1
|
Khan M, Nasim M, Feizy M, Parveen R, Gull A, Khan S, Ali J. Contemporary strategies in glioblastoma therapy: Recent developments and innovations. Neuroscience 2024; 560:211-237. [PMID: 39368608 DOI: 10.1016/j.neuroscience.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. In this review, a comprehensive overview of recent advancements in nanocarrier-based drug delivery systems for GBM therapy is emphasized. The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
Collapse
Affiliation(s)
- Mariya Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Modassir Nasim
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Mohammadamin Feizy
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| |
Collapse
|
2
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F, Liang Y. Nanomedicine in glaucoma treatment; Current challenges and future perspectives. Mater Today Bio 2024; 28:101229. [PMID: 39296355 PMCID: PMC11409099 DOI: 10.1016/j.mtbio.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.
Collapse
Affiliation(s)
- Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Dengming Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiangtao Lou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Run Xiao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fu Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Kamel YN, El-Marakby EM, Gad HA. Intravenous delivery of furosemide using lipid-based versus polymer-based nanocapsules: in vitro and in vivo studies. Pharm Dev Technol 2024; 29:738-750. [PMID: 39105766 DOI: 10.1080/10837450.2024.2389855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVES Furosemide (FSM), a potent loop diuretic, is used to treat edema due to hypertension, congestive heart failure, and liver and renal failures. FSM applications are limited by its low bioavailability. Our aim is to use different nanoencapsulation strategies to control the release of FSM and enhance its pharmacokinetic properties. METHODS Two types of FSM-loaded nanocapsules, namely FSM-loaded lipid nanocapsules (LNCs) and polymeric nanocapsules (PNCs), were developed, physicochemically characterized, and subjected to pharmacokinetic and pharmacodynamic studies. Lipid nanocapsules were prepared by the simple phase inversion method using LabrafacTM lipid, while the polymeric nanocapsules were prepared by nanoprecipitation method using polycaprolactone polymer. RESULTS Transmission electron microscopy ascertains spherical structures, corroborating the nanometric diameter of both types of nanocapsules. The particle size of the optimized FSM-loaded LNCs and FSM-loaded PNCs was 32.19 ± 0.72 nm and 230.7 ± 5.13 nm, respectively. The percent entrapment efficiency was 63.56 ± 1.40% of FSM for the optimized PNCs. The in vitro release study indicated prolonged drug release compared to drug solutions. The two loaded nanocapsules systems succeeded in enhancing the pharmacokinetic parameters in comparison to the marketed FSM solution with superior diuretic activity (p < 0.05). The results of the stability study and the terminal sterilization by autoclave indicated the superiority of LNCs over PNCs in maintaining the physical parameters under storage conditions and the drastic conditions of sterilization. CONCLUSIONS LNCs and PNCs are considered promising nanosysems for improving the diuretic effect of FSM.
Collapse
Affiliation(s)
| | - Eman M El-Marakby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Carnero Canales CS, Marquez Cazorla JI, Marquez Cazorla RM, Roque-Borda CA, Polinário G, Figueroa Banda RA, Sábio RM, Chorilli M, Santos HA, Pavan FR. Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioact Mater 2024; 39:106-134. [PMID: 38783925 PMCID: PMC11112550 DOI: 10.1016/j.bioactmat.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to pose a significant threat to global health. The resilience of TB is amplified by a myriad of physical, biological, and biopharmaceutical barriers that challenge conventional therapeutic approaches. This review navigates the intricate landscape of TB treatment, from the stealth of latent infections and the strength of granuloma formations to the daunting specters of drug resistance and altered gene expression. Amidst these challenges, traditional therapies often fail, contending with inconsistent bioavailability, prolonged treatment regimens, and socioeconomic burdens. Nanoscale Drug Delivery Systems (NDDSs) emerge as a promising beacon, ready to overcome these barriers, offering better drug targeting and improved patient adherence. Through a critical approach, we evaluate a spectrum of nanosystems and their efficacy against MTB both in vitro and in vivo. This review advocates for the intensification of research in NDDSs, heralding their potential to reshape the contours of global TB treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Giulia Polinário
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
5
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024; 14:2299-2324. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
6
|
Aggeletopoulou I, Kalafateli M, Geramoutsos G, Triantos C. Recent Advances in the Use of Vitamin D Organic Nanocarriers for Drug Delivery. Biomolecules 2024; 14:1090. [PMID: 39334856 PMCID: PMC11430352 DOI: 10.3390/biom14091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Nanotechnology, now established as a transformative technology, has revolutionized medicine by enabling highly targeted drug delivery. The use of organic nanocarriers in drug delivery systems significantly enhances the bioavailability of vitamins and their analogs, thereby improving cellular delivery and therapeutic effects. Vitamin D, known for its crucial role in bone health, also influences various metabolic functions, such as cellular proliferation, differentiation, and immunomodulation, and is increasingly explored for its anticancer potential. Given its versatile properties and biocompatibility, vitamin D is an attractive candidate for encapsulation within drug delivery systems. This review provides a comprehensive overview of vitamin D synthesis, metabolism, and signaling, as well as its applications in customized drug delivery. Moreover, it examines the design and engineering of organic nanocarriers that incorporate vitamin D and discusses advances in this field, including the synergistic effects achieved through the combination of vitamin D with other therapeutic agents. By highlighting these innovations, this review provides valuable insights into the development of advanced drug delivery systems and their potential to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece
| | - Georgios Geramoutsos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
8
|
