mota Beltran
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert L. Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael P. Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A. Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
10
|
Riley M, Tala F, Johnson KJ, Johnson BC. Fully Customizable, Low-Cost, Multi-Contact Nerve Cuffs for Spatially Selective Neuromodulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082709 DOI: 10.1109/embc40787.2023.10340814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Selective neuromodulation of peripheral nerves is an emerging treatment for neurological diseases that are resistant to traditional drug therapy. While nerve cuffs with multichannel stimulation can be made by many varied methods, they usually require specialized microfabrication or additive manufacturing equipment. A truly low-cost and effective method of creating a custom cuff has not been accessible to researchers to prototype new methodologies and therapies in acute studies. Here, we present an inexpensive, highly repeatable method to create multi-contact nerve cuffs that require a simple postproduction PEDOT:PSS coating to improve the tissue/electrode interface. We demonstrate spatially selective neuromodulation with the proposed cuff design on the rat sciatic by preferentially activating the tibialis anterior (TA) and the lateral gastrocnemius (LG) in longitudinal and transverse stimulation patterns. This demonstrates that the proposed cuff fabrication method was not only effective for selective neuromodulation, but it is also significantly lower in cost, fully-customizable, and easily manufactured for future selective neuromodulation studies.
Collapse
|
11
|
Morrison RA, Abe ST, Danaphongse T, Ezhil V, Somaney A, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Common Cholinergic, Noradrenergic, and Serotonergic Drugs Do Not Block VNS-Mediated Plasticity. Front Neurosci 2022; 16:849291. [PMID: 35281514 PMCID: PMC8904722 DOI: 10.3389/fnins.2022.849291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vagus nerve stimulation (VNS) delivered during motor rehabilitation enhances recovery from a wide array of neurological injuries and was recently approved by the U.S. FDA for chronic stroke. The benefits of VNS result from precisely timed engagement of neuromodulatory networks during rehabilitative training, which promotes synaptic plasticity in networks activated by rehabilitation. Previous studies demonstrate that lesions that deplete these neuromodulatory networks block VNS-mediated plasticity and accompanying enhancement of recovery. There is a great deal of interest in determining whether commonly prescribed pharmacological interventions that influence these neuromodulatory networks would similarly impair VNS effects. Here, we sought to directly test the effects of three common pharmaceuticals at clinically relevant doses that target neuromodulatory pathways on VNS-mediated plasticity in rats. To do so, rats were trained on a behavioral task in which jaw movement during chewing was paired with VNS and received daily injections of either oxybutynin, a cholinergic antagonist, prazosin, an adrenergic antagonist, duloxetine, a serotonin-norepinephrine reuptake inhibitor, or saline. After the final behavioral session, intracortical microstimulation (ICMS) was used to evaluate reorganization of motor cortex representations, with area of cortex eliciting jaw movement as the primary outcome. In animals that received control saline injections, VNS paired with training significantly increased the movement representation of the jaw compared to naïve animals, consistent with previous studies. Similarly, none of the drugs tested blocked this VNS-dependent reorganization of motor cortex. The present results provide direct evidence that these common pharmaceuticals, when used at clinically relevant doses, are unlikely to adversely impact the efficacy of VNS therapy.
Collapse
Affiliation(s)
- Robert A. Morrison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: Robert A. Morrison,
| | - Stephanie T. Abe
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Tanya Danaphongse
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Vikram Ezhil
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Armaan Somaney
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Katherine S. Adcock
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Robert L. Rennaker
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Michael P. Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Seth A. Hays
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
- Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
12
|
Tseng CT, Gaulding SJ, Dancel CLE, Thorn CA. Local activation of α2 adrenergic receptors is required for vagus nerve stimulation induced motor cortical plasticity. Sci Rep 2021; 11:21645. [PMID: 34737352 PMCID: PMC8568982 DOI: 10.1038/s41598-021-00976-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Vagus nerve stimulation (VNS) paired with rehabilitation training is emerging as a potential treatment for improving recovery of motor function following stroke. In rats, VNS paired with skilled forelimb training results in significant reorganization of the somatotopic cortical motor map; however, the mechanisms underlying this form of VNS-dependent plasticity remain unclear. Recent studies have shown that VNS-driven cortical plasticity is dependent on noradrenergic innervation of the neocortex. In the central nervous system, noradrenergic α2 receptors (α2-ARs) are widely expressed in the motor cortex and have been critically implicated in synaptic communication and plasticity. In current study, we examined whether activation of cortical α2-ARs is necessary for VNS-driven motor cortical reorganization to occur. Consistent with previous studies, we found that VNS paired with motor training enlarges the map representation of task-relevant musculature in the motor cortex. Infusion of α2-AR antagonists into M1 blocked VNS-driven motor map reorganization from occurring. Our results suggest that local α2-AR activation is required for VNS-induced cortical reorganization to occur, providing insight into the mechanisms that may underlie the neuroplastic effects of VNS therapy.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Solomon J Gaulding
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Canice Lei E Dancel
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Catherine A Thorn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
13
|
Bucksot JE, Chandler CR, Intharuck NM, Rennaker RL, Kilgard MP, Hays SA. Validation of a parameterized, open-source model of nerve stimulation. J Neural Eng 2021; 18. [PMID: 34330105 DOI: 10.1088/1741-2552/ac1983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/30/2021] [Indexed: 11/12/2022]
Abstract
Peripheral nerve stimulation is an effective treatment for various neurological disorders. The method of activation and stimulation parameters used impact the efficacy of the therapy, which emphasizes the need for tools to model this behavior. Computational modeling of nerve stimulation has proven to be a useful tool for estimating stimulation thresholds, optimizing electrode design, and exploring previously untested stimulation methods. Despite their utility, these tools require access to and familiarity with several pieces of specialized software. A simpler, streamlined process would increase accessibility significantly. We developed an open-source, parameterized model with a simple online user interface that allows user to adjust up to 36 different parameters (https://nervestimlab.utdallas.edu). The model accurately predicts fiber activation thresholds for nerve and electrode combinations reported in literature. Additionally, it replicates characteristic differences between stimulation methods, such as lower thresholds with monopolar stimulation as compared to tripolar stimulation. The model predicted that the difference in threshold between monophasic and biphasic waveforms, a well-characterized phenomenon, is not present during stimulation with bipolar electrodes.In vivotesting on the rat sciatic nerve validated this prediction, which has not been previously reported. The accuracy of the model when compared to previous experiments, as well as the ease of use and accessibility to generate testable hypotheses, indicate that this software may represent a useful tool for a variety of nerve stimulation applications.
