1
|
Aroche AF, Nissan HE, Daniele MA. Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. Adv Healthc Mater 2025; 14:e2401782. [PMID: 39558769 PMCID: PMC11694095 DOI: 10.1002/adhm.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Hydrogel-forming microneedles are constructed from or coated with polymeric, hydrophilic materials that swell upon insertion into the skin. Designed to dissolve or disintegrate postinsertion, these microneedles can deliver drugs, vaccines, or other therapeutics. Recent advancements have broadened their application scope to include the collection, transport, and extraction of dermal interstitial fluid (ISF) for medical diagnostics. This review presents a brief introduction to the characteristics of dermal ISF, methods for extraction and sampling, and critical assessment of the state-of-the-art in hydrogel-forming microneedles for ISF diagnostics. Key factors are evaluated including material composition, swelling behavior, biocompatibility, and mechanical strength necessary for effective microneedle performance and ISF collection. The review also discusses successful examples of dermal ISF assays and microneedle sensor integrations, highlighting notable achievements, identifying research opportunities, and addressing challenges with potential solutions. Despite the predominance of synthetic hydrogels in reported hydrogel-forming microneedle technologies due to their favorable swelling and gelation properties, there is a significant variety of biopolymers and composites reported in the literature. The field lacks consensus on the optimal material, composition, or fabrication methods, though emerging evidence suggests that processing and fabrication techniques are critical to the performance and utility of hydrogel-forming microneedles for ISF diagnostics.
Collapse
Affiliation(s)
- Angélica F. Aroche
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
| | - Hannah E. Nissan
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| | - Michael A. Daniele
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| |
Collapse
|
2
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2024; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
3
|
Phoka T, Wanichwecharungruang N, Dueanphen N, Thanuthanakhun N, Kietdumrongwong P, Leelahavanichkul A, Wanichwecharungruang S. Converting Short-Acting Insulin into Thermo-Stable Longer-Acting Insulin Using Multi-Layer Detachable Microneedles. J Pharm Sci 2024; 113:2734-2743. [PMID: 38857645 DOI: 10.1016/j.xphs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The detachable dissolving microneedles (DDMNs) feature an array of needles capable of being separated from the base sheet during administration. Here they were fabricated to address delivery efficiency and storage stability of insulin. The constructed insulin-DDMN is multi-layered, with 1) a hard tip cover layer; 2) a layer of regular short-acting insulin (RI) mixed with hyaluronic acid (HA) and sorbitol (Sor) which occupies the taper tip region of the needles; 3) a barrier layer situated above the RI layer; and 4) a fast-dissolving layer connecting the barrier layer to the base sheet. RI entrapped in DDMNs exhibited enhanced thermal stability; it could be stored at 40 °C for 35 days without losing significant biological activity. Differential scanning calorimetric analysis revealed that the HA-Sor matrix could improve the denaturation temperature of the RI from lower than room temperature to 186 °C. Tests in ex vivo porcine skin demonstrated RI delivery efficiency of 91±1.59 %. Experiments with diabetic rats revealed sustained release of RI, i.e., when compared to subcutaneous injection with the same RI dose, RI-DDMNs produced slower absorption of insulin into blood circulation, delayed onset of hypoglycemic effect, longer serum insulin half-life, and longer hypoglycemic duration.