Wathoni N, Herdiana Y, Suhandi C, Mohammed AFA, El-Rayyes A, Narsa AC. Chitosan/Alginate-Based Nanoparticles for Antibacterial Agents Delivery. Int J Nanomedicine 2024; 19:5021-5044. [PMID: 38832335 PMCID: PMC11146614 DOI: 10.2147/ijn.s469572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Nanoparticle systems integrating alginate and chitosan emerge as a promising avenue to tackle challenges in leveraging the potency of pharmacological active agents. Owing to their intrinsic properties as polysaccharides, alginate and chitosan, exhibit remarkable biocompatibility, rendering them conducive to bodily integration. By downsizing drug particles to the nano-scale, the system enhances drug solubility in aqueous environments by augmenting surface area. Additionally, the system orchestrates extended drug release kinetics, aligning well with the exigencies of chronic drug release requisite for antibacterial therapeutics. A thorough scrutiny of existing literature underscores a wealth of evidence supporting the utilization of the alginate-chitosan nanoparticle system for antibacterial agent delivery. Literature reviews present abundant evidence of the utilization of nanoparticle systems based on a combination of alginate and chitosan for antibacterial agent delivery. Various experiments demonstrate enhanced antibacterial efficacy, including an increase in the inhibitory zone diameter, improvement in the minimum inhibitory concentration, and an enhancement in the bacterial reduction rate. This enhancement in efficacy occurs due to mechanisms involving increased solubility resulting from particle size reduction, prolonged release effects, and enhanced selectivity towards bacterial cell walls, stemming from ionic interactions between positively charged particles and teichoic acid on bacterial cell walls. However, clinical studies remain limited, and there are currently no marketed antibacterial drugs utilizing this system. Hence, expediting clinical efficacy validation is crucial to maximize its benefits promptly.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| |
Collapse
|
9
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
10
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
11
|
Acácio BR, Prada AL, Neto SF, Gomes GB, Perdomo RT, Nazario CED, Neto ES, Martines MAU, de Almeida DAT, Gasparotto Junior A, Amado JRR. Cytotoxicity, anti-inflammatory effect, and acute oral toxicity of a novel Attalea phalerata kernel oil-loaded nanocapsules. Biomed Pharmacother 2024; 174:116308. [PMID: 38626517 DOI: 10.1016/j.biopha.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/18/2024] Open
Abstract
The kernel oil of the Attalea phalerata Mart. Ex Spreng (Acurí) is traditionally used in several Latin American countries to treat respiratory problems, inflammation, and fever. However, it cannot be found on the literature any attend to use this oil in pharmaceutical formulation. In this paper, it was developed Acurí oil-loaded nanocapsules, and it was evaluated the cytotoxicity against cancer cells, the antinflammatory activity and the oral acute toxicity in rats. Acurí oil contains lauric acid as the predominant saturated fatty acid (433.26 mg/g) and oleic acid as the main unsaturated fatty acid (180.06 mg/g). The Acurí oil-loaded nanocapsules showed a size of 237 nm, a polydispersity index of 0.260, and a high ζ-potential of -78.75 mV. It was obtained an encapsulation efficiency of 88.77%, and the nanocapsules remain stable on the shelf for 180 days. The nanocapsules showed a rapid release profile (98.25% in 40 minutes). Nanocapsules at a dose of 10 mg/kg exhibit an anti-inflammatory effect similar to indomethacin at the same dose. The nanocapsules showed excellent antiproliferative effect and selectivity index against prostate tumor cells (IC50 2.09 µg/mL, SI=119.61) and kidney tumor cells (IC50 3.03 µg/mL, SI=82.50). Both Acurí oil and Acurí oil-loaded nanocapsules are nontoxic at a dose of 2000 mg/kg. Additionally, they reduce serum triglyceride and total cholesterol levels in rat and could find application in nutraceutical formulations. The Acurí oil-loaded nanocapsules emerge as a promising candidate for new antitumor therapies.
Collapse
Affiliation(s)
- Bianca Rodrigues Acácio
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Ariadna Lafourcade Prada
- Postgraduate Program in Biotechnology, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Serafim Florentino Neto
- Laboratory of Innovation in Pharmaceutical Technology, Federal University of Amazonas, Manaus, AM, Brazil
| | - Giovana Bicudo Gomes
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Renata Trentin Perdomo
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | | | - Eduardo Sobieski Neto
- Postgraduate Program in Biotechnology, Institute of Chemistry, Federal University of Mato Grosso do Sul, Brazil
| | | | - Danielle Ayr Tavares de Almeida
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Jesus Rafael Rodriguez Amado
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
12
|
Song YH, Cho HM, Ryu YC, Hwang BH, Seo JH. Electrosprayable Levan-Coated Nanoclusters and Ultrasound-Responsive Drug Delivery for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21509-21521. [PMID: 38642038 DOI: 10.1021/acsami.3c18774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
In this study, we synthesized levan shell hydrophobic silica nanoclusters encapsulating doxorubicin (L-HSi-Dox) and evaluated their potential as ultrasound-responsive drug delivery systems for cancer treatment. L-HSi-Dox nanoclusters were successfully fabricated by integrating a hydrophobic silica nanoparticle-doxorubicin complex as the core and an amphiphilic levan carbohydrate polymer as the shell by using an electrospray technique. Characterization analyses confirmed the stability, size, and composition of the nanoclusters. In particular, the nanoclusters exhibited a controlled release of Dox under aqueous conditions, demonstrating their potential as efficient drug carriers. The levanic groups of the nanoclusters enhanced the targeted delivery of Dox to specific cancer cells. Furthermore, the synergism between the nanoclusters and ultrasound effectively reduced cell viability and induced cell death, particularly in the GLUT5-overexpressing MDA-MB-231 cells. In a tumor xenograft mouse model, treatment with the nanoclusters and ultrasound significantly reduced the tumor volume and weight without affecting the body weight. Collectively, these results highlight the potential of the L-HSi-Dox nanoclusters and ultrasound as promising drug delivery systems with an enhanced therapeutic efficacy for biomedical applications.
Collapse
Affiliation(s)
- Young Hoon Song
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hye Min Cho
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
13
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
14
|
Hashim PK, Abdrabou SSMA. Sub-100 nm carriers by template polymerization for drug delivery applications. NANOSCALE HORIZONS 2024; 9:693-707. [PMID: 38497369 DOI: 10.1039/d3nh00491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Size-controlled drug delivery systems (DDSs) have gained significant attention in the field of pharmaceutical sciences due to their potential to enhance drug efficacy, minimize side effects, and improve patient compliance. This review provides a concise overview of the preparation method, advancements, and applications of size-controlled drug delivery systems focusing on the sub-100 nm size DDSs. The importance of tailoring the size for achieving therapeutic goals is briefly mentioned. We highlight the concept of "template polymerization", a well-established method in covalent polymerization that offers precise control over molecular weight. We demonstrate the utility of this approach in crafting a monolayer of a polymer around biomolecule templates such as DNA, RNA, and protein, achieving the generation of DDSs with sizes ranging from several tens of nanometers. A few representative examples of small-size DDSs that share a conceptual similarity to "template polymerization" are also discussed. This review concludes by briefly discussing the drug release behaviors and the future prospects of "template polymerization" for the development of innovative size-controlled drug delivery systems, which promise to optimize drug delivery precision, efficacy, and safety.
Collapse
Affiliation(s)
- P K Hashim
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | | |
Collapse
|
15
|
Waheed I, Ali A, Tabassum H, Khatoon N, Lai WF, Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front Oncol 2024; 14:1296091. [PMID: 38660132 PMCID: PMC11040677 DOI: 10.3389/fonc.2024.1296091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.
