1
|
Lisco G, De Tullio A, De Geronimo V, Giagulli VA, Guastamacchia E, Piazzolla G, Disoteo OE, Triggiani V. Once-Weekly Insulin Icodec in Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Clinical Trials (ONWARDS Clinical Program). Biomedicines 2024; 12:1852. [PMID: 39200316 PMCID: PMC11352070 DOI: 10.3390/biomedicines12081852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND One hundred years have passed since the discovery of insulin, which is one of the most relevant events of the 20th century. This period resulted in extraordinary progress in the development of novel molecules to improve glucose control, simplify the insulin regimen, and ameliorate the quality of life. In late March 2024, the first once-weekly basal analog Icodec was approved for diabetes mellitus, generating high expectations. Our aim was to systematically review and meta-analyze the efficacy and safety of Icodec compared to once-daily insulin analogs in type 1 (T1D) and type 2 diabetes (T2D). METHODS PubMed/MEDLINE, Cochrane Library, and ClinicalTrials.gov were searched for randomized clinical trials (RCTs). Studies were included for the synthesis according to the following prespecified inclusion criteria: uncontrolled T1D or T2D, age ≥ 18 years, insulin Icodec vs. active comparators (Degludec U100, Glargine U100, Glargine U300, and Detemir), phase 3, multicenter, double-blind or open-label RCTs, and a study duration ≥ 24 weeks. RESULTS The systematic review included 4347 patients with T1D and T2D inadequately controlled (2172 randomized to Icodec vs. 2175 randomized to once-daily basal analogs). Icodec, compared to once-daily basal analogs, slightly reduced the levels of glycated hemoglobin (HbA1c) with an estimated treatment difference (ETD) of -0.14% [95%CI -0.25; -0.03], p = 0.01, and I2 68%. Patients randomized to Icodec compared to those on once-daily basal analogs had a greater probability to achieve HbA1c < 7% without clinically relevant or severe hypoglycemic events in 12 weeks from randomization with an estimated risk ratio (ERR) of 1.17, [95%CI 1.01, 1.36], p = 0.03, and I2 66%. We did not find a difference in fasting glucose levels, time in range, and time above range between Icodec and comparators. Icodec, compared to once-daily basal analogs, resulted in a slight but statistically significant weight gain of 0.62 kg [95%CI 0.25; 0.99], p = 0.001, and I2 25%. The frequency of hypoglycemic events (ERR 1.16 [95%CI 0.95; 1.41]), adverse events (ERR 1.04 [95%CI 1.00; 1.08]), injection-site reactions (ERR 1.08 [95%CI 0.62; 1.90]), and the discontinuation of treatments were similar between the two groups. Icodec was found to work better when used in a basal-only than basal-bolus regimen with an ETD in HbA1c of -0.22%, a probability of achieving glucose control of +33%, a probability of achieving glucose control without clinically relevant or severe hypoglycemia of +28%, more time spent in target (+4.55%) and less time spent in hyperglycemia (-5.14%). The risk of clinically relevant or severe hypoglycemic events was significantly higher when background glinides and sulfonylureas were added to basal analogs (ERR 1.42 [95%CI 1.05; 1.93]). CONCLUSION Insulin Icodec is substantially non-inferior to once-daily insulin analogs in T2D, either insulin-naïve or insulin-treated. However, Icodec works slightly better than competitors when used in a basal-only rather than basal-bolus regimen. Weight gain and hypoglycemic risk are substantially low but not negligible. Patients' education, adequate lifestyle and pharmacological interventions, and appropriate therapy adjustments are essential to minimize risks. This systematic review is registered as PROSPERO CRD42024568680.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (G.P.); (V.T.)
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (G.P.); (V.T.)
| | | | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (G.P.); (V.T.)
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (G.P.); (V.T.)
| | - Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (G.P.); (V.T.)
| | - Olga Eugenia Disoteo
- Unit of Endocrinology, Diabetology, Dietetics and Clinical Nutrition, Sant Anna Hospital, San Fermo della Battaglia, 22020 Como, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (G.L.); (A.D.T.); (V.A.G.); (E.G.); (G.P.); (V.T.)
| |
Collapse
|
2
|
Maleki H, Doostan M, Khoshnevisan K, Baharifar H, Maleki SA, Fatahi MA. Zingiber officinale and thymus vulgaris extracts co-loaded polyvinyl alcohol and chitosan electrospun nanofibers for tackling infection and wound healing promotion. Heliyon 2024; 10:e23719. [PMID: 38223730 PMCID: PMC10784172 DOI: 10.1016/j.heliyon.2023.e23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Infections are severe complications associated with chronic wounds and tardy healing that should be timely treated to achieve rapid and proper tissue repair. To hinder such difficulties, a nanofibrous mat composed of polyvinyl alcohol and chitosan (PVA/CS) was developed by electrospinning method, containing thyme (Thymus vulgaris) and ginger (Zingiber officinale) extracts. The mat containing 10 wt% of the extracts (at the ratio of 50:50) exposed the nanofibers (NFs) with the nanoscale diameter (average 382 ± 60 nm), smooth surface, and defect-free morphology. Likewise, the relevant analyses of the loaded mat displayed high wettability, porosity, and liquid absorption capacity without any adverse interaction. The obtained mat also provided a high antioxidant activity, and its release profile was continuous and sustained for nearly 72 h. Besides, it inhibited the growth of both Gram-positive S. aureus and Gram-negative E. coli strains. Furthermore, the proposed mat significantly accelerated cutaneous wound healing in bacterial-infected rats by preventing bacteria growth at the wound site. At last, histopathology analysis confirmed the ample regeneration of skin structures, forming collagen fibers and appendages. Overall, the proposed mat containing ginger-thyme extracts provides multiple therapeutic capabilities with promising solutions for inhibiting wound infection and accelerating the healing process.