Collapse
Affiliation(s)
- Jesse E Bucksot
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 W Campbell Road, Richardson, TX, United States of America
| | - Collin R Chandler
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 W Campbell Road, Richardson, TX, United States of America.,Texas Biomedical Device Center, 800 W Campbell Road, Richardson, TX, United States of America
| | - Navaporn M Intharuck
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 W Campbell Road, Richardson, TX, United States of America
| | - Robert L Rennaker
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 W Campbell Road, Richardson, TX, United States of America.,The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 W Campbell Road, Richardson, TX, United States of America.,Texas Biomedical Device Center, 800 W Campbell Road, Richardson, TX, United States of America
| | - Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 W Campbell Road, Richardson, TX, United States of America.,Texas Biomedical Device Center, 800 W Campbell Road, Richardson, TX, United States of America
| | - Seth A Hays
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 W Campbell Road, Richardson, TX, United States of America.,The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 W Campbell Road, Richardson, TX, United States of America.,Texas Biomedical Device Center, 800 W Campbell Road, Richardson, TX, United States of America
| |
Collapse
|
14
|
Souza RR, Robertson NM, McIntyre CK, Rennaker RL, Hays SA, Kilgard MP. Vagus nerve stimulation enhances fear extinction as an inverted-U function of stimulation intensity. Exp Neurol 2021; 341:113718. [PMID: 33844986 DOI: 10.1016/j.expneurol.2021.113718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Studies in rodents indicate that pairing vagus nerve stimulation (VNS) with extinction training enhances fear extinction. However, the role of stimulation parameters on the effects of VNS remains largely unknown. Identifying the optimal stimulation intensity is a critical step in clinical translation of neuromodulation-based therapies. Here, we sought to investigate the role of stimulation intensity in rats receiving VNS paired with extinction training in a rat model for Posttraumatic Stress Disorder (PTSD). Male Sprague-Dawley rats underwent single prolonged stress followed by a severe fear conditioning training and were implanted with a VNS device. After recovery, independent groups of rats were exposed to extinction training paired with sham (0 mA) or VNS at different intensities (0.4, 0.8, or 1.6 mA). VNS intensities of 0.4 mA or 0.8 mA decreased conditioned fear during extinction training compared to sham stimulation. Pairing extinction training with moderate VNS intensity of 0.8 mA produced significant reduction in conditioned fear during extinction retention when rats were tested a week after VNS-paired extinction. High intensity VNS at 1.6 mA failed to enhance extinction. These findings indicate that a narrow range of VNS intensities enhances extinction learning, and suggest that the 0.8 mA VNS intensity used in earlier rodent and human stroke studies may also be the optimal in using VNS as an adjuvant in exposure therapies for PTSD.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Nicole M Robertson
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Christa K McIntyre
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
15
|
Morrison RA, Danaphongse TT, Abe ST, Stevens ME, Ezhil V, Seyedahmadi A, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. High intensity VNS disrupts VNS-mediated plasticity in motor cortex. Brain Res 2021; 1756:147332. [PMID: 33539792 PMCID: PMC7971691 DOI: 10.1016/j.brainres.2021.147332] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Vagus nerve stimulation (VNS) paired with motor rehabilitation enhances recovery of function after neurological injury in rats and humans. This effect is ascribed to VNS-dependent facilitation of plasticity in motor networks. Previous studies document an inverted-U relationship between VNS intensity and cortical plasticity, such that moderate intensities increase plasticity, while low or high intensity VNS does not. We tested the interaction of moderate and high intensity VNS trains to probe the mechanisms that may underlie VNS-dependent plasticity. Rats performed a behavioral task where VNS was paired with jaw movement during chewing. For five days, subjects received 100 pairings of moderate intensity VNS (Standard VNS), 100 pairings alternating between moderate and high intensity VNS (Interleaved VNS), or 50 pairings of moderate intensity VNS (Short VNS) approximately every 8 s. After the final behavioral session, intracortical microstimulation (ICMS) was used to evaluate movement representations in motor cortex. 100 pairings of moderate intensity VNS enhanced motor cortex plasticity. Replacing half of moderate intensity stimulation with high intensity VNS blocked this enhancement of plasticity. Removing high intensity stimulation, leaving only 50 pairings of moderate intensity VNS, reinstated plasticity. These results demonstrate that there is a period for at least 8 s after high intensity stimulation in which moderate intensity VNS is not able to engage mechanisms required for synaptic reorganization. More importantly, this study demonstrates that changes in stimulation parameters are a critical determinant of the magnitude of plasticity and likely the efficacy of VNS-enhanced recovery.