Collapse
Affiliation(s)
- Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Anwar Ali
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Biochemical and Biotechnological Sciences, School of Precision Medicine, University of Campania, Naples, Italy
| | - Huma Tabassum
- Institute of Social and Cultural Studies, Department of Public Health, University of the Punjab, Lahore, Pakistan
| | - Narjis Khatoon
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
da Fonseca CAR, Prado VC, Paltian JJ, Kazmierczak JC, Schumacher RF, Sari MHM, Cordeiro LM, da Silva AF, Soares FAA, Oliboni RDS, Luchese C, Cruz L, Wilhelm EA. 4-(Phenylselanyl)-2H-chromen-2-one-Loaded Nanocapsule Suspension-A Promising Breakthrough in Pain Management: Comprehensive Molecular Docking, Formulation Design, and Toxicological and Pharmacological Assessments in Mice. Pharmaceutics 2024; 16:269. [PMID: 38399323 PMCID: PMC10892109 DOI: 10.3390/pharmaceutics16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa β. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Caren Aline Ramson da Fonseca
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Vinicius Costa Prado
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Jaini Janke Paltian
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Jean Carlo Kazmierczak
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | - Ricardo Frederico Schumacher
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | | | - Larissa Marafiga Cordeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Aline Franzen da Silva
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Felix Alexandre Antunes Soares
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Robson da Silva Oliboni
- Center for Chemical, Pharmaceutical, and Food Sciences, CCQFA, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil;
| | - Cristiane Luchese
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Ethel Antunes Wilhelm
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| |
Collapse
|
17
|
Shadmand Foumani Moghadam MR, Vaezi A, Jandari S, Araste A, Rezvani R. Navigating sarcopenia in COVID-19 patients and survivors: Understanding the long-term consequences, transitioning from hospital to community with mechanisms and interventions for future preparedness. Aging Med (Milton) 2024; 7:103-114. [PMID: 38571679 PMCID: PMC10985777 DOI: 10.1002/agm2.12287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 04/05/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused widespread devastation, with millions of confirmed cases and deaths worldwide. Although there were efforts made to develop treatments and vaccines for COVID-19, the coexistence of sarcopenia, a muscle disorder, has been largely overlooked. It is while new variants of this disease (eg, BA.2.86) are challenging the current protocols. Sarcopenia is associated with increased mortality and disability, and shares common mechanisms with COVID-19, such as inflammation, hormonal changes, and malnutrition. This can worsen the effects of both conditions. Furthermore, survived patients with COVID-19 who have elevated risk, as well as aging, which increases the process of sarcopenia. Therefore, addressing sarcopenia in patients with COVID-19 and surviving individuals can be crucial for improving outcomes and preventing long-term disability. During hospital stays, assessing sarcopenia through indicators like muscle wasting and malnutrition is important. Nutritional interventions, such as malnutrition screening and enteral feeding, play a critical role in preventing sarcopenia in hospitals. Mental health and physical activity evaluations and interventions are also necessary. Even after recovering from COVID-19, there is a risk of developing sarcopenia, requiring continued monitoring. Nutrition and physical activity considerations are vital for prevention and management, necessitating tailored training programs and diet therapy. Mental health should not be overlooked, with regular screening, and community-based interventions. Infrastructure should support physical activity, and mental health services must become more accessible. Community engagement through support groups and peer networks can foster resilience and social connection. Efforts are needed to promote healthy diets and ensure access to nutritious foods.
Collapse
Affiliation(s)
| | | | - Sajedeh Jandari
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Asie Araste
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Reza Rezvani
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
18
|
Pegoraro NS, Gehrcke M, Camponogara C, Fialho MFP, Cruz L, Oliveira SM. The Association of Oleic Acid and Dexamethasone Acetate into Nanocapsules Enables a Reduction in the Effective Corticosteroid Dose in a UVB Radiation-Induced Sunburn Model in Mice. Pharmaceutics 2024; 16:176. [PMID: 38399236 PMCID: PMC10892665 DOI: 10.3390/pharmaceutics16020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Dexamethasone has a high anti-inflammatory efficacy in treating skin inflammation. However, its use is related to the rebound effect, rosacea, purple, and increased blood glucose levels. Nanotechnology approaches have emerged as strategies for drug delivery due to their advantages in improving therapeutic effects. To reduce dexamethasone-related adverse effects and improve the anti-inflammatory efficacy of treatments, we developed nanocarriers containing this corticosteroid and oleic acid. Nanocapsules and nanoemulsion presented dexamethasone content close to the theoretical value and controlled dexamethasone release in an in vitro assay. Gellan gum-based hydrogels were successfully prepared to employ the nanostructured systems. A permeation study employing porcine skin showed that hydrogels containing non-nanoencapsulated dexamethasone (0.025%) plus oleic acid (3%) or oleic acid (3%) plus dexamethasone (0.025%)-loaded nanocapsules provided a higher amount of dexamethasone in the epidermis compared to non-nanoencapsulated dexamethasone (0.5%). Hydrogels containing oleic acid plus dexamethasone-loaded nanocapsules effectively inhibited mice ear edema (with inhibitions of 89.26 ± 3.77% and 85.11 ± 2.88%, respectively) and inflammatory cell infiltration (with inhibitions of 49.58 ± 4.29% and 27.60 ± 11.70%, respectively). Importantly, the dexamethasone dose employed in hydrogels containing the nanocapsules that effectively inhibited ear edema and cell infiltration was 20-fold lower (0.025%) than that of non-nanoencapsulated dexamethasone (0.5%). Additionally, no adverse effects were observed in preliminary toxicity tests. Our study suggests that nanostructured hydrogel containing a reduced effective dose of dexamethasone could be a promising therapeutic alternative to treat inflammatory disorders with reduced or absent adverse effects. Additionally, testing our formulation in a clinical study on patients with skin inflammatory diseases would be very important to validate our study.
Collapse
Affiliation(s)
- Natháli Schopf Pegoraro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Mailine Gehrcke
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
19
|
Carvalho L, Sarcinelli M, Patrício B. Nanotechnological approaches in the treatment of schistosomiasis: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:13-25. [PMID: 38213572 PMCID: PMC10777326 DOI: 10.3762/bjnano.15.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Schistosomiasis causes over 200,000 deaths annually. The current treatment option, praziquantel, presents limitations, including low bioavailability and resistance. In this context, nanoparticles have emerged as a promising option for improving schistosomiasis treatment. Several narrative reviews have been published on this topic. Unfortunately, the lack of clear methodologies presented in these reviews leads to the exclusion of many important studies without apparent justification. This integrative review aims to examine works published in this area with a precise and reproducible method. To achieve this, three databases (i.e., Pubmed, Web of Science, and Scopus) were searched from March 31, 2022, to March 31, 2023. The search results included only original research articles that used nanoparticles smaller than 1 µm in the treatment context. Additionally, a search was conducted in the references of the identified articles to retrieve works that could not be found solely using the original search formula. As a result, 65 articles that met the established criteria were identified. Inorganic and polymeric nanoparticles were the most prevalent nanosystems used. Gold was the primary material used to produce inorganic nanoparticles, while poly(lactic-co-glycolic acid) and chitosan were commonly used to produce polymeric nanoparticles. None of these identified works presented results in the clinical phase. Finally, based on our findings, the outlook appears favorable, as there is a significant diversity of new substances with schistosomicidal potential. However, financial efforts are required to advance these nanoformulations.