Collapse
Affiliation(s)
- Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Hadi Baharifar
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Saeid Abbasi Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohmmad Amin Fatahi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Liao D, Liu C, Chen S, Liu F, Li W, Shangguan D, Shi Y. Recent advances in immune checkpoint inhibitor-induced type 1 diabetes mellitus. Int Immunopharmacol 2023; 122:110414. [PMID: 37390646 DOI: 10.1016/j.intimp.2023.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 07/02/2023]
Abstract
As a new group of anticancer drugs, immune checkpoint inhibitors (ICIs) have exhibited favorable antitumor efficacy in numerous malignant tumors. Anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4), anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) are three kinds of ICIs widely used in clinical practice. However, ICI therapy (monotherapy or combination therapy) is always accompanied by a unique toxicity profile known as immune-related adverse events (irAEs) affecting multiple organs. The endocrine glands are common targets of irAEs induced by ICIs, which cause type 1 diabetes mellitus (T1DM) when the pancreas is affected. Although the incidence rate of ICI-induced T1DM is rare, it will always lead to an irreversible impairment of β-cells and be potentially life-threatening. Hence, it is vital for endocrinologists and oncologists to obtain a comprehensive understanding of ICI-induced T1DM and its management. In our present manuscript, we have reviewed the epidemiology, pathology and mechanism, diagnosis, management, and treatments of ICI-induced T1DM.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Chaoyi Liu
- Department of Information, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Shanshan Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Fen Liu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Wei Li
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Dangang Shangguan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| | - Yingrui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| |
Collapse
|
5
|
Joshi S, Jayanth V, Loganathan S, Sambandamurthy VK, Athalye SN. Insulin Tregopil: An Ultra-Fast Oral Recombinant Human Insulin Analog: Preclinical and Clinical Development in Diabetes Mellitus. Drugs 2023; 83:1161-1178. [PMID: 37578592 DOI: 10.1007/s40265-023-01925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Insulin therapy is indispensable for achieving glycemic control in all patients with type 1 diabetes mellitus and many patients with type 2 diabetes mellitus. Insulin injections are associated with negative connotations in patients owing to administration discomfort and adverse effects such as hypoglycemia and weight gain. Insulin administered orally can overcome these limitations by providing a convenient and effective mode of delivery with a potentially lower risk of hypoglycemia. Oral insulin mimics the physiologic process of insulin secretion, absorption into the portal circulation, and subsequent peripheral delivery, unlike the subcutaneous route that results in peripheral hyperinsulinemia. Insulin tregopil (IN-105), a new generation human recombinant insulin, methoxy (polyethylene glycol) hexanoyl human recombinant insulin, is developed by Biocon as an ultra-fast onset short-acting oral insulin analog. This recombinant oral insulin is a single short-chain amphiphilic oligomer modified with the covalent attachment of methoxy-triethylene-glycol-propionyl moiety at Lys-β29-amino group of the B-chain via an amide linkage. Sodium caprate, an excipient in the insulin tregopil formulation, is a permeation enhancer that increases its absorption through the gastrointestinal tract. Also, meal composition has been shown to non-significantly affect its absorption. Several global randomized, controlled clinical trials have been conducted in type 1 and type 2 diabetes patients towards the clinical development of insulin tregopil. The formulation shows post-prandial glucose control that is more effective than placebo throughout the meal period; however, compared with an active comparator insulin aspart, the post-prandial control is more effective mainly in the early post-meal period. It shows a good safety profile with a lower incidence of clinically significant hypoglycemia. This review covers the overall clinical development of insulin tregopil establishing it as an ultra-fast onset, short-acting oral insulin analog for optimizing post-prandial glucose.