Collapse
Affiliation(s)
- Robert A Morrison
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States.
| | - Tanya T Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Stephanie T Abe
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Madison E Stevens
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Vikram Ezhil
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Armin Seyedahmadi
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Katherine S Adcock
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Robert L Rennaker
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Seth A Hays
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States
| |
Collapse
|
16
|
Souza RR, Oleksiak CR, Tabet MN, Rennaker RL, Hays SA, Kilgard MP, McIntyre CK. Vagus nerve stimulation promotes extinction generalization across sensory modalities. Neurobiol Learn Mem 2021; 181:107425. [PMID: 33771710 DOI: 10.1016/j.nlm.2021.107425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
Traumatic experiences involve complex sensory information, and individuals with trauma-related psychological disorders, such as posttraumatic stress disorder (PTSD), can exhibit abnormal fear to numerous different stimuli that remind them of the trauma. Vagus nerve stimulation (VNS) enhances extinction of auditory fear conditioning in rat models for PTSD. We recently found that VNS-paired extinction can also promote extinction generalization across different auditory cues. Here we tested whether VNS can enhance extinction of olfactory fear and promote extinction generalization across auditory and olfactory sensory modalities. Male Sprague Dawley rats were implanted with a stimulating cuff on the cervical vagus nerve. Rats then received two days of fear conditioning where olfactory (amyl acetate odor) and auditory (9 kHz tones) stimuli were concomitantly paired with footshock. Twenty-four hours later, rats were given three days of sham or VNS-paired extinction (5 stimulations, 30-sec trains at 0.4 mA) overlapping with presentation of either the olfactory or the auditory stimulus. Two days later, rats were given an extinction retention test where avoidance of the olfactory stimulus or freezing to the auditory stimulus were measured. VNS-paired with exposure to the olfactory stimulus during extinction reduced avoidance of the odor in the retention test. VNS-paired with exposure to the auditory stimulus during extinction also decreased avoidance of the olfactory cue, and VNS paired with exposure to the olfactory stimulus during extinction reduced freezing when the auditory stimulus was presented in the retention test. These results indicate that VNS enhances extinction of olfactory fear and promotes extinction generalization across different sensory modalities. Extinction generalization induced by VNS may therefore improve outcomes of exposure-based therapies.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Cecily R Oleksiak
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Michel N Tabet
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Christa K McIntyre
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
17
|
Flavin MT, Paul MA, Lim AS, Abdulhamed S, Lissandrello CA, Ajemian R, Lin SJ, Han J. Rapid and Low Cost Manufacturing of Cuff Electrodes. Front Neurosci 2021; 15:628778. [PMID: 33664647 PMCID: PMC7920973 DOI: 10.3389/fnins.2021.628778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
For many peripheral neuro-modulation applications, the cuff electrode has become a preferred technology for delivering electrical current into targeted volumes of tissue. While basic cuffs with low spatial selectivity, having longitudinally arranged contacts, can be produced from relatively straightforward processes, the fabrication of more complex electrode configurations typically requires iterative design and clean-room fabrication with skilled technicians. Although facile methods for fabricating cuff electrodes exist, their inconsistent products have limited their adoption for rapid manufacturing. In this article, we report a fast, low-cost fabrication process for patterning of electrode contacts in an implantable peripheral nerve cuff. Using a laser cutter as we have prescribed, the designer can render precise contact geometries that are consistent between batches. This method is enabled by the use of silicone/carbon black (CB) composite electrodes, which integrate with the patterned surface of its substrate-tubular silicone insulation. The size and features of its products can be adapted to fit a wide range of nerve diameters and applications. In this study, we specifically documented the manufacturing and evaluation of circumpolar cuffs with radial arrays of three contacts for acute implantation on the rat sciatic nerve. As part of this method, we also detail protocols for verification-electrochemical characterization-and validation-electrophysiological evaluation-of implantable cuff electrodes. Applied to our circumpolar cuff electrode, we report favorable electrical characteristics. In addition, we report that it reproduces expected electrophysiological behaviors described in prior literature. No specialized equipment or fabrication experience was required in our production, and we encountered negligible costs relative to commercially available solutions. Since, as we demonstrate, this process generates consistent and precise electrode geometries, we propose that it has strong merits for use in rapid manufacturing.
Collapse
Affiliation(s)
- Matthew T. Flavin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Marek A. Paul
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Lower Silesia Specialist Hospital, Wrocław, Poland
| | - Alexander S. Lim
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Senan Abdulhamed
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Robert Ajemian
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Samuel J. Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
18
|
Darrow MJ, Mian TM, Torres M, Haider Z, Danaphongse T, Seyedahmadi A, Rennaker RL, Hays SA, Kilgard MP. The tactile experience paired with vagus nerve stimulation determines the degree of sensory recovery after chronic nerve damage. Behav Brain Res 2021; 396:112910. [PMID: 32971197 PMCID: PMC7572822 DOI: 10.1016/j.bbr.2020.112910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
Loss of sensory function is a common consequence of neurological injury. Recent clinical and preclinical evidence indicates vagus nerve stimulation (VNS) paired with tactile rehabilitation, consisting of delivery of a variety of mechanical stimuli to the hyposensitive skin surface, yields substantial and long-lasting recovery of somatosensory function after median and ulnar nerve transection and repair. Here, we tested the hypothesis that a specific component of the tactile rehabilitation paired with VNS is necessary for recovery of somatosensory function. In a second experiment in a separate cohort, we investigated whether VNS paired with tactile rehabilitation could improve skilled forelimb motor function. Elements of the study design, including planned sample size, assessments, and statistical comparisons, were preregistered prior to beginning data collection (https://osf.io/3tm8u/). Animals received a peripheral nerve injury (PNI) causing chronic sensory loss. Eight weeks after injury, animals were given a VNS implant followed by six weeks of tactile rehabilitation sessions consisting of repeated application of one of two distinct mechanical stimuli, a filament or a paintbrush, to the previously denervated forepaw. VNS paired with either filament indentation or brushing of the paw significantly improved recovery of forelimb withdrawal thresholds after PNI compared to tactile rehabilitation without VNS. The effect size was twice as large when VNS was paired with brushing compared to VNS paired with point indentation. An independent replication in a second cohort confirmed that VNS paired with brush restored forelimb withdrawal thresholds to normal. These rats displayed significant improvements in performance on a skilled forelimb task compared to rats that did not receive VNS. These findings support the utility of pairing VNS with tactile rehabilitation to improve recovery of somatosensory and motor function after neurological injury. Additionally, this study demonstrates that the sensory characteristics of the rehabilitation paired with VNS determine the degree of recovery.