Collapse
Affiliation(s)
- Lucas Carvalho
- Laboratory of Parasitic Diseases, FIOCRUZ, Avenida Brasil, 4365, Rio de Janeiro, Brazil
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Michelle Sarcinelli
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Beatriz Patrício
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Pharmaceutical and Technological Innovation Laboratory - Department of Physiological Sciences, Biomedical Institute, R. Frei Caneca, 94, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Behnke M, Holick CT, Vollrath A, Schubert S, Schubert US. Knowledge-Based Design of Multifunctional Polymeric Nanoparticles. Handb Exp Pharmacol 2024; 284:3-26. [PMID: 37017790 DOI: 10.1007/164_2023_649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Conventional drug delivery systems (DDS) today still face several drawbacks and obstacles. High total doses of active pharmaceutical ingredients (API) are often difficult or impossible to deliver due to poor solubility of the API or undesired clearance from the body caused by strong interactions with plasma proteins. In addition, high doses lead to a high overall body burden, in particular if they cannot be delivered specifically to the target site. Therefore, modern DDS must not only be able to deliver a dose into the body, but should also overcome the hurdles mentioned above as examples. One of these promising devices are polymeric nanoparticles, which can encapsulate a wide range of APIs despite having different physicochemical properties. Most importantly, polymeric nanoparticles are tunable to obtain tailored systems for each application. This can already be achieved via the starting material, the polymer, by incorporating, e.g., functional groups. This enables the particle properties to be influenced not only specifically in terms of their interactions with APIs, but also in terms of their general properties such as size, degradability, and surface properties. In particular, the combination of size, shape, and surface modification allows polymeric nanoparticles to be used not only as a simple drug delivery device, but also to achieve targeting. This chapter discusses to what extent polymers can be designed to form defined nanoparticles and how their properties affect their performance.
Collapse
Affiliation(s)
- Mira Behnke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Caroline T Holick
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
21
|
Ju S, Cho HY. Biohybrid Nanoparticle-Based In Situ Monitoring of In Vivo Drug Delivery. BIOSENSORS 2023; 13:1017. [PMID: 38131776 PMCID: PMC10741677 DOI: 10.3390/bios13121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Nanomaterials have gained huge attention worldwide owing to their unique physicochemical characteristics which enable their applications in the field of biomedicine and drug delivery systems. Although nanodrug delivery systems (NDDSs) have better target specificity and bioavailability than traditional drug delivery systems, their behavior and clearance mechanisms in living subjects remain unclear. In this regard, the importance of bioimaging methods has come to the forefront for investigating the biodistribution of nanocarriers and discovering drug release mechanisms in vivo. In this review, we introduce several examples of biohybrid nanoparticles and their clinical applications, focusing on their advantages and limitations. The various bioimaging methods for monitoring the fate of nanodrugs in biological systems and the future perspectives of NDDSs have also been discussed.
Collapse
Affiliation(s)
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea;
| |
Collapse
|
22
|
Liu Y, Li M, Liu H, Kang C, Yu X. Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems. Int J Nanomedicine 2023; 18:6883-6900. [PMID: 38026519 PMCID: PMC10674749 DOI: 10.2147/ijn.s435087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have the potential to significantly enhance the pharmacological and therapeutic properties of drugs. These systems enhance the bioavailability and biocompatibility of pharmaceutical agents via enabling targeted delivery to specific tissues or organs. However, the efficacy and safety of these systems are largely dependent on the cellular uptake and intracellular transport of NPs. Thus, it is crucial to monitor the intracellular behavior of NPs within a single cell. Yet, it is challenging due to the complexity and size of the cell. Recently, the development of the Raman instrumentation offers a versatile tool to allow noninvasive cellular measurements. The primary objective of this review is to highlight the most recent advancements in Raman techniques (spontaneous Raman scattering, bioorthogonal Raman scattering, coherence Raman scattering, and surface-enhanced Raman scattering) when it comes to assessing the internalization of NP-based drug delivery systems and their subsequent movement within cells.
Collapse
Affiliation(s)
- Yajuan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Mei Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Haisha Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| |
Collapse
|
23
|
Grandhi S, Al-Tabakha M, Avula PR. Enhancement of Liver Targetability through Statistical Optimization and Surface Modification of Biodegradable Nanocapsules Loaded with Lamivudine. Adv Pharmacol Pharm Sci 2023; 2023:8902963. [PMID: 38029229 PMCID: PMC10676277 DOI: 10.1155/2023/8902963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
The intention of the current work was to develop and optimize the formulation of biodegradable polymeric nanocapsules for lamivudine (LMV) in order to obtain desired physical characteristics so as to have improved liver targetability. Nanocapsules were prepared in this study as aqueous-core nanocapsules (ACNs) with poly(lactide-co-glycolide) using a modified multiple emulsion technique. LMV was taken as a model drug to investigate the potential of ACNs developed in this work in achieving the liver targetability. Three formulations factors were chosen and 33 factorial design was adopted. The selected formulation factors were optimized statistically so as to have the anticipated characteristics of the ACNs viz. maximum entrapment efficiency, minimum particle size, and less drug release rate constant. The optimized LMV-ACNs were found to have 71.54 ± 1.93% of entrapment efficiency and 288.36 ± 2.53 nm of particle size with zeta potential of -24.7 ± 1.2 mV and 0.095 ± 0.006 h-1 of release rate constant. This optimized formulation was subjected to surface modification by treating with sodium lauryl sulphate (SLS), which increased the zeta potential to a maximum of -41.6 ± 1.3 mV at a 6 mM concentration of SLS. The results of in vivo pharmacokinetics from blood and liver tissues indicated that hepatic bioavailability of LMV was increased from 13.78 ± 3.48 μg/mL ∗ h for LMV solution to 32.94 ± 5.12 μg/mL ∗ h for the optimized LMV-ACNs and to 54.91 ± 6.68 μg/mL ∗ h for the surface-modified LMV-ACNs.