Collapse
Affiliation(s)
- Shashank Joshi
- Joshi Clinic and Lilavati Hospital, Mumbai, Maharashtra, India
| | - Vathsala Jayanth
- Biocon Biologics Ltd, Biocon House, Semicon Park, Electronic City Phase 2, Bengaluru, Karnataka, 560100, India
| | - Subramanian Loganathan
- Biocon Biologics Ltd, Biocon House, Semicon Park, Electronic City Phase 2, Bengaluru, Karnataka, 560100, India.
| | | | - Sandeep N Athalye
- Biocon Biologics Ltd, Biocon House, Semicon Park, Electronic City Phase 2, Bengaluru, Karnataka, 560100, India
| |
Collapse
|
6
|
Yu L, Liu S, Jia S, Xu F. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. Biomed Pharmacother 2023; 165:115049. [PMID: 37364480 DOI: 10.1016/j.biopha.2023.115049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
The management and treatment of disease are achieved via the use of pharmacologically active substances or drugs. Drugs do not, however, have an intrinsic ability to be effective; rather, how well they work depends on how they are administered or supplied. Treatment of a variety of biological illnesses, such as autoimmune disorders, cancer, and bacterial infections, requires effective drug delivery. Drug absorption, distribution, metabolism, duration of therapeutic impact, pharmacokinetics, excretion, and toxicity can all be impacted by drug administration. Improved chemistry and materials are required for the delivery of therapeutic concentration of novel treatments to the specified targets within the body, as well as for the necessary duration of time. This requirement is accompanied by the development of new therapeutics. Formulating a medication as a DDS is a promising strategy for directly addressing numerous typical barriers to adherence, such as frequent dosage, such as frequent dosage, side effects, and a delayed beginning of the action. In the current review, we give a compendium of drug delivery and controlled release and subsequently highlight some of the newest developments in the realm, with a particular emphasis on cutting-edge methods for targeted therapy. In each instance, we outline the obstacles to efficient drug administration as well as the chemical and material developments that are allowing the sector to overcome these obstacles and have a positive clinical impact.
Collapse
Affiliation(s)
- Ling Yu
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shengmao Liu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Jia
- Digestive Diseases center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Feng Xu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
7
|
Bag N, Bardhan S, Roy S, Roy J, Mondal D, Guo B, Das S. Nanoparticle-mediated stimulus-responsive antibacterial therapy. Biomater Sci 2023; 11:1994-2019. [PMID: 36748318 DOI: 10.1039/d2bm01941h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The limitations associated with conventional antibacterial therapies and the subsequent amplification of multidrug-resistant (MDR) microorganisms have increased, necessitating the urgent development of innovative antibacterial techniques. Accordingly, nanoparticle-mediated therapeutics have emerged as potential candidates for antibacterial treatment due to their suitable dimensions, penetration capacity, and high efficiency in targeted drug delivery. However, although nanoparticle-based drug delivery systems have been demonstrated to be effective, they are limited by their overuse and unwanted side effects. Thus, to overcome these drawbacks, stimulus-responsive antibiotic delivery has been extended as a promising strategy for site-specific restricted drug exemption. Nano-formulations that are triggered by various stimuli, such as intrinsic, extrinsic, and bacterial stimuli, have been developed. Thus, by harnessing the physicochemical properties of various nanoparticles, the selective release of therapeutic cargoes can be achieved through the application of a variety of local stimuli such as light, sound, irradiation, pH, and magnetic field. In this review, we also highlight the progress and perspectives of stimulus-responsive combination therapy, with special emphasis on the eradication of MDR strains and biofilms. Hence, this review addresses the advancement and challenges in the applications of stimulus-responsive nanoparticles together with the various future prospects of this technique.
Collapse
Affiliation(s)
- Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India. .,Department of Environmental Science, Netaji Nagar College for Women, Kolkata-700092, India
| | - Shubham Roy
- Department of Physics, Jadavpur University, Kolkata-700032, India. .,Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Dhananjoy Mondal
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Sukhen Das
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
8
|
Doostan M, Doostan M, Mohammadi P, Khoshnevisan K, Maleki H. Wound healing promotion by flaxseed extract-loaded polyvinyl alcohol/chitosan nanofibrous scaffolds. Int J Biol Macromol 2023; 228:506-516. [PMID: 36572078 DOI: 10.1016/j.ijbiomac.2022.12.228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Impaired wound healing is a severe complication of sufferers, related to prolonged wound closure, a high infection rate, and eventually disabilities of organs. To aid resolve this issue, we developed the electrospun polyvinyl alcohol and chitosan (PVA/CS) nanofibrous scaffold-loaded flaxseed extract. The scaffold containing 10 wt% of the extract indicated a three-dimensional cross-network with a nano-scale diameter (257 ± 37 nm) and smooth surface. Also, the relevant analyses confirmed high water absorption, porosity, and wettability of the scaffold. Fourier-transform infrared (FTIR), degradation, and mechanical studies revealed the intact presence and loading of the extract into the scaffold, the complete degradation over 48 h, and a high tensile elastic modulus. Besides, the advanced scaffold displayed remarkable anti-oxidant and could inhibit the growth of both Gram-positive and negative bacteria compared to the free PVA/CS scaffold. Desired fibroblast viability and blood compatibility of flaxseed-loaded scaffold endorsed the biocompatibility for wound zones. The in vitro studies showed that the flaxseed-loaded scaffold resulted in an accelerated wound healing process and 100 % closure of the scratched area within 48 h. The results obtained reveal that the flaxseed-loaded PVA/CS electrospun scaffold could be effectively applied for wound healing promotion.