Collapse
Affiliation(s)
- Theerapat Phoka
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Narintorn Dueanphen
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supason Wanichwecharungruang
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Limcharoen B, Wanichwecharungruang S, Kröger M, Sansureerungsikul T, Schleusener J, Lena Klein A, Banlunara W, Meinke MC, Darvin ME. Dissolvable microneedles in the skin: Determination the impact of barrier disruption and dry skin on dissolution. Eur J Pharm Biopharm 2024; 199:114303. [PMID: 38657740 DOI: 10.1016/j.ejpb.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Titiporn Sansureerungsikul
- Mineed Technology, 928 Block 28, Building D, Chulalongkorn 7 Alley, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Johannes Schleusener
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| | - Maxim E Darvin
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| |
Collapse
|
5
|
Phoka T, Thanuthanakhun N, Visitchanakun P, Dueanphen N, Wanichwecharungruang N, Leelahavanichkul A, Palaga T, Ruxrungtham K, Wanichwecharungruang S. Detachable-dissolvable-microneedle as a potent subunit vaccine delivery device that requires no cold-chain. Vaccine X 2023; 15:100398. [PMID: 37920235 PMCID: PMC10618702 DOI: 10.1016/j.jvacx.2023.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Although vaccine administration by microneedles has been demonstrated, delivery reliability issues have prevented their implementation. Through an ex vivo porcine skin experiment, we show visual evidence indicating that detachable dissolvable microneedles (DDMN) can deposit cargo into the dermis with insignificant loss of cargo to the stratum corneum. Using ovalbumin (OVA), a model antigen vaccine, as a cargo, the ex vivo experiments yielded a delivery efficiency of 86.08 ± 4.16 %. At room temperature, OVA could be stabilized for up to 35 days in DDMN made from hyaluronic acid and trehalose. The DDMN matrix could improve the denaturation temperature of the OVA from around 70-120 °C to over 150 °C, as demonstrated by differential scanning calorimetric analysis. In vivo delivery of OVA antigen into the mice's skin via DDMN elicited 10 times higher specific antibody responses compared to conventional intramuscular injection. We envision DDMN as an effective, precise dosing, intradermal vaccine delivery system that may require no cold-chain, offers a dose-sparing effect, and can be administered easily.
Collapse
Affiliation(s)
- Theerapat Phoka
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Thailand
| | - Narintorn Dueanphen
- The Petrochemistry and Polymer Science Program, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Thailand
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University Bangkok, Thailand
| | - Kiat Ruxrungtham
- Chula Vaccine Research Center (ChulaVRC) and School of Global Health, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supason Wanichwecharungruang
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
7
|
Al-Badry AS, Al-Mayahy MH, Scurr DJ. Enhanced Transdermal Delivery of Acyclovir via Hydrogel Microneedle Arrays. J Pharm Sci 2023; 112:1011-1019. [PMID: 36384194 DOI: 10.1016/j.xphs.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Hydrogel microneedles represent a promising approach to deliver drug molecules across skin into systemic circulation in a sustained release manner and without any polymer residue within skin. Acyclovir is an antiviral drug used for the treatment of several viral infections. However, the oral administration of acyclovir may cause gastrointestinal tract (GIT) disturbances with low bioavailability and poor patient compliance due to its requirement of five daily administrations to produce the desired effect. Therefore, it is thought that the preparation of hydrogel microneedle arrays containing acyclovir would improve the bioavailability and patient compliance by reducing the frequency of administration to once daily as well as overcome the GIT side effects associated with oral administration. A mixture of PEG 10,000 Da and PMVE/MA co-polymer 1,980,000 Da at a ratio of 1:3 (7.5%:22.5% w/w) with Na2CO3 3% w/w was found to produce the optimum hydrogel microneedle array formulation (F8) which showed suitable needle formation with an appropriate mechanical strength and excellent insertion ability, high drug content, sufficient swelling property and a sustained drug release over a period of 24 hours. The Ex vivo permeation study across human skin has demonstrated that the permeation of acyclovir from F8 hydrogel microneedle array was significantly (P≤ 0.05) increased by 39 times in comparison with microneedle-free film (control). The microneedle array has delivered 75.56% ± 4.2 of its loading dose over 24 hours, while the control film was only able to deliver 1.94% ± 0.14 of the total loading dose during the same period. Accordingly, these findings propose the potential application of hydrogel microneedle arrays for the transdermal delivery of acyclovir in a sustained release manner over 24 hours.