Collapse
Affiliation(s)
- Srikar Grandhi
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Moawia Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, UAE
- Centre of Medical and Bio-Allied Health Sciences Research Centre, Ajman University, P.O. Box 346, Ajman, UAE
| | - Prameela Rani Avula
- University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| |
Collapse
|
24
|
Mojarab-Mahboubkar M, Afrazeh Z, Azizi R, Sendi JJ. Efficiency of Artemisia annua L. essential oil and its chitosan/tripolyphosphate or zeolite encapsulated form in controlling Sitophilus oryzae L. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105544. [PMID: 37666615 DOI: 10.1016/j.pestbp.2023.105544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
The rice weevil, Sitophilus oryzae L., is one of the most widespread and destructive stored-product pests and resistant to a wide range of chemical insecticides. In this research, Artemisia annua L. essential oil (EO) and its encapsulated form by chitosan/TPP (tripolyphosphate) and zeolite were tested against S. oryzae adults. The order of toxicity was chitosan/TPP (LC30: 30.83, LC50: 39.52, and LC90: 72.50 μL/L air) > pure EO (LC30: 35.75, LC50: 46.25, and LC90: 86.76 μL/L air) > EO loaded in the zeolite (LC30: 43.35, LC50: 55.07, and LC90: 98.80 μL/L air). These encapsulated samples were characterized by dynamic light scattering (DLS) and field emission scanning electron microscope (FE-SEM) which revealed the size and morphology of the droplets measuring 255.2 to 272 nm and 245 to 271.8 nm for EO loaded in chitosan and zeolite respectively. The encapsulation efficiency and loading percentages of A. annua EO in chitosan/TPP and zeolite were 40.16% and 6.01%, and 88% and 85%, respectively. Fumigant persistence was increased from 6 days for pure EO then, 20 and 22 days for encapsulated oil in zeolite and chitosan/TPP, respectively. Our results showed that A. annua EO contains (±)-camphor (29.29%), 1,8-cineole (12.56%), β-caryophyllene (10.29%), α-pinene (8.68%), and artemisia ketone (8.48%) as its major composition. The activity level of glutathione S-transferase increased while general esterase and acetylcholinesterase activity were significantly inhibited in the treated group compared with the control. Antioxidant enzymes, including catalase, peroxidase, and superoxide dismutase were activated in treated adults compared to controls. The current results suggest that encapsulation of A. annua EO by chitosan/TPP and zeolite in addition to safety and environmentally friendly approach could increase its sustainability and therefore enhancing the efficiency in controlling S. oryzae in storage.
Collapse
Affiliation(s)
- Malahat Mojarab-Mahboubkar
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Zahra Afrazeh
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Roya Azizi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran.
| |
Collapse
|
25
|
Shabani H, Karami MH, Kolour J, Sayyahi Z, Parvin MA, Soghala S, Baghini SS, Mardasi M, Chopani A, Moulavi P, Farkhondeh T, Darroudi M, Kabiri M, Samarghandian S. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches. Biomed Pharmacother 2023; 165:114972. [PMID: 37481931 DOI: 10.1016/j.biopha.2023.114972] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
The rising incidence of breast cancer has been a significant source of concern in the medical community. Regarding the adverse effects and consequences of current treatments, cancers' health, and socio-economical aspects have become more complicated, leaving research aimed at improved or new treatments on top priority. Medicinal herbs contain multitarget compounds that can control cancer development and advancement. Owing to Nigella Sativa's elements, it can treat many disorders. Thymoquinone (TQ) is a natural chemical derived from the black seeds of Nigella sativa Linn proved to have anti-cancer and anti-inflammatory properties. TQ interferes in a broad spectrum of tumorigenic procedures and inhibits carcinogenesis, malignant development, invasion, migration, and angiogenesis owing to its multitargeting ability. It effectively facilitates miR-34a up-regulation, regulates the p53-dependent pathway, and suppresses Rac1 expression. TQ promotes apoptosis and controls the expression of pro- and anti-apoptotic genes. It has also been shown to diminish the phosphorylation of NF-B and IKK and decrease the metastasis and ERK1/2 and PI3K activity. We discuss TQ's cytotoxic effects for breast cancer treatment with a deep look at the relevant stimulatory or inhibitory signaling pathways. This review discusses the various forms of polymeric and non-polymeric nanocarriers (NC) and the encapsulation of TQ for increasing oral bioavailability and enhanced in vitro and in vivo efficacy of TQ-combined treatment with different chemotherapeutic agents against various breast cancer cell lines. This study can be useful to a broad scientific community, comprising pharmaceutical and biological scientists, as well as clinical investigators.
Collapse
Affiliation(s)
- Hadi Shabani
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Islamshahr Branch, Iran
| | | | - Jalili Kolour
- Cellular and Molecular Biology master student, Department of Life Sciences and Systems Biology, University of Turin, Italy
| | - Zeinab Sayyahi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Amir Parvin
- Department of Cell and Molecular Biology, school of Biology, University of Tehran, Tehran, Iran
| | - Shahrad Soghala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Mahsa Mardasi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Ali Chopani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pooria Moulavi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
26
|
Reolon JB, Saccol CP, Osmari BF, de Oliveira DB, Prado VC, Cabral FL, da Rosa LS, Rechia GC, Leal DBR, Cruz L. Karaya/Gellan-Gum-Based Bilayer Films Containing 3,3'-Diindolylmethane-Loaded Nanocapsules: A Promising Alternative to Melanoma Topical Treatment. Pharmaceutics 2023; 15:2234. [PMID: 37765203 PMCID: PMC10538082 DOI: 10.3390/pharmaceutics15092234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to incorporate nanocapsules containing 3,3'-diindolylmethane (DIM) with antitumor activity into a bilayer film of karaya and gellan gums for use in topical melanoma therapy. Nanocarriers and films were prepared by interfacial deposition of the preformed polymer and solvent casting methods, respectively. Incorporating DIM into nanocapsules increased its antitumor potential against human melanoma cells (A-375) (IC50 > 24.00 µg/mL free DIM × 2.89 µg/mL nanocapsules). The films were transparent, hydrophilic (θ < 90°), had homogeneous thickness and weight, and had a DIM content of 106 µg/cm2. Radical ABTS+ scavenger assay showed that the DIM films presented promising antioxidant action. Remarkably, the films showed selective bioadhesive potential on the karaya gum side. Considering the mechanical analyses, the nanotechnology-based films presented appropriate behavior for cutaneous application and controlled DIM release profile, which could increase the residence time on the application site. Furthermore, the nanofilms were found to increase the permeation of DIM into the epidermis, where melanoma develops. Lastly, the films were non-hemolytic (hemolysis test) and non-irritant (HET-CAM assay). In summary, the combination of karaya and gellan gum in bilayer films that contain nanoencapsulated DIM has demonstrated potential in the topical treatment of melanoma and could serve as a viable option for administering DIM for cutaneous melanoma therapy.
Collapse
Affiliation(s)
- Jéssica Brandão Reolon
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Bárbara Felin Osmari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Daiane Britto de Oliveira
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Vinicius Costa Prado
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| | - Fernanda Licker Cabral
- Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria 97105-9000, RS, Brazil; (F.L.C.); (D.B.R.L.)