Collapse
Affiliation(s)
- Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran; Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Alavi M, Li L, Nokhodchi A. Metal, metal oxide and polymeric nanoformulations for the inhibition of bacterial quorum sensing. Drug Discov Today 2023; 28:103392. [PMID: 36208725 DOI: 10.1016/j.drudis.2022.103392] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/18/2022] [Accepted: 09/29/2022] [Indexed: 01/09/2023]
Abstract
Antibiotic resistance of bacteria has caused a significant public health challenge and economic problem, resulting in a necessity to find efficient antibacterial agents. Conventional bactericidal agents hinder the growth of bacteria by slowing down the cell wall synthesis or disturbing bacterial DNA replication, protein production or other bacterial cellular metabolism that can augment natural selection pressure for turning up new antibiotic-resistant strains. Virulence properties and biofilm formation of bacteria are orchestrated by quorum-sensing systems. These quorum-sensing systems normally control antimicrobial production; and targeting these systems using metal-based nanoparticles or polymeric nanoparticles can be considered as powerful antibacterial treatments owing to their specific physicochemical and therapeutic properties. In this review, recent advances and challenges related to the inactivation of quorum-sensing systems by these nanoparticles are presented to obtain comprehensive viewpoints for future studies.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK; Lupin Pharmaceuticals Research Center, Coral Springs, 4006 NW 124th Ave, Florida 33065, USA.
| |
Collapse
|
10
|
Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122078. [PMID: 36556443 PMCID: PMC9783843 DOI: 10.3390/life12122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder of carbohydrates, lipids, and proteins due to a deficiency of insulin secretion or failure to respond to insulin secreted from pancreatic cells, which leads to high blood glucose levels. DM is one of the top four noncommunicable diseases and causes of death worldwide. Even though great achievements were made in the management and treatment of DM, there are still certain limitations, mainly related to the early diagnosis, and lack of appropriate delivery of insulin and other anti-diabetic agents. Nanotechnology is an emerging field in the area of nanomedicine and NP based anti-diabetic agent delivery is reported to enhance efficacy by increasing bioavailability and target site accumulation. Moreover, theranostic NPs can be used as diagnostic tools for the early detection and prevention of diseases owing to their unique biological, physiochemical, and magnetic properties. NPs have been synthesized from a variety of organic and inorganic materials including polysaccharides, dendrimers, proteins, lipids, DNA, carbon nanotubes, quantum dots, and mesoporous materials within the nanoscale size. This review focuses on the role of NPs, derived from organic and inorganic materials, in the diagnosis and treatment of DM.
Collapse
|
11
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
12
|
Feng L, Huang X, Li J, Chen C, Ma Y, Gu H, Hu Y, Xia D. A Closed-Loop Autologous Erythrocyte-Mediated Delivery Platform for Diabetic Nephropathy Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3556. [PMID: 36296745 PMCID: PMC9612375 DOI: 10.3390/nano12203556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Failure to control blood glucose level (BGL) may aggravate oxidative stress and contribute to the development of diabetic nephropathy (DN). Using erythrocytes (ERs) as the carriers, a smart self-regulatory insulin (INS) release system was constructed to release INS according to changes in BGLs to improve patients' compliance and health. To overcome the limited sources of ERs and decrease the risk of transmitting infections, we developed an in vitro, closed-loop autologous ER-mediated delivery (CAER) platform, based on a commercial hemodialysis instrument modified with a glucose-responsive ER-based INS delivery system (GOx-INS@ER). After the blood was drained via a jugular vein cannula, some of the blood was pumped into the CAER platform. The INS was packed inside the autologous ERs in the INS reactor, and then their surface was modified with glucose oxidase (GOx), which acts as a glucose-activated switch. In vivo, the CAER platform showed that the BGL responsively controlled INS release in order to control hyperglycemia and maintain the BGL in the normal range for up to 3 days; plus, there was good glycemic control without the added burden of hemodialysis in DN rabbits. These results demonstrate that this closed-loop extracorporeal hemodialysis platform provides a practical approach for improving diabetes management in DN patients.
Collapse
Affiliation(s)
- Lingzi Feng
- School of Public Health, Nantong University, Nantong 226019, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jia Li
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chao Chen
- School of Public Health, Nantong University, Nantong 226019, China
| | - Yidan Ma
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haiying Gu
- School of Public Health, Nantong University, Nantong 226019, China
| | - Yong Hu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210033, China
| | - Donglin Xia
- School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
13
|
Chen Y, Sun W, Tang H, Li Y, Li C, Wang L, Chen J, Lin W, Li S, Fan Z, Cheng Y, Chen C. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Front Bioeng Biotechnol 2022; 10:820940. [PMID: 35646833 PMCID: PMC9140325 DOI: 10.3389/fbioe.2022.820940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The foreign body response (FBR) caused by biomaterials can essentially be understood as the interaction between the immune microenvironment and biomaterials, which has severely impeded the application of biomaterials in tissue repair. This concrete interaction occurs via cells and bioactive substances, such as proteins and nucleic acids. These cellular and molecular interactions provide important cues for determining which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can thus be endowed with the ability to modulate the FBR and repair damaged tissue. In terms of cellular, IMBs are modified to modulate functions of immune cells, such as macrophages and mast cells. In terms of bioactive substances, proteins and nucleic acids are delivered to influence the immune microenvironment. Meanwhile, IMBs are designed with high affinity for spatial targets and the ability to self-adapt over time, which allows for more efficient and intelligent tissue repair. Hence, IMB may achieve the perfect functional integration in the host, representing a breakthrough in tissue repair and regeneration medicine.