Collapse
Affiliation(s)
- Michael J Darrow
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Tabarak M Mian
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Miranda Torres
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Zainab Haider
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Tanya Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Armin Seyedahmadi
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| |
Collapse
|
19
|
Tseng CT, Brougher J, Gaulding SJ, Hassan BS, Thorn CA. Vagus nerve stimulation promotes cortical reorganization and reduces task-dependent calorie intake in male and female rats. Brain Res 2020; 1748:147099. [DOI: 10.1016/j.brainres.2020.147099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022]
|
20
|
Adcock KS, Chandler C, Buell EP, Solorzano BR, Loerwald KW, Borland MS, Engineer CT. Vagus nerve stimulation paired with tones restores auditory processing in a rat model of Rett syndrome. Brain Stimul 2020; 13:1494-1503. [PMID: 32800964 DOI: 10.1016/j.brs.2020.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Rett syndrome is a rare neurological disorder associated with a mutation in the X-linked gene MECP2. This disorder mainly affects females, who typically have seemingly normal early development followed by a regression of acquired skills. The rodent Mecp2 model exhibits many of the classic neural abnormalities and behavioral deficits observed in individuals with Rett syndrome. Similar to individuals with Rett syndrome, both auditory discrimination ability and auditory cortical responses are impaired in heterozygous Mecp2 rats. The development of therapies that can enhance plasticity in auditory networks and improve auditory processing has the potential to impact the lives of individuals with Rett syndrome. Evidence suggests that precisely timed vagus nerve stimulation (VNS) paired with sound presentation can drive robust neuroplasticity in auditory networks and enhance the benefits of auditory therapy. OBJECTIVE The aim of this study was to investigate the ability of VNS paired with tones to restore auditory processing in Mecp2 transgenic rats. METHODS Seventeen female heterozygous Mecp2 rats and 8 female wild-type (WT) littermates were used in this study. The rats were exposed to multiple tone frequencies paired with VNS 300 times per day for 20 days. Auditory cortex responses were then examined following VNS-tone pairing therapy or no therapy. RESULTS Our results indicate that Mecp2 mutation alters auditory cortex responses to sounds compared to WT controls. VNS-tone pairing in Mecp2 rats improves the cortical response strength to both tones and speech sounds compared to untreated Mecp2 rats. Additionally, VNS-tone pairing increased the information contained in the neural response that can be used to discriminate between different consonant sounds. CONCLUSION These results demonstrate that VNS-sound pairing may represent a strategy to enhance auditory function in individuals with Rett syndrome.
Collapse
Affiliation(s)
- Katherine S Adcock
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Collin Chandler
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Elizabeth P Buell
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Bleyda R Solorzano
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Kristofer W Loerwald
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Michael S Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA.
| |
Collapse
|
21
|
Falcone JD, Liu T, Goldman L, David D P, Rieth L, Bouton CE, Straka M, Sohal HS. A novel microwire interface for small diameter peripheral nerves in a chronic, awake murine model. J Neural Eng 2020; 17:046003. [DOI: 10.1088/1741-2552/ab9b6d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Pruitt DT, Danaphongse TT, Lutchman M, Patel N, Reddy P, Wang V, Parashar A, Rennaker RL, Kilgard MP, Hays SA. Optimizing Dosing of Vagus Nerve Stimulation for Stroke Recovery. Transl Stroke Res 2020; 12:65-71. [PMID: 32583333 DOI: 10.1007/s12975-020-00829-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
Vagus nerve stimulation (VNS) paired with rehabilitative training enhances recovery of function in models of stroke and is currently under investigation for use in chronic stroke patients. Dosing is critical in translation of pharmacological therapies, but electrical stimulation therapies often fail to comprehensively explore dosing parameters in preclinical studies. Varying VNS parameters has non-monotonic effects on plasticity in the central nervous system, which may directly impact efficacy for stroke. We sought to optimize stimulation intensity to maximize recovery of motor function in a model of ischemic stroke. The study design was preregistered prior to beginning data collection (DOI: https://doi.org/10.17605/OSF.IO/BMJEK ). After training on an automated assessment of forelimb function and receiving an ischemic lesion in motor cortex, rats were separated into groups that received rehabilitative training paired with VNS at distinct stimulation intensities (sham, 0.4 mA, 0.8 mA, or 1.6 mA). Moderate-intensity VNS at 0.8 mA enhanced recovery of function compared with all other groups. Neither 0.4 mA nor 1.6 mA VNS was sufficient to improve functional recovery compared with equivalent rehabilitation without VNS. These results demonstrate that moderate-intensity VNS delivered during rehabilitation improves recovery and defines an optimized intensity paradigm for clinical implementation of VNS therapy.