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil;
| | | | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria 97105-9000, RS, Brazil; (F.L.C.); (D.B.R.L.)
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (J.B.R.); (C.P.S.); (B.F.O.); (D.B.d.O.); (V.C.P.)
| |
Collapse
|
27
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
28
|
Dutta S, Mitra SK, Bir A, T R P, Ghosh A. Enhancing Anti-cancer Activity: Green Synthesis and Cytotoxicity Evaluation of Turmeric-Gold Nanocapsules on A549 Lung Cancer Cells. Cureus 2023; 15:e43087. [PMID: 37680423 PMCID: PMC10482356 DOI: 10.7759/cureus.43087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 09/09/2023] Open
Abstract
Background Lung cancer remains a major global health concern, with a notable increase in new cases in recent years. This study aims to investigate the cytotoxic effects of polymeric turmeric-gold nanocapsules on A549 human lung cancer cells, utilizing green-synthesized gold nanoparticles from Curcuma longa L. and ethyl cellulose-based nanocapsules. Methods Gold nanoparticles were synthesized using the aqueous root extract of Curcuma longa L., and the resulting nanoparticles were characterized using UV-Vis, fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy dispersive x-ray (EDX) techniques. Subsequently, polymeric nanocapsules of turmeric with encapsulated gold nanoparticles were prepared. The cytotoxicity of these nanocapsules was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on both A549 lung cancer cell lines and normal cell lines. Results The turmeric-gold nanocapsules exhibited a half maximal inhibitory concentration (IC50) value of 40 μg/ml, while the gold nanoparticles alone showed an IC50 value of 60 μg/ml when tested on A549 cells. Furthermore, apoptosis was observed in A549 cells treated with turmeric-gold nanocapsules. The combination of gold nanoparticles and turmeric polymer (gold turmeric nanocapsules) demonstrated a more potent anti-cancer effect on the lung cancer cell line, with an IC50 value of 40 μg/ml compared to green-synthesized gold nanoparticles (IC50 of 60 μg/ml). Conclusion The utilization of polymeric nanocapsules of turmeric, with green-synthesized gold nanoparticles, presents a promising solution to overcome the limited water solubility of turmeric. The results suggest that the combination of gold nanoparticles and turmeric enhances the cytotoxic effects on A549 human lung cancer cells. These findings contribute to the potential application of turmeric-gold nanocapsules as a novel therapeutic approach in lung cancer research.
Collapse
Affiliation(s)
- Saikat Dutta
- Microbiology, Vels Institute of Science, Technology & Advanced Studies, Chennai, IND
| | - Saumit Kumar Mitra
- Microbiology, Vels Institute of Science, Technology & Advanced Studies, Chennai, IND
| | - Aritri Bir
- Biochemistry, Indian Institute of Technology Kharagpur, Kharagpur, IND
| | - Prabha T R
- Biotechnology, Indian Institute of Technology Madras, Chennai, IND
| | - Arindam Ghosh
- Biochemistry, Indian Institute of Technology Kharagpur, Kharagpur, IND
| |
Collapse
|
29
|
Ara MG, Motalleb G, Velasco B, Rahdar A, Taboada P. Antineoplastic effect of paclitaxel-loaded polymeric nanocapsules on malignant human ovarian carcinoma cells (SKOV-3). J Mol Liq 2023; 384:122190. [DOI: 10.1016/j.molliq.2023.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
30
|
Mondal A, Nayak AK, Chakraborty P, Banerjee S, Nandy BC. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. Pharmaceutics 2023; 15:2064. [PMID: 37631276 PMCID: PMC10459560 DOI: 10.3390/pharmaceutics15082064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751 003, India;
| | - Prithviraj Chakraborty
- Department of Pharmaceutics, Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781 035, India;
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India;
| | - Bankim Chandra Nandy
- Department of Pharmaceutics, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India;
| |
Collapse
|
31
|
Woszczak L, Khachatryan K, Krystyjan M, Witczak T, Witczak M, Gałkowska D, Makarewicz M, Khachatryan G. Physicochemical and Functional Properties and Storage Stability of Chitosan-Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts. Int J Mol Sci 2023; 24:12218. [PMID: 37569594 PMCID: PMC10418456 DOI: 10.3390/ijms241512218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The dynamic development of the food industry and the growing interest of consumers in innovative solutions that increase the comfort and quality of life push the industry towards seeking pioneering solutions in the field of food packaging. Intelligent and active packaging, which affects the quality and durability of food products and allows one to determine their freshness, is still a modern concept. The aim of our study was to obtain two types of films based on chitosan and starch with micellar nanostructures containing extracts from turmeric rhizomes and hibiscus flowers. The presence of spherical nanostructures was confirmed using a scanning electron microscope. The structural and optical properties of the obtained composites were characterised by Fourier-transform infrared (FTIR), UltraViolet-Visible (UV-VIS), and photoluminescence (PL) spectroscopy. Scanning electron microscopy (SEM) analysis confirmed the presence of spherical micellar structures with a size of about 800 nm in the obtained biocomposites. The presence of nano-/microstructures containing extracts affected the mechanical properties of the composites: it weakened the strength of the films and improved their elongation at break (EAB). Films with nano-/microparticles were characterised by a higher water content compared to the control sample and lower solubility, and they showed stronger hydrophilic properties. Preliminary storage tests showed that the obtained biocomposites are sensitive to changes occurring during the storage of products such as cheese or fish. In addition, it was found that the film with the addition of turmeric extract inhibited the growth of microorganisms during storage. The results suggest that the obtained bionanocomposites can be used as active and/or intelligent materials.
Collapse
Affiliation(s)
- Liliana Woszczak
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (L.W.); (K.K.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (L.W.); (K.K.)
| | - Magdalena Krystyjan
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Teresa Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (T.W.); (M.W.)
| | - Mariusz Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (T.W.); (M.W.)
| | - Dorota Gałkowska
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Małgorzata Makarewicz
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| |
Collapse
|
32
|
Łopuszyńska N, Węglarz WP. Contrasting Properties of Polymeric Nanocarriers for MRI-Guided Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2163. [PMID: 37570481 PMCID: PMC10420849 DOI: 10.3390/nano13152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Poor pharmacokinetics and low aqueous solubility combined with rapid clearance from the circulation of drugs result in their limited effectiveness and generally high therapeutic doses. The use of nanocarriers for drug delivery can prevent the rapid degradation of the drug, leading to its increased half-life. It can also improve the solubility and stability of drugs, advance their distribution and targeting, ensure a sustained release, and reduce drug resistance by delivering multiple therapeutic agents simultaneously. Furthermore, nanotechnology enables the combination of therapeutics with biomedical imaging agents and other treatment modalities to overcome the challenges of disease diagnosis and therapy. Such an approach is referred to as "theranostics" and aims to offer a more patient-specific approach through the observation of the distribution of contrast agents that are linked to therapeutics. The purpose of this paper is to present the recent scientific reports on polymeric nanocarriers for MRI-guided drug delivery. Polymeric nanocarriers are a very broad and versatile group of materials for drug delivery, providing high loading capacities, improved pharmacokinetics, and biocompatibility. The main focus was on the contrasting properties of proposed polymeric nanocarriers, which can be categorized into three main groups: polymeric nanocarriers (1) with relaxation-type contrast agents, (2) with chemical exchange saturation transfer (CEST) properties, and (3) with direct detection contrast agents based on fluorinated compounds. The importance of this aspect tends to be downplayed, despite its being essential for the successful design of applicable theranostic nanocarriers for image-guided drug delivery. If available, cytotoxicity and therapeutic effects were also summarized.