Collapse
Affiliation(s)
- Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yingze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shenghui Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yu Cheng
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
15
|
Zahoor I, Singh S, Behl T, Sharma N, Naved T, Subramaniyan V, Fuloria S, Fuloria NK, Bhatia S, Al-Harrasi A, Aleya L, Wani SN, Vargas-De-La-Cruz C, Bungau S. Emergence of microneedles as a potential therapeutics in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3302-3322. [PMID: 34755300 DOI: 10.1007/s11356-021-17346-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffective for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, transdermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclusion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical outcomes in diabetes management.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | | | | | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza E Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, Lima, Peru
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
16
|
Primavera R, Bellotti E, Di Mascolo D, Di Francesco M, Wang J, Kevadiya BD, De Pascale A, Thakor AS, Decuzzi P. Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53618-53629. [PMID: 34751556 PMCID: PMC8603355 DOI: 10.1021/acsami.1c16768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of β cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 μm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-μPLs) were realized with different heights (5, 10, and 20 μm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-μPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-μPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-μPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-μPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.
Collapse
Affiliation(s)
- Rosita Primavera
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Elena Bellotti
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Daniele Di Mascolo
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Martina Di Francesco
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Jing Wang
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Bhavesh D. Kevadiya
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Angelo De Pascale
- Unit
of Endocrinology, Department of Internal Medicine & Medical Specialist
(DIMI), University of Genoa, 16136 Genoa, Italy
| | - Avnesh S. Thakor
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
17
|
Maleki H, Khoshnevisan K, Sajjadi-Jazi SM, Baharifar H, Doostan M, Khoshnevisan N, Sharifi F. Nanofiber-based systems intended for diabetes. J Nanobiotechnology 2021; 19:317. [PMID: 34641920 PMCID: PMC8513238 DOI: 10.1186/s12951-021-01065-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic mellitus (DM) is the most communal metabolic disease resulting from a defect in insulin secretion, causing hyperglycemia by promoting the progressive destruction of pancreatic β cells. This autoimmune disease causes many severe disorders leading to organ failure, lower extremity amputations, and ultimately death. Modern delivery systems e.g., nanofiber (NF)-based systems fabricated by natural and synthetic or both materials to deliver therapeutics agents and cells, could be the harbinger of a new era to obviate DM complications. Such delivery systems can effectively deliver macromolecules (insulin) and small molecules. Besides, NF scaffolds can provide an ideal microenvironment to cell therapy for pancreatic β cell transplantation and pancreatic tissue engineering. Numerous studies indicated the potential usage of therapeutics/cells-incorporated NF mats to proliferate/regenerate/remodeling the structural and functional properties of diabetic skin ulcers. Thus, we intended to discuss the aforementioned features of the NF system for DM complications in detail.
Collapse
Affiliation(s)
- Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Farshad Sharifi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| |
Collapse
|
18
|
Wang J, Zhang L, Wang X, Dong J, Chen X, Yang S. Application of Nano-Insulin Pump in Children with Diabetic Ketoacidosis. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5051-5056. [PMID: 33875090 DOI: 10.1166/jnn.2021.19356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type 1 diabetes is an insulin-dependent type of diabetes that is most common among children. Due to absolute deficiency of insulin in patients, diabetic ketoacidosis (DKA) can easily ensue. Insulin pump can simulate the physiological secretion of islet, but increases the risk of pain and infection in children due to its traumatic effect. This study aimed to analyze the application effect of nano-insulin pump in children with DKA. Children with DKA admitted to our hospital from May 2018 to May 2020 were included in this study and, according to the random number table method, they were divided into two groups, with each group containing 36 cases. The first group received traditional insulin pump infusion (IP), while the second group received nano-insulin pump infusion (NIP). It was found that the reduction of FBG and PBG in NIP group was greater than that in IP group. The recovery time of urine ketone, blood ketone, glucose, venous pH, and other clinical indicators in the NIP group were all lower than those in the IP group (P < 0.05). The length of hospital stay, insulin dosage, incidence of hypoglycemia, and infusion site infection rate in the NIP group were all lower than those in the IP group (P <0.05). The findings indicate that the application of nano-insulin pump in children with DKA had a significant effect and could quickly and obviously correct the levels of blood glucose and ketone body in children.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang, PR China