Collapse
Affiliation(s)
- David T Pruitt
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Tanya T Danaphongse
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Megan Lutchman
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Nishi Patel
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Priyanka Reddy
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Vanesse Wang
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Anjana Parashar
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.,Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A Hays
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.,Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| |
Collapse
|
23
|
Morrison RA, Danaphongse TT, Pruitt DT, Adcock KS, Mathew JK, Abe ST, Abdulla DM, Rennaker RL, Kilgard MP, Hays SA. A limited range of vagus nerve stimulation intensities produce motor cortex reorganization when delivered during training. Behav Brain Res 2020; 391:112705. [PMID: 32473844 DOI: 10.1016/j.bbr.2020.112705] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
Pairing vagus nerve stimulation (VNS) with rehabilitation has emerged as a potential strategy to improve recovery after neurological injury, an effect ascribed to VNS-dependent enhancement of synaptic plasticity. Previous studies demonstrate that pairing VNS with forelimb training increases forelimb movement representations in motor cortex. However, it is not known whether VNS-dependent enhancement of plasticity is restricted to forelimb training or whether VNS paired with other movements could induce plasticity of other motor representations. We tested the hypothesis that VNS paired with orofacial movements associated with chewing during an unskilled task would drive a specific increase in jaw representation in motor cortex compared to equivalent behavioral experience without VNS. Rats performed a behavioral task in which VNS at a specified intensity between 0 and 1.2 mA was paired with chewing 200 times per day for five days. Intracortical microstimulation (ICMS) was then used to document movement representations in motor cortex. VNS paired with chewing at 0.8 mA significantly increased motor cortex jaw representation compared to equivalent behavioral training without stimulation (Bonferroni-corrected unpaired t-test, p < 0.01). Higher and lower intensities failed to alter cortical plasticity. No changes in other movement representations or total motor cortex area were observed between groups. These results demonstrate that 0.8 mA VNS paired with training drives robust plasticity specific to the paired movement, is not restricted to forelimb representations, and occurs with training on an unskilled task. This suggests that moderate intensity VNS may be a useful adjuvant to enhance plasticity and support benefits of rehabilitative therapies targeting functions beyond upper limb movement.
Collapse
Affiliation(s)
- Robert A Morrison
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States.
| | - Tanya T Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - David T Pruitt
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Katherine S Adcock
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Jobin K Mathew
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Stephanie T Abe
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Dina M Abdulla
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Robert L Rennaker
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States
| |
Collapse
|
24
|
Bucksot JE, Morales Castelan K, Skipton SK, Hays SA. Parametric characterization of the rat Hering-Breuer reflex evoked with implanted and non-invasive vagus nerve stimulation. Exp Neurol 2020; 327:113220. [PMID: 32027928 PMCID: PMC7089831 DOI: 10.1016/j.expneurol.2020.113220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Vagus nerve stimulation (VNS) has rapidly gained interest as a treatment for a variety of disorders. A number of methods have been employed to stimulate the vagus nerve, but the most common relies on a cuff electrode implanted around the cervical branch of the nerve. Recently, two non-invasive methods have increased in popularity: transcutaneous cervical VNS (tcVNS) and transcutaneous auricular VNS (taVNS). Despite promising clinical results, there has been little direct comparison of these methods to stimulation delivered via an implanted device. In this study, we directly compared both non-invasive strategies to stimulation with an implanted cuff electrode on activation of the Hering-Breuer (HB) reflex, a non-invasive biomarker of A-fiber activation in the vagus. Stimulation was delivered across a wide range of parameters using tcVNS, taVNS, and an implanted cuff electrode in female rats. Activation of the HB reflex, changes in heart rate, and neck muscle twitch force were recorded. Consistent with low thresholds reported in previous studies, we found that the threshold to activate the HB reflex using an implanted cuff electrode was 0.406 ± 0.066 mA. tcVNS was capable of activating the HB reflex, but the threshold was 34.18 ± 1.86 mA, over 15 fold higher than the stimulation intensity that caused twitching of the neck muscles (2.09 ± 0.16 mA). No activation of the HB reflex was observed with taVNS at any parameters. These results describe activation of the HB reflex with each strategy and provide initial evidence regarding differences in the activation of the vagus nerve with invasive and non-invasive methods.
Collapse
Affiliation(s)
- Jesse E Bucksot
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States of America.
| | - Karen Morales Castelan
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States of America
| | - Samantha K Skipton
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States of America
| | - Seth A Hays
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States of America; The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States of America; Texas Biomedical Device Center, Richardson, TX, United States of America
| |
Collapse
|
25
|
Souza RR, Robertson NM, Mathew E, Tabet MN, Bucksot JE, Pruitt DT, Rennaker RL, Hays SA, McIntyre CK, Kilgard MP. Efficient parameters of vagus nerve stimulation to enhance extinction learning in an extinction-resistant rat model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109848. [PMID: 31863872 DOI: 10.1016/j.pnpbp.2019.109848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Vagus nerve stimulation (VNS) has shown promise as an adjuvant treatment for posttraumatic stress disorder (PTSD), as it enhances fear extinction and reduces anxiety symptoms in multiple rat models of this condition. Yet, identification of the optimal stimulation paradigm is needed to facilitate clinical translation of this potential therapy. Using an extinction-resistant rat model of PTSD, we tested whether varying VNS intensity and duration could maximize extinction learning while minimizing the total amount of stimulation. We confirmed that sham rats failed to extinguish after a week of extinction training. Delivery of the standard LONG VNS trains (30 s) at 0.4 mA enhanced extinction and reduced anxiety but did not prevent fear return. Increasing the intensity of LONG VNS trains to 0.8 mA prevented fear return and attenuated anxiety symptoms. Interestingly, delivering 1, 4 or 16 SHORT VNS bursts (0.5 s) at 0.8 mA during each cue presentation in extinction training also enhanced extinction. LONG VNS trains or multiple SHORT VNS bursts at 0.8 mA attenuated fear renewal and reinstatement, promoted extinction generalization and reduced generalized anxiety. Delivering 16 SHORT VNS bursts also facilitated extinction in fewer trials. This study provides the first evidence that brief bursts of VNS can enhance extinction training, reduce relapse and support symptom remission using much less VNS than previous protocols. These findings suggest that VNS parameters can be adjusted in order to minimize total charge delivery and maximize therapeutic effectiveness.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America.