Collapse
Affiliation(s)
- Natalia Łopuszyńska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| |
Collapse
|
33
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
34
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
35
|
Nagia M, Morgan I, Gamel MA, Farag MA. Maximizing the value of indole-3-carbinol, from its distribution in dietary sources, health effects, metabolism, extraction, and analysis in food and biofluids. Crit Rev Food Sci Nutr 2023; 64:8133-8154. [PMID: 37051943 DOI: 10.1080/10408398.2023.2197065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Indole-3-carbinol (I3C) is a major dietary component produced in Brassica vegetables from glucosinolates (GLS) upon herbivores' attack. The compound is gaining increasing interest due to its anticancer activity. However, reports about improving its level in plants or other sources are still rare. Unfortunately, I3C is unstable in acidic media and tends to polymerize rendering its extraction and detection challenging. This review presents a multifaceted overview of I3C regarding its natural occurrence, biosynthesis, isolation, and extraction procedure from dietary sources, and optimization for the best recovery yield. Further, an overview is presented on its metabolism and biotransformation inside the body to account for its health benefits and factors to ensure the best metabolic yield. Compile of the different analytical approaches for I3C analysis in dietary sources is presented for the first time, together with approaches for its detection and its metabolism in body fluids for proof of efficacy. Lastly, the chemopreventive effects of I3C and the underlying action mechanisms are summarized. Optimizing the yield and methods for the detection of I3C will assist for its incorporation as a nutraceutical or adjuvant in cancer treatment programs. Highlighting the complete biosynthetic pathway and factors involved in I3C production will aid for its future biotechnological production.
Collapse
Affiliation(s)
- Mohamed Nagia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Chemistry of Natural Compounds, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Mirette A Gamel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
37
|
Sari MHM, Cobre ADF, Pontarolo R, Ferreira LM. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030874. [PMID: 36986736 PMCID: PMC10057168 DOI: 10.3390/pharmaceutics15030874] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Wounds are alterations in skin integrity resulting from any type of trauma. The healing process is complex, involving inflammation and reactive oxygen species formation. Therapeutic approaches for the wound healing process are diverse, associating dressings and topical pharmacological agents with antiseptics, anti-inflammatory, and antibacterial actions. Effective treatment must maintain occlusion and moisture in the wound site, suitable capacity for the absorption of exudates, gas exchange, and the release of bioactives, thus stimulating healing. However, conventional treatments have some limitations regarding the technological properties of formulations, such as sensory characteristics, ease of application, residence time, and low active penetration in the skin. Particularly, the available treatments may have low efficacy, unsatisfactory hemostatic performance, prolonged duration, and adverse effects. In this sense, there is significant growth in research focusing on improving the treatment of wounds. Thus, soft nanoparticles-based hydrogels emerge as promising alternatives to accelerate the healing process due to their improved rheological characteristics, increased occlusion and bioadhesiveness, greater skin permeation, controlled drug release, and a more pleasant sensory aspect in comparison to conventional forms. Soft nanoparticles are based on organic material from a natural or synthetic source and include liposomes, micelles, nanoemulsions, and polymeric nanoparticles. This scoping review describes and discusses the main advantages of soft nanoparticle-based hydrogels in the wound healing process. Herein, a state-of-the-art is presented by addressing general aspects of the healing process, current status and limitations of non-encapsulated drug-based hydrogels, and hydrogels formed by different polymers containing soft nanostructures for wound healing. Collectively, the presence of soft nanoparticles improved the performance of natural and synthetic bioactive compounds in hydrogels employed for wound healing, demonstrating the scientific advances obtained so far.
Collapse
Affiliation(s)
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Luana Mota Ferreira
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
- Correspondence: ; Tel.: +55-41-3360-4095
| |
Collapse
|
38
|
Synthesis and Investigation of Physicochemical and Biological Properties of Films Containing Encapsulated Propolis in Hyaluronic Matrix. Polymers (Basel) 2023; 15:polym15051271. [PMID: 36904511 PMCID: PMC10006925 DOI: 10.3390/polym15051271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The dynamic development of nanotechnology has enabled the development of innovative and novel techniques for the production and use of nanomaterials. One of them is the use of nanocapsules based on biodegradable biopolymer composites. Closing compounds with antimicrobial activity inside the nanocapsule cause the gradual release of biologically active substances into the environment, and the effect on pathogens is regular, prolonged and targeted. Known and used in medicine for years, propolis, thanks to the synergistic effect of active ingredients, has antimicrobial, anti-inflammatory and antiseptic properties. Biodegradable and flexible biofilms were obtained, the morphology of the composite was determined using scanning electron microscopy (SEM) and particle size was measured by the dynamic light scattering (DLS) method. Antimicrobial properties of biofoils were examined on commensal skin bacteria and pathogenic Candida isolates based on the growth inhibition zones. The research confirmed the presence of spherical nanocapsules with sizes in the nano/micrometric scale. The properties of the composites were characterized by infrared (IR) and ultraviolet (UV) spectroscopy. It has been proven that hyaluronic acid is a suitable matrix for the preparation of nanocapsules, as no significant interactions between hyaluronan and the tested compounds have been demonstrated. Color analysis and thermal properties, as well as the thickness and mechanical properties of the obtained films, were determined. Antimicrobial properties of the obtained nanocomposites were strong in relation to all analyzed bacterial and yeast strains isolated from various regions of the human body. These results suggest high potential applicability of the tested biofilms as effective materials for dressings to be applied on infected wounds.