| | - Lihai Zhang
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang, PR China
| | - Xianhe Wang
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang, PR China
| | - Jing Dong
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang, PR China
| | - Xiuhua Chen
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang, PR China
| | - Shuhe Yang
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang, PR China
| |
Collapse
|
19
|
Ghasemi A, Akbari E, Imani R. An Overview of Engineered Hydrogel-Based Biomaterials for Improved β-Cell Survival and Insulin Secretion. Front Bioeng Biotechnol 2021; 9:662084. [PMID: 34513805 PMCID: PMC8427138 DOI: 10.3389/fbioe.2021.662084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
Islet transplantation provides a promising strategy in treating type 1 diabetes as an autoimmune disease, in which damaged β-cells are replaced with new islets in a minimally invasive procedure. Although islet transplantation avoids the complications associated with whole pancreas transplantations, its clinical applications maintain significant drawbacks, including long-term immunosuppression, a lack of compatible donors, and blood-mediated inflammatory responses. Biomaterial-assisted islet transplantation is an emerging technology that embeds desired cells into biomaterials, which are then directly transplanted into the patient, overcoming the aforementioned challenges. Among various biomaterials, hydrogels are the preferred biomaterial of choice in these transplants due to their ECM-like structure and tunable properties. This review aims to present a comprehensive overview of hydrogel-based biomaterials that are engineered for encapsulation of insulin-secreting cells, focusing on new hydrogel design and modification strategies to improve β-cell viability, decrease inflammatory responses, and enhance insulin secretion. We will discuss the current status of clinical studies using therapeutic bioengineering hydrogels in insulin release and prospective approaches.
Collapse
Affiliation(s)
| | | | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
20
|
Ultra-long acting prodrug of dolutegravir and delivery system - Physicochemical, pharmacokinetic and formulation characterizations. Int J Pharm 2021; 607:120889. [PMID: 34271151 DOI: 10.1016/j.ijpharm.2021.120889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/26/2022]
Abstract
The focus of present work was to characterize ultra-long acting prodrug of dolutegravir (DTG) and develop biodegradable microparticle formulation. Palmitic acid (PA) conjugated prodrug of DTG was prepared by esterification of hydroxyl group of DTG with the carboxyl group of PA. Physicochemical properties of the prodrug was characterize by MS, NMR, FTIR, SEM, DSC, NIR-CI, pH-solubility, and solid and liquid pH-stability. Comparative solid and liquid stability was performed by storing powder DTG and DTG-Palmitate at 40 °C/75% RH for three months and liquid solution pH 2-8 at room temperature for 24 h, respectively. Pharmacokinetic evaluation was performed in white albino New Zealand rabbits by subcutaneous injection (30 mg/Kg). Poly(lactide-co-glycolide) microparticle formulation was prepared by emulsification-evaporation method and characterized for particle size distribution, shape, drug loading and in-vitro release. MS, NMR, FTIR, SEM, DSC, NIR-CI indicated formation of prodrug. Melting point of the prodrug was lower than DTG but higher than PA. Shape of DTG crystals was irregular while DTG-Palmitate crystals was fine-needle. Solid and liquid stability profiles of the prodrug were similar to DTG. Plasma half-life, area under the curve, and mean-residence time of DTG-Palmitate were 8.8, 2.3 and 14.7 folds of DTG. D90 of DTG and DTG-Palmitate microparticles was 107.1 ± 2.7 and 94.3 ± 3.4 µm, respectively. The in-vitro drug release was almost complete in three weeks from DTG microparticles while it was <85% in six months from DTG-Palmitate microparticles. In conclusion, physicochemical and pharmacokinetic properties and biodegradable microparticles of the prodrug suggested that the prodrug has potential of sustaining DTG release for ultra-long period compared to DTG.
Collapse
|
21
|
Xu L, Zhang X, Wang Z, Haidry AA, Yao Z, Haque E, Wang Y, Li G, Daeneke T, McConville CF, Kalantar-Zadeh K, Zavabeti A. Low dimensional materials for glucose sensing. NANOSCALE 2021; 13:11017-11040. [PMID: 34152349 DOI: 10.1039/d1nr02529e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosensors are essential components for effective healthcare management. Since biological processes occur on molecular scales, nanomaterials and nanosensors intrinsically provide the most appropriate landscapes for developing biosensors. Low-dimensional materials have the advantage of offering high surface areas, increased reactivity and unique physicochemical properties for efficient and selective biosensing. So far, nanomaterials and nanodevices have offered significant prospects for glucose sensing. Targeted glucose biosensing using such low-dimensional materials enables much more effective monitoring of blood glucose levels, thus providing significantly better predictive diabetes diagnostics and management. In this review, recent advances in using low dimensional materials for sensing glucose are summarized. Sensing fundamentals are discussed, as well as invasive, minimally-invasive and non-invasive sensing methods. The effects of morphological characteristics and size-dependent properties of low dimensional materials are explored for glucose sensing, and the key performance parameters such as selectivity, stability and sensitivity are also discussed. Finally, the challenges and future opportunities that low dimensional materials can offer for glucose sensing are outlined.