| | - Nicole M Robertson
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| | - Ezek Mathew
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| | - Michel N Tabet
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| | - Jesse E Bucksot
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| | - David T Pruitt
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| | - Christa K McIntyre
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America
| |
Collapse
|
26
|
Rodenkirch C, Wang Q. Rapid and transient enhancement of thalamic information transmission induced by vagus nerve stimulation. J Neural Eng 2020; 17:026027. [PMID: 31935689 DOI: 10.1088/1741-2552/ab6b84] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) has been FDA-approved as a long-term, therapeutic treatment for multiple disorders, including pharmacoresistant epilepsy and depression. Here we elucidate the short-term effects of VNS on sensory processing. APPROACH We employed an information theoretic approach to examine the effects of VNS on thalamocortical transmission of sensory-related information along the somatosensory pathway. MAIN RESULTS We found that VNS enhanced the selectivity of the response of thalamic neurons to specific kinetic features in the stimuli, resulting in a significant increase in the efficiency and rate of stimulus-related information conveyed by thalamic spikes. VNS-induced improvements in thalamic sensory processing coincided with a decrease in thalamic burst firing. Importantly, we found VNS-induced enhancement of sensory processing had a rapid onset and offset, completely disappearing one minute after cessation of VNS. The timescales of these effects indicate against an underlying mechanism involving long-term neuroplasticity. We found several patterns of VNS (tonic, standard duty-cycle, and fast duty-cycle) all induced similar improvements in sensory processing. Under closer inspection we noticed that due to the fast timescale of VNS effects on sensory processing, standard duty-cycle VNS induced a fluctuating sensory processing state which may be sub-optimal for perceptual behavior. Fast duty-cycle VNS and continuous, tonic VNS induced quantitatively similar improvements in thalamic information transmission as standard duty-cycle VNS without inducing a fluctuating thalamic state. Further, we found the strength of VNS-induced improvements in sensory processing increased monotonically with amplitude and frequency of VNS. SIGNIFICANCE These results demonstrate, for the first time, the feasibility of utilizing specific patterns of VNS to rapidly improve sensory processing and confirm fast duty-cycle and tonic patterns as optimal for this purpose, while showing standard duty-cycle VNS causes non-optimal fluctuations in thalamic state.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, ET351, 500 W. 120th Street, New York, NY 10027, United States of America
| | | |
Collapse
|
27
|
Sachdeva R, Krassioukov AV, Bucksot JE, Hays SA. Acute Cardiovascular Responses to Vagus Nerve Stimulation after Experimental Spinal Cord Injury. J Neurotrauma 2020; 37:1149-1155. [PMID: 31973660 DOI: 10.1089/neu.2019.6828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pairing vagus nerve stimulation (VNS) with rehabilitation has emerged as a potential strategy to enhance plasticity and improve recovery in a range of neurological disorders. A recent study highlights the therapeutic promise of VNS in promoting motor recovery after spinal cord injury (SCI). We investigated the safety of acute VNS in a rat model of chronic SCI. We measured the cardiovascular response to various VNS paradigms following chronic high-thoracic SCI that is known to deleteriously impact cardiovascular control. Dose-response experiments with continuous VNS revealed an SCI-dependent increase in sensitivity for heart rate (HR) and blood pressure (BP) compared with controls. A clinically relevant intermittent VNS resulted in transient reduction in HR in rats with SCI; however, BP remained unaltered. In all experiments, the effect lasted only while the VNS stimulus train was present, as HR and BP restored to baseline values as soon as VNS ended. No prolonged episodes of persisting hypotension were seen in either group. Further, VNS did not trigger autonomic dysreflexia or exacerbate the severity of autonomic dysreflexia when induced during or after stimulation sessions. Overall, these findings provide initial evidence that intermittent VNS at parameters used for targeted plasticity therapy (30 Hz, 0.8 mA) appears safe and supports further investigation of this potential therapy for use following SCI.
Collapse
Affiliation(s)
- Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,G.F. Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Jesse E Bucksot
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Hays
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA.,School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
28
|
Darrow MJ, Mian TM, Torres M, Haider Z, Danaphongse T, Rennaker RL, Kilgard MP, Hays SA. Restoration of Somatosensory Function by Pairing Vagus Nerve Stimulation with Tactile Rehabilitation. Ann Neurol 2020; 87:194-205. [PMID: 31875975 PMCID: PMC9624178 DOI: 10.1002/ana.25664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Sensory dysfunction is a common consequence of many forms of neurological injury, including stroke and nerve damage. Rehabilitative paradigms that incorporate sensory retraining can provide modest benefits, but the majority of patients are left with lasting sensory loss. We have developed a novel strategy that uses closed-loop vagus nerve stimulation (VNS) paired with tactile rehabilitation to enhance synaptic plasticity and facilitate recovery of sensory function. METHODS A clinical case report provides initial evidence that a similar implementation of closed-loop VNS paired with a tactile rehabilitation regimen could improve recovery of somatosensory function. Here, we sought to build on these promising initial clinical data and rigorously evaluate the ability of VNS paired with tactile rehabilitation to improve recovery in an animal model of chronic sensory loss. The study design, including planned sample size, assessments, and statistical comparisons, was preregistered prior to beginning data collection (https://osf.io/xsnj5/). RESULTS VNS paired with tactile rehabilitation resulted in a significant and nearly complete recovery of mechanosensory withdrawal thresholds. Equivalent tactile rehabilitation without VNS failed to improve sensory function. This VNS-dependent restoration of sensory thresholds was maintained for several months after the cessation of stimulation, illustrating long-term benefits. Moreover, VNS paired with tactile rehabilitation resulted in significant generalized improvements in other measures of sensorimotor forepaw function. INTERPRETATION Given the safety and tolerability of VNS therapy, these findings suggest that incorporating VNS paired with sensory retraining into rehabilitative regimens may represent a fundamentally new method to increase recovery of sensory function after neurological injury. ANN NEUROL 2020;87:194-205.