Collapse
Affiliation(s)
| | | | - David J Scurr
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, The University of Nottingham, NG7 2RD, UK
| |
Collapse
|
8
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
9
|
Delivery and diffusion of retinal in dermis and epidermis through the combination of prodrug nanoparticles and detachable dissolvable microneedles. Drug Deliv Transl Res 2022; 12:2751-2761. [PMID: 35191004 DOI: 10.1007/s13346-022-01136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
To minimize chemical degradation of retinal, we graft this aldehyde on chitosan chains to make them self-assemble into pro-retinal nanoparticles (PRNs), which we then load into detachable dissolvable microneedles (DDMNs) made of 1:1 (by weight) hyaluronic acid/maltose. The presence of PRNs in the hyaluronic acid-maltose needle matrix also helps improve the microneedles' mechanical strength. Ex vivo administration of PRN-loaded DDMNs on fresh porcine ear skin shows, as observed by stereomicroscopic and confocal fluorescence microscopic analyses of the cross-sectioned tissue pieces, complete deposition followed by dissolution of the needles and diffusion of the PRNs in epidermis and dermis. Rats administered with a single dose of PRN-loaded DDMNs show significantly increased epidermal thickness as compared to rats administered with control DDMNs (no PRN). Both the PRN-loaded DDMNs and the control DDMNs produce no skin irritation in rats.
Collapse
|
10
|
Laser-assisted nanoparticle delivery to promote skin absorption and penetration depth of retinoic acid with the aim for treating photoaging. Int J Pharm 2022; 627:122162. [PMID: 36122617 DOI: 10.1016/j.ijpharm.2022.122162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA) is an approved treatment for skin photoaging induced by ultraviolet (UVA). Topically applied RA is mainly located in the stratum corneum (SC) with limited diffusion into the deeper strata. A delivery system capable of facilitating dermal delivery and cellular internalization for RA is critical for a successful photoaging therapy. Two delivery approaches, namely nanoparticles and laser ablation, were combined to improve RA's absorption efficacy and safety. The nanoparticle absorption enhancement by the lasers was compared between full-ablative (Er:YAG) and fractional (CO2) modalities. We fabricated poly-L-lactic acid (PLA) and PLA/poly(lactic-co-glycolic acid) (PLGA) nanoparticles by an emulsion-solvent evaporation technique. The mean size of PLA and PLA/PLGA nanocarriers was 237 and 222 nm, respectively. The RA encapsulation percentage in both nanosystems was > 96 %. PLA and PLA/PLGA nanocarriers promoted RA skin deposition by 5- and 3-fold compared to free control. The ablative lasers further enhanced the skin deposition of RA-loaded nanoparticles, with the full-ablative laser showing greater permeation enhancement than the fractional mode. The skin biodistribution assay evaluated by confocal and fluorescence microscopies demonstrated that the laser-assisted nanoparticle delivery achieved a significant dermis and follicular accumulation. The cell-based study indicated a facile uptake of the nanoparticles into the human dermal fibroblasts. The nanoparticulate RA increased type I collagen and elastin production in the UVA-treated fibroblasts. A reduction of matrix metalloproteinase (MMP)-1 was also highlighted in the photoaging cells. The calculation of therapeutic index (TI) by multiplying collagen/elastin elevation percentage and skin deposition predicted better anti-photoaging performance in Er:YAG laser-assisted nanoparticle delivery than CO2 laser. Nanoencapsulation of RA decreased the cytotoxicity against skin fibroblasts. In vivo skin tolerance test on a nude mouse showed less skin damage after topical application of the nanoparticles than free RA. Our results hypothesized that the laser-mediated nanoparticle delivery provided an efficient and safe use for treating photoaging.
Collapse
|
11
|
Sustainable drug release using nanoparticle encapsulated microneedles. Chem Asian J 2022; 17:e202200333. [DOI: 10.1002/asia.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Indexed: 11/07/2022]
|
12
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
13
|
Bao L, Park J, Bonfante G, Kim B. Recent advances in porous microneedles: materials, fabrication, and transdermal applications. Drug Deliv Transl Res 2022; 12:395-414. [PMID: 34415566 PMCID: PMC8724174 DOI: 10.1007/s13346-021-01045-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
In the past two decades, microneedles (MNs), as a painless and simple drug delivery system, have received increasing attention for various biomedical applications such as transdermal drug delivery, interstitial fluid (ISF) extraction, and biosensing. Among the various types of MNs, porous MNs have been recently researched owing to their distinctive and unique characteristics, where porous structures inside MNs with continuous nano- or micro-sized pores can transport drugs or biofluids by capillary action. In addition, a wide range of materials, including non-polymers and polymers, were researched and used to form the porous structures of porous MNs. Adjustable porosity by different fabrication methods enables the achievement of sufficient mechanical strength by optimising fluid flows inside MNs. Moreover, biocompatible porous MNs integrated with biosensors can offer portable detection and rapid measurement of biomarkers in a minimally invasive manner. This review focuses on several aspects of current porous MN technology, including material selection, fabrication processes, biomedical applications, primarily covering transdermal drug delivery, ISF extraction, and biosensing, along with future prospects as well as challenges.