Collapse
Affiliation(s)
- Linling Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Xianfei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhe Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Yichao Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Gang Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia.
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| |
Collapse
|
22
|
Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this review study was to assess the past significant events on diabetes mellitus, transformations that took place over the years in the medical records of treatment, countries involved, and the researchers who brought about the revolutions. This study used the content analysis to report the existence of diabetes mellitus and the treatments provided by researchers to control it. The focus was mainly on three main types of diabetes (type 1, type 2, and type 3 diabetes). Ethical consideration has also helped to boost diabetic studies globally. The research has a history path from pharmaceuticals of organic-based drugs to metal-based drugs with their nanoparticles in addition to the impacts of nanomedicine, biosensors, and telemedicine. Ongoing and future studies in alternative medicine such as vanadium nanoparticles (metal nanoparticles) are promising.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , Eastern Cape , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| |
Collapse
|
23
|
Cook A, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS NANO 2021; 15:2068-2098. [PMID: 33555171 PMCID: PMC7905878 DOI: 10.1021/acsnano.0c09115] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Materials that respond to endogenous stimuli are being leveraged to enhance spatiotemporal control in a range of biomedical applications from drug delivery to diagnostic tools. The design of materials that undergo morphological or chemical changes in response to specific biological cues or pathologies will be an important area of research for improving efficacies of existing therapies and imaging agents, while also being promising for developing personalized theranostic systems. Internal stimuli-responsive systems can be engineered across length scales from nanometers to macroscopic and can respond to endogenous signals such as enzymes, pH, glucose, ATP, hypoxia, redox signals, and nucleic acids by incorporating synthetic bio-inspired moieties or natural building blocks. This Review will summarize response mechanisms and fabrication strategies used in internal stimuli-responsive materials with a focus on drug delivery and imaging for a broad range of pathologies, including cancer, diabetes, vascular disorders, inflammation, and microbial infections. We will also discuss observed challenges, future research directions, and clinical translation aspects of these responsive materials.
Collapse
Affiliation(s)
- Alexander
B. Cook
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| |
Collapse
|
24
|
Poly(vinyl alcohol)/poly(hydroxypropyl methacrylate-co-methacrylic acid) as pH-sensitive semi-IPN hydrogels for oral insulin delivery: preparation and characterization. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-020-00893-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Primavera R, Razavi M, Kevadiya BD, Wang J, Vykunta A, Di Mascolo D, Decuzzi P, Thakor AS. Enhancing islet transplantation using a biocompatible collagen-PDMS bioscaffold enriched with dexamethasone-microplates. Biofabrication 2021; 13. [PMID: 33455953 DOI: 10.1088/1758-5090/abdcac] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023]
Abstract
Islet transplantation is a promising approach to enable type 1 diabetic patients to attain glycemic control independent of insulin injections. However, up to 60% of islets are lost immediately following transplantation. To improve this outcome, islets can be transplanted within bioscaffolds, however, synthetic bioscaffolds induce an intense inflammatory reaction which can have detrimental effects on islet function and survival. In the present study, we first improved the biocompatibility of polydimethylsiloxane (PDMS) bioscaffolds by coating them with collagen. To reduce the inflammatory response to PDMS bioscaffolds, we then enriched the bioscaffolds with dexamethasone-loaded microplates (DEX-µScaffolds). These DEX-microplates have the ability to release DEX in a sustained manner over 7 weeks within a therapeutic range that does not affect the glucose responsiveness of the islets but which minimizes inflammation in the surrounding microenvironment. The bioscaffold showed excellent mechanical properties that enabled it to resist pore collapse thereby helping to facilitate islet seeding and its handling for implantation, and subsequent engraftment, within the epididymal fat pad (EFP). Following the transplantation of islets into the EFP of diabetic mice using DEX-µScaffolds there was a return in basal blood glucose to normal values by day 4, with normoglycemia maintained for 30 days. Furthermore, these animals demonstrated a normal dynamic response to glucose challenges with histological evidence showing reduced pro-inflammatory cytokines and fibrotic tissue surrounding DEX-µScaffolds at the transplantation site. In contrast, diabetic animals transplanted with either islets alone or islets in bioscaffolds without DEX microplates were not able to regain glycemic control during basal conditions with overall poor islet function. Taken together, our data show that coating PDMS bioscaffolds with collagen, and enriching them with DEX-microplates, significantly prolongs and enhances islet function and survival.