Collapse
Affiliation(s)
- Michael J. Darrow
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Tabarak M. Mian
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Miranda Torres
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Zainab Haider
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Tanya Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Robert L. Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Michael P. Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Seth A. Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| |
Collapse
|
29
|
Darrow MJ, Torres M, Sosa MJ, Danaphongse TT, Haider Z, Rennaker RL, Kilgard MP, Hays SA. Vagus Nerve Stimulation Paired With Rehabilitative Training Enhances Motor Recovery After Bilateral Spinal Cord Injury to Cervical Forelimb Motor Pools. Neurorehabil Neural Repair 2020; 34:200-209. [PMID: 31969052 DOI: 10.1177/1545968319895480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Closed-loop vagus nerve stimulation (VNS) paired with rehabilitative training has emerged as a strategy to enhance recovery after neurological injury. Previous studies demonstrate that brief bursts of closed-loop VNS paired with rehabilitative training substantially improve recovery of forelimb motor function in models of unilateral and bilateral contusive spinal cord injury (SCI) at spinal level C5/6. While these findings provide initial evidence of the utility of VNS for SCI, the injury model used in these studies spares the majority of alpha motor neurons originating in C7-T1 that innervate distal forelimb muscles. Because the clinical manifestation of SCI in many patients involves damage at these levels, it is important to define whether damage to the distal forelimb motor neuron pools limits VNS-dependent recovery. In this study, we assessed recovery of forelimb function in rats that received a bilateral incomplete contusive SCI at C7/8 and underwent extensive rehabilitative training with or without paired VNS. The study design, including planned sample size, assessments, and statistical comparisons, was preregistered prior to beginning data collection ( https://osf.io/ysvgf/ ). VNS paired with rehabilitative training significantly improved recovery of volitional forelimb strength compared to equivalent rehabilitative training without VNS. Additionally, VNS-dependent enhancement of recovery generalized to 2 similar, but untrained, forelimb tasks. These findings indicate that damage to alpha motor neurons does not prevent VNS-dependent enhancement of recovery and provides additional evidence to support the evaluation of closed-loop VNS paired with rehabilitation in patients with incomplete cervical SCI.
Collapse
Affiliation(s)
| | | | - Maria J Sosa
- The University of Texas at Dallas, Richardson, TX, USA
| | | | - Zainab Haider
- The University of Texas at Dallas, Richardson, TX, USA
| | | | | | - Seth A Hays
- The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
30
|
Meyers EC, Kasliwal N, Solorzano BR, Lai E, Bendale G, Berry A, Ganzer PD, Romero-Ortega M, Rennaker RL, Kilgard MP, Hays SA. Enhancing plasticity in central networks improves motor and sensory recovery after nerve damage. Nat Commun 2019; 10:5782. [PMID: 31857587 PMCID: PMC6923364 DOI: 10.1038/s41467-019-13695-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Nerve damage can cause chronic, debilitating problems including loss of motor control and paresthesia, and generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. However, it remains unclear if this is a critical feature responsible for the expression of symptoms. Here, we use brief bursts of closed-loop vagus nerve stimulation (CL-VNS) delivered during rehabilitation to reverse the aberrant central plasticity resulting from forelimb nerve transection. CL-VNS therapy drives extensive synaptic reorganization in central networks paralleled by improved sensorimotor recovery without any observable changes in the nerve or muscle. Depleting cortical acetylcholine blocks the plasticity-enhancing effects of CL-VNS and consequently eliminates recovery, indicating a critical role for brain circuits in recovery. These findings demonstrate that manipulations to enhance central plasticity can improve sensorimotor recovery and define CL-VNS as a readily translatable therapy to restore function after nerve damage. Peripheral nerve damage generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. Here, the authors reverse the aberrant plasticity via vagus nerve stimulation to elicit synaptic reorganization and to improve sensorimotor recovery.