Collapse
Affiliation(s)
- Leilei Bao
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Jongho Park
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- LIMMS/CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Wang Y, Ma G, Gao G, Tao J, Cao W, Sun H, Ma F, Zhang Y, Wei Y, Tian M. Bioimaging of Dissolvable Microneedle Arrays: Challenges and Opportunities. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9758491. [PMID: 36034102 PMCID: PMC9368514 DOI: 10.34133/2022/9758491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
The emergence of microneedle arrays (MNAs) as a novel, simple, and minimally invasive administration approach largely addresses the challenges of traditional drug delivery. In particular, the dissolvable MNAs act as a promising, multifarious, and well-controlled platform for micro-nanotransport in medical research and cosmetic formulation applications. The effective delivery mostly depends on the behavior of the MNAs penetrated into the body, and accurate assessment is urgently needed. Advanced imaging technologies offer high sensitivity and resolution visualization of cross-scale, multidimensional, and multiparameter information, which can be used as an important aid for the evaluation and development of new MNAs. The combination of MNA technology and imaging can generate considerable new knowledge in a cost-effective manner with regards to the pharmacokinetics and bioavailability of active substances for the treatment of various diseases. In addition, noninvasive imaging techniques allow rapid, receptive assessment of transdermal penetration and drug deposition in various tissues, which could greatly facilitate the translation of experimental MNAs into clinical application. Relying on the recent promising development of bioimaging, this review is aimed at summarizing the current status, challenges, and future perspective on in vivo assessment of MNA drug delivery by various imaging technologies.
Collapse
Affiliation(s)
- Yanni Wang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gehua Ma
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Guangzhi Gao
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ji Tao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Haohao Sun
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
- Life Science Research Center, Frontier Crossing Institute, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yilong Zhang
- Engineering Research Center of Intelligent Sensing and System, Ministry of Education, Hangzhou 310023, China
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
15
|
Sawutdeechaikul P, Kanokrungsee S, Sahaspot T, Thadvibun K, Banlunara W, Limcharoen B, Sansureerungsikul T, Rutwaree T, Oungeun M, Wanichwecharungruang S. Detachable dissolvable microneedles: intra-epidermal and intradermal diffusion, effect on skin surface, and application in hyperpigmentation treatment. Sci Rep 2021; 11:24114. [PMID: 34916571 PMCID: PMC8677736 DOI: 10.1038/s41598-021-03503-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 01/04/2023] Open
Abstract
Delivering bioactive compounds into skin tissue has long been a challenge. Using ex vivo porcine and rat skins, here we demonstrate that a detachable dissolvable microneedle (DDMN) array, a special dissolvable microneedle that allows needle detachment from the base within 2 min post administration, can effectively embed a model compound into epidermis and dermis. Diffusion of the compound from the needle embedding sites to the nearby skin tissue is demonstrated at various post administration periods. The relationship between the time that a conventional dissolvable microneedle array is left on skin without needle detachment from the base and the degree of skin surface abrasion at each microneedle penetration spot is also demonstrated on skin of human volunteers. Co-loading glutathione with vitamin C (vitC) can stabilize vitC in the DDMN. DDMN loaded with vitC and glutathione can help erasing post-acne-hyperpigmentation spots.