Collapse
Affiliation(s)
- Rosita Primavera
- Radiology, Stanford University School of Medicine, 3155 Porter Drive, Stanford, California, 94305-5119, UNITED STATES
| | - Mehdi Razavi
- University of Central Florida, 6900 Lake Nona Blvd, Orlando, Florida, 32827, UNITED STATES
| | - Bhavesh D Kevadiya
- PEN, University of Nebraska Medical Center, Lab-3064,DRC-1,department of pharmacology and experimental neuroscience, Omaha, Nebraska, 68198, UNITED STATES
| | - Jing Wang
- Radiology, Stanford University School of Medicine, 3155 Porter Drive, Stanford, California, 94304, UNITED STATES
| | - Akshara Vykunta
- Radiology, Stanford University School of Medicine, 3155 Porter Drive, Stanford, California, 94304, UNITED STATES
| | - Daniele Di Mascolo
- Central Research Labs Genova, Istituto Italiano di Tecnologia, Via Morego, 30, Genova, Liguria, 16163, ITALY
| | - Paolo Decuzzi
- Istituto Italiano di Tecnologia, Via Morego, 30, Genova, Liguria, 16163, ITALY
| | - Avnesh S Thakor
- Radiology, Stanford University School of Medicine, 3155 Porter Drive, Stanford, California, 94304, UNITED STATES
| |
Collapse
|
26
|
Hu S, Primavera R, Razavi M, Avadhani A, Wang J, Thakor AS. Hybrid Polydimethylsiloxane Bioscaffold-Intravascular Catheter for Cellular Therapies. ACS APPLIED BIO MATERIALS 2020; 3:6626-6632. [DOI: 10.1021/acsabm.0c00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sophia Hu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Anirudh Avadhani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
27
|
Amorim CA, Blanco KC, Costa IM, de Araújo EP, Arantes ADN, Contiero J, Chiquito AJ. A New Possibility for Fermentation Monitoring by Electrical Driven Sensing of Ultraviolet Light and Glucose. BIOSENSORS-BASEL 2020; 10:bios10080097. [PMID: 32806501 PMCID: PMC7459838 DOI: 10.3390/bios10080097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Industrial fermentation generates products through microbial growth associated with the consumption of substrates. The efficiency of industrial production of high commercial value microbial products such as ethanol from glucose (GLU) is dependent on bacterial contamination. Controlling the sugar conversion into products as well as the sterility of the fermentation process are objectives to be considered here by studying GLU and ultraviolet light (UV) sensors. In this work, we present two different approaches of SnO2 nanowires grown by the Vapor–Liquid–Solid (VLS) method. In the GLU sensor, we use SnO2 nanowires as active electrodes, while for the UV sensor, a nanowire film was built for detection. The results showed a wide range of GLU sensing and as well as a significant influence of UV in the electrical signal. The effect of a wide range of GLU concentrations on the responsiveness of the sensor through current–voltage based on SnO2 nanowire films under different concentration conditions ranging was verified from 1 to 1000 mmol. UV sensors show a typical amperometric response of SnO2 nanowires under the excitation of UV and GLU in ten cycles of 300 s with 1.0 V observing a stable and reliable amperometric response. GLU and UV sensors proved to have a promising potential for detection and to control the conversion of a substrate into a product by GLU control and decontamination by UV control in industrial fermentation systems.
Collapse
Affiliation(s)
- Cleber A. Amorim
- School of Sciences and Engineering, Av. Domingos da Costa Lopes, São Paulo State University (Unesp), 780 Jardim Itaipu, CEP 17602-496 Tupã, SP, Brazil;
| | - Kate C. Blanco
- São Carlos Institute of Physics, University of São Paulo—Box 369, 13566-970, São Carlos, SP, Brazil;
| | - Ivani M. Costa
- NanOLaB, Departamento de Física, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luiz, Km 235 Monjolinho, CP 676, CEP 13565-905 São Carlos, SP, Brazil; (I.M.C.); (E.P.d.A.); (A.d.N.A.); (A.J.C.)
- Institute of Chemistry, Araraquara. Rua Professor Francisco Degni, São Paulo State University (Unesp), Jardim Quitandinha, CEP 14800-060 Araraquara, SP, Brazil
| | - Estácio P. de Araújo
- NanOLaB, Departamento de Física, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luiz, Km 235 Monjolinho, CP 676, CEP 13565-905 São Carlos, SP, Brazil; (I.M.C.); (E.P.d.A.); (A.d.N.A.); (A.J.C.)
| | - Adryelle do Nascimento Arantes
- NanOLaB, Departamento de Física, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luiz, Km 235 Monjolinho, CP 676, CEP 13565-905 São Carlos, SP, Brazil; (I.M.C.); (E.P.d.A.); (A.d.N.A.); (A.J.C.)
| | - Jonas Contiero
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University (Unesp), Rio Claro, Rio Claro, Av. 24-A, 1515 Bela Vista, CEP 13506-692 Rio Claro, SP, Brazil
- Institute for Research in Bioenergy, São Paulo State University (Unesp) Rua 10, 2527 Santana, CEP 13500-230 Rio Claro, SP, Brazil
- Correspondence: ; Tel.: +55-(019)-35264149
| | - Adenilson J. Chiquito
- NanOLaB, Departamento de Física, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luiz, Km 235 Monjolinho, CP 676, CEP 13565-905 São Carlos, SP, Brazil; (I.M.C.); (E.P.d.A.); (A.d.N.A.); (A.J.C.)
| |
Collapse
|