Collapse
Affiliation(s)
- Eric C Meyers
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - Nimit Kasliwal
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Bleyda R Solorzano
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Elaine Lai
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Geetanjali Bendale
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Abigail Berry
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Patrick D Ganzer
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Mario Romero-Ortega
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
31
|
Bucksot JE, Wells AJ, Rahebi KC, Sivaji V, Romero-Ortega M, Kilgard MP, Rennaker RL, Hays SA. Flat electrode contacts for vagus nerve stimulation. PLoS One 2019; 14:e0215191. [PMID: 31738766 PMCID: PMC6862926 DOI: 10.1371/journal.pone.0215191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
The majority of available systems for vagus nerve stimulation use helical stimulation electrodes, which cover the majority of the circumference of the nerve and produce largely uniform current density within the nerve. Flat stimulation electrodes that contact only one side of the nerve may provide advantages, including ease of fabrication. However, it is possible that the flat configuration will yield inefficient fiber recruitment due to a less uniform current distribution within the nerve. Here we tested the hypothesis that flat electrodes will require higher current amplitude to activate all large-diameter fibers throughout the whole cross-section of a nerve than circumferential designs. Computational modeling and in vivo experiments were performed to evaluate fiber recruitment in different nerves and different species using a variety of electrode designs. Initial results demonstrated similar fiber recruitment in the rat vagus and sciatic nerves with a standard circumferential cuff electrode and a cuff electrode modified to approximate a flat configuration. Follow up experiments comparing true flat electrodes to circumferential electrodes on the rabbit sciatic nerve confirmed that fiber recruitment was equivalent between the two designs. These findings demonstrate that flat electrodes represent a viable design for nerve stimulation that may provide advantages over the current circumferential designs for applications in which the goal is uniform activation of all fascicles within the nerve.
Collapse
Affiliation(s)
- Jesse E. Bucksot
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Andrew J. Wells
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Kimiya C. Rahebi
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
| | - Vishnoukumaar Sivaji
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
| | - Mario Romero-Ortega
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
| | - Michael P. Kilgard
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| | - Robert L. Rennaker
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| | - Seth A. Hays
- The University of Texas at Dallas, Erik Jonsson School of Engineering and
Computer Science, Richardson, Texas, United States of America
- Texas Biomedical Device Center, Richardson, Texas, United States of
America
- The University of Texas at Dallas, School of Behavioral Brain Sciences,
Richardson, Texas, United States of America
| |
Collapse
|
32
|
Souza RR, Robertson NM, Pruitt DT, Gonzales PA, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK. Vagus nerve stimulation reverses the extinction impairments in a model of PTSD with prolonged and repeated trauma. Stress 2019; 22:509-520. [PMID: 31010369 DOI: 10.1080/10253890.2019.1602604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown that vagus nerve stimulation (VNS) enhances extinction of conditioned fear and reduces anxiety in rat models of PTSD using moderate stress. However, it is still unclear if VNS can be effective in enhancing extinction of severe fear after prolonged and repeated trauma. Severe fear was induced in adult male rats by combining single prolonged stress (SPS) and protracted aversive conditioning (PAC). After SPS and PAC procedures, rats were implanted with stimulating cuff electrodes, exposed to five days of extinction training with or without VNS, and then tested for extinction retention, return of fear in a new context and reinstatement. The elevated plus maze, open field and startle were used to test anxiety. Sham rats showed no reduction of fear during extensive extinction training. VNS-paired with extinction training reduced freezing at the last extinction session by 70% compared to sham rats. VNS rats exhibited half as much fear as shams, as well as less fear renewal. Sham rats exhibited significantly more anxiety than naive controls, whereas VNS rats did not. These results demonstrate that VNS enhances extinction and reduces anxiety in a severe model of PTSD that combined SPS and a conditioning procedure that is 30 times more intense than the conditioning procedures in previous VNS studies. The broad utility of VNS in enhancing extinction learning in rats and the strong clinical safety record of VNS suggest that VNS holds promise as an adjuvant to exposure-based therapy in people with PTSD and other complex forms of this condition.
Collapse
Affiliation(s)
- Rimenez R Souza
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
| | - Nicole M Robertson
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
| | - David T Pruitt
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
- c Erik Jonsson School of Engineering and Computer Science , The University of Texas at Dallas , Richardson , TX , USA
| | - Phillip A Gonzales
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
| | - Seth A Hays
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- c Erik Jonsson School of Engineering and Computer Science , The University of Texas at Dallas , Richardson , TX , USA
| | - Robert L Rennaker
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
- c Erik Jonsson School of Engineering and Computer Science , The University of Texas at Dallas , Richardson , TX , USA
| | - Michael P Kilgard
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
| | - Christa K McIntyre
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
| |
Collapse
|
33
|
Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Vanneste S, Kilgard MP, Engineer CT. Pairing vagus nerve stimulation with tones drives plasticity across the auditory pathway. J Neurophysiol 2019; 122:659-671. [PMID: 31215351 DOI: 10.1152/jn.00832.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with sounds can enhance the primary auditory cortex (A1) response to the paired sound. The neural response to sounds following VNS-sound pairing in other subcortical and cortical auditory fields has not been documented. We predicted that VNS-tone pairing would increase neural responses to the paired tone frequency across the auditory pathway. In this study, we paired VNS with the presentation of a 9-kHz tone 300 times a day for 20 days. We recorded neural responses to tones from 2,950 sites in the inferior colliculus (IC), A1, anterior auditory field (AAF), and posterior auditory field (PAF) 24 h after the last pairing session in anesthetized rats. We found that VNS-tone pairing increased the percentage of IC, A1, AAF, and PAF that responds to the paired tone frequency. Across all tested auditory fields, the response strength to tones was strengthened in VNS-tone paired rats compared with control rats. VNS-tone pairing reduced spontaneous activity, frequency selectivity, and response threshold across the auditory pathway. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing. Our findings suggest that VNS paired with sound presentation is an effective method to enhance auditory processing.NEW & NOTEWORTHY Previous studies have reported primary auditory cortex plasticity following vagus nerve stimulation (VNS) paired with a sound. This study extends previous findings by documenting that fields across the auditory pathway are altered by VNS-tone pairing. VNS-tone pairing increases the percentage of each field that responds to the paired tone frequency. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing.
Collapse
Affiliation(s)
- Michael S Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Will A Vrana
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Nicole A Moreno
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Elizabeth A Fogarty
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Elizabeth P Buell
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Sven Vanneste
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| |
Collapse
|