Collapse
Affiliation(s)
| | - Silada Kanokrungsee
- Faculty of Medicine, Skin Center, Srinakharinwirot University, Bangkok, Thailand
| | - Thanyapat Sahaspot
- Faculty of Medicine, Skin Center, Srinakharinwirot University, Bangkok, Thailand
| | - Kamonwan Thadvibun
- Faculty of Medicine, Skin Center, Srinakharinwirot University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, Thailand
| | - Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, Thailand
| | | | - Teeranut Rutwaree
- Mineed Technology, 142 Innovation Cluster 2, Thailand Science Park, Pathum Thani, Thailand
| | - Miranda Oungeun
- Department of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
16
|
Ruan S, Zhang Y, Feng N. Microneedle-mediated transdermal nanodelivery systems: a review. Biomater Sci 2021; 9:8065-8089. [PMID: 34752590 DOI: 10.1039/d1bm01249e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The greatest limitation in the development of transdermal drug delivery systems is that only a few drugs can permeate the skin due to the barrier function of the stratum corneum. Active and passive methods are generally available for improving the ability of drug transdermal delivery. However, nanoparticles, as a passive approach, exhibit capacity-constrained permeation enhancement. Thus, microneedle-mediated nanoparticles possess enormous potential and broad prospects. Microneedles promote the penetration of macromolecules by creating microchannels on the skin surface. In this review, the prevailing subknowledge on microneedles (mechanism, classification, and applications of microneedles combined with nanoparticles) is discussed to provide a guideline for readers and a basic reference for further in-depth studies of this novel drug delivery system.
Collapse
Affiliation(s)
- Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Infante V, Maia Campos P, Calixto L, Darvin M, Kröger M, Schanzer S, Lohan S, Lademann J, Meinke M. Influence of physical–mechanical properties on SPF in sunscreen formulations on ex vivo and in vivo skin. Int J Pharm 2021; 598:120262. [DOI: 10.1016/j.ijpharm.2021.120262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
|
18
|
Lohan SB, Kröger M, Schleusener J, Darvin ME, Lademann J, Streit I, Meinke MC. Characterization of radical types, penetration profile and distribution pattern of the topically applied photosensitizer THPTS in porcine skin ex vivo. Eur J Pharm Biopharm 2021; 162:50-58. [PMID: 33691169 DOI: 10.1016/j.ejpb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022]
Abstract
The topical photodynamic therapy (PDT) is mainly used in the treatment of dermato-oncological diseases. The distribution and functionality of the photosensitizer Tetrahydroporphyrin-Tetratosylat (THPTS) was investigated using microscopic and spectroscopic methods after topical application to excised porcine skin followed by irradiation. The distribution of THPTS was determined by two-photon tomography combined with fluorescence lifetime imaging (TPT/FLIM) and confocal Raman microspectroscopy (CRM). The radicals were quantified and characterized by electron paramagnetic resonance (EPR) spectroscopy. Results show a penetration depth of THPTS into the skin down to around 12 ± 5 µm. A penetration of THPTS through the stratum corneum was not clearly observable after 1 h penetration time, but cannot be excluded. The irradiation within the phototherapeutic window (spectral range of visible and near infrared light in the range ≈ 650-850 nm) is needed to activate THPTS. An incubation time of 10 min showed the highest radical production. A longer incubation time affected the functionality of THPTS, whereby significant less radicals were detectable. During PDT mainly reactive oxygen species (ROS) and lipid oxygen species (LOS) are produced. Overall, the irradiation dose per se influences the radical types formed in skin. While ROS are always prominent at low doses, LOS increase at high doses, independent of previous skin treatment and the irradiation wavelength used.
Collapse
Affiliation(s)
- S B Lohan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany.
| | - M Kröger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - J Schleusener
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - M E Darvin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - J Lademann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - I Streit
- Asclepion Laser Technologies GmbH, Jena, Germany
| | - M C Meinke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
19
|
Song JE, Jun SH, Park SG, Kang NG. A Semi-Dissolving Microneedle Patch Incorporating TEMPO-Oxidized Bacterial Cellulose Nanofibers for Enhanced Transdermal Delivery. Polymers (Basel) 2020; 12:polym12091873. [PMID: 32825232 PMCID: PMC7564169 DOI: 10.3390/polym12091873] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Although dissolving microneedles have garnered considerable attention as transdermal delivery tools, insufficient drug loading remains a challenge owing to their small dimension. Herein, we report a one-step process of synthesizing semi-dissolving microneedle (SDMN) patches that enable effective transdermal drug delivery without loading drugs themselves by introducing TEMPO-oxidized bacterial cellulose nanofibers (TOBCNs), which are well dispersed, while retaining their unique properties in the aqueous phase. The SDMN patch fabricated by the micro-molding of a TOBCN/hydrophilic biopolymer mixture had a two-layer structure comprising a water-soluble needle layer and a TOBCN-containing insoluble backing layer. Moreover, the SDMN patch, which had a hole in the backing layer where TOBCNs are distributed uniformly, could offer novel advantages for the delivery of large quantities of active ingredients. In vitro permeation analysis confirmed that TOBCNs with high water absorption capacity could serve as drug reservoirs. Upon SDMN insertion and the application of drug aqueous solution through the drug inlet hole, the TOBCNs rapidly absorbed the solution and supplied it to the needle layer. Simultaneously, the needle layer dissolved in body fluids and the drug solution to form micro-channels, which enabled the delivery of larger quantities of drugs to the skin compared to that enabled by solution application alone.
Collapse
|
20
|
Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery. J Control Release 2020; 325:163-175. [PMID: 32629134 DOI: 10.1016/j.jconrel.2020.06.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Polymeric microneedles (MNs) have been leveraged as a novel transdermal drug delivery platform for effective drug permeation, which were widely used in the treatment of various diseases. However, issues including limited loading capacity of hydrophobic drugs, uncontrollable drug release rates, and monotonic therapeutic strategy hamper the further application of polymeric MNs. As a recent emerging research topic, drawing inspiration from the ways that nanomedicine integrated with MNs have opened new avenues for disease therapy. In this review, we examined the recent studies employing nanoparticles (NPs)-encapsulated polymeric MNs (NPs@MNs) for transdermal delivery of various therapeutic cargos, particularly focused on the application of NPs@MNs for diabetes therapy, infectious disease therapy, cancer therapy, and other dermatological disease therapy. We also provided an overview of the clinical potential and future translation of NPs@MNs.
Collapse
|
21
|
Fang JH, Liu CH, Hsu RS, Chen YY, Chiang WH, Wang HMD, Hu SH. Transdermal Composite Microneedle Composed of Mesoporous Iron Oxide Nanoraspberry and PVA for Androgenetic Alopecia Treatment. Polymers (Basel) 2020; 12:polym12061392. [PMID: 32580298 PMCID: PMC7362218 DOI: 10.3390/polym12061392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The transdermal delivery of therapeutic agents amplifying a local concentration of active molecules have received considerable attention in wide biomedical applications, especially in vaccine development and medical beauty. Unlike oral or subcutaneous injections, this approach can not only avoid the loss of efficacy of oral drugs due to the liver's first-pass effect but also reduce the risk of infection by subcutaneous injection. In this study, a magneto-responsive transdermal composite microneedle (MNs) with a mesoporous iron oxide nanoraspberry (MIO), that can improve the drug delivery efficiency, was fabricated by using a 3D printing-molding method. With loading of Minoxidil (Mx, a medication commonly used to slow the progression of hair loss and speed the process of hair regrowth), MNs can break the barrier of the stratum corneum through the puncture ability, and control the delivery dose for treating androgenetic alopecia (AGA). By 3D printing process, the sizes and morphologies of MNs is able to be, easily, architected. The MIOs were embedded into the tip of MNs which can deliver Mx as well as generate mild heating for hair growth, which is potentially attributed by the expansion of hair follicle and drug penetration. Compared to the mice without any treatments, the hair density of mice exhibited an 800% improvement after being treated by MNs with MF at 10-days post-treatment.
Collapse
Affiliation(s)
- Jen-Hung Fang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (J.-H.F.); (C.-H.L.); (R.-S.H.); (Y.-Y.C.)
| | - Che-Hau Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (J.-H.F.); (C.-H.L.); (R.-S.H.); (Y.-Y.C.)
| | - Ru-Siou Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (J.-H.F.); (C.-H.L.); (R.-S.H.); (Y.-Y.C.)
| | - Yin-Yu Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (J.-H.F.); (C.-H.L.); (R.-S.H.); (Y.-Y.C.)
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (J.-H.F.); (C.-H.L.); (R.-S.H.); (Y.-Y.C.)
- Correspondence:
| |
Collapse
|