Collapse
|
39
|
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, K. Sharma R, Paiva-Santos AC, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug deliveryapplications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
40
|
Polymeric Nanoparticles as Tunable Nanocarriers for Targeted Delivery of Drugs to Skin Tissues for Treatment of Topical Skin Diseases. Pharmaceutics 2023; 15:pharmaceutics15020657. [PMID: 36839979 PMCID: PMC9964857 DOI: 10.3390/pharmaceutics15020657] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The topical route is the most appropriate route for the targeted delivery of drugs to skin tissues for the treatment of local skin diseases; however, the stratum corneum (SC), the foremost layer of the skin, acts as a major barrier. Numerous passive and active drug delivery techniques have been exploited to overcome this barrier; however, these modalities are associated with several detrimental effects which restrict their clinical applicability. Alternatively, nanotechnology-aided interventions have been extensively investigated for the topical administration of a wide range of therapeutics. In this review, we have mainly focused on the biopharmaceutical significance of polymeric nanoparticles (PNPs) (made from natural polymers) for the treatment of various topical skin diseases such as psoriasis, atopic dermatitis (AD), skin infection, skin cancer, acute-to-chronic wounds, and acne. The encapsulation of drug(s) into the inner core or adsorption onto the shell of PNPs has shown a marked improvement in their physicochemical properties, avoiding premature degradation and controlling the release kinetics, permeation through the SC, and retention in the skin layers. Furthermore, functionalization techniques such as PEGylation, conjugation with targeting ligand, and pH/thermo-responsiveness have shown further success in optimizing the therapeutic efficacy of PNPs for the treatment of skin diseases. Despite enormous progress in the development of PNPs, their clinical translation is still lacking, which could be a potential future perspective for researchers working in this field.
Collapse
|
41
|
Nanotechnology as a Tool for Optimizing Topical Photoprotective Formulations Containing Buriti Oil (Mauritia flexuosa) and Dry Aloe vera Extracts: Stability and Cytotoxicity Evaluations. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Human beings are actively exposed to ultraviolet (UV) radiation, which is associated with skin cancer. This has encouraged the continuous search for more effective and safer photoprotective formulations. Along with the application of traditional organic sunscreens, there is a growing interest in “green products” containing natural compounds such as plant extracts and oils. This trend is combined with the use of nanotechnology as a tool for optimizing the vehicles of such compounds. Nanoemulsions (NEs) are suitable for the encapsulation of natural compounds, which improves topical treatment. Therefore, we have developed oil-in-water (O/W) nanoemulsions containing 3% buriti oil (BO), incorporated in a 10% vegetal extract of Aloe vera (AV) by means of ultrasonic processing to improve the chemical characteristics of this component and, consequently, its efficacy and safety in pharmaceutical and cosmetic formulations. The composition of the formulation was initially defined in a preliminary study on surfactants where the concentrations of Tween® 80 and Span® 20 were evaluated in relation to particle size and the polydispersity index (PDI). The nanoemulsion was prepared and then chemical sunscreens were incorporated with the aim of developing a sunscreen nanoemulsion called NE-A19. This nanoemulsion was found to be the best formulation due to its stability, droplet size (146.80 ± 2.74), and PDI (0.302 ± 0.088), with a monomodal size distribution. The stability was evaluated over 90 days and showed a low growth in particle size at the end of the study. NE-A19 exhibited good viscosity and organoleptic properties, in addition to an occlusion factor indicating an interesting and higher water holding capacity when compared with a NE without AV (p < 0.05). The in vitro efficacy and safety studies of NE-19A were promising. Its average in vitro sun protection factor value was 49, with a critical wavelength (λc) of 369.7 nm, satisfactory UVA protection, and a UVA/UVB ratio of 0.40, indicating broad spectrum protection against UVA and UVB radiation. Furthermore, NE-19A displayed a good safety profile in dermal keratinocytes. It can be concluded that NE-19A is a promising formulation for carrying natural products, such as buriti oil and AV, associated with synthetic filters in lower concentrations.
Collapse
|
42
|
Dokla EME, Abutaleb NS, Milik SN, Kandil EAEA, Qassem OM, Elgammal Y, Nasr M, McPhillie MJ, Abouzid KAM, Seleem MN, Imming P, Adel M. SAR investigation and optimization of benzimidazole-based derivatives as antimicrobial agents against Gram-negative bacteria. Eur J Med Chem 2023; 247:115040. [PMID: 36584632 DOI: 10.1016/j.ejmech.2022.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic-resistant bacteria represent a serious threat to modern medicine and human life. Only a minority of antibacterial agents are active against Gram-negative bacteria. Hence, the development of novel antimicrobial agents will always be a vital need. In an effort to discover new therapeutics against Gram-negative bacteria, we previously reported a structure-activity-relationship (SAR) study on 1,2-disubstituted benzimidazole derivatives. Compound III showed a potent activity against tolC-mutant Escherichia coli with an MIC value of 2 μg/mL, representing a promising lead for further optimization. Building upon this study, herein, 49 novel benzimidazole compounds were synthesized to investigate their antibacterial activity against Gram-negative bacteria. Our design focused on three main goals, to address the low permeability of our compounds and improve their cellular accumulation, to expand the SAR study to the unexplored ring C, and to optimize the lead compound (III) by modification of the methanesulfonamide moiety. Compounds (25a-d, 25f-h, 25k, 25l, 25p, 25r, 25s, and 26b) exhibited potent activity against tolC-mutant E. coli with MIC values ranging from 0.125 to 4 μg/mL, with compound 25d displaying the highest potency among the tested compounds with an MIC value of 0.125 μg/mL. As its predecessor, III, compound 25d exhibited an excellent safety profile without any significant cytotoxicity to mammalian cells. Time-kill kinetics assay indicated that 25d exhibited a bacteriostatic activity and significantly reduced E. coli JW55031 burden as compared to DMSO. Additionally, combination of 25d with colistin partially restored its antibacterial activity against Gram-negative bacterial strains (MIC values ranging from 4 to 16 μg/mL against E. coli BW25113, K. pneumoniae, A. baumannii, and P. aeruginosa). Furthermore, formulation of III and 25d as lipidic nanoparticles (nanocapsules) resulted in moderate enhancement of their antibacterial activity against Gram-negative bacterial strains (A. Baumannii, N. gonorrhoeae) and compound 25d demonstrated superior activity to the lead compound III. These findings establish compound 25d as a promising candidate for treatment of Gram-negative bacterial infections and emphasize the potential of nano-formulations in overcoming poor cellular accumulation in Gram-negative bacteria where further optimization and investigation are warranted to improve the potency and broaden the spectrum of our compounds.
Collapse
Affiliation(s)
- Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Institute für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), 06120, Germany.
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Microbiology and Immunology, Zagazig University, Zagazig, 44519, Egypt
| | - Sandra N Milik
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Ezzat A E A Kandil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Omar M Qassem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Purdue University Institute of Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Martin J McPhillie
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Peter Imming
- Institute für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), 06120, Germany
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
43
|
Khizar S, Alrushaid N, Alam Khan F, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Nanocarriers based novel and effective drug delivery system. Int J Pharm 2023; 632:122570. [PMID: 36587775 DOI: 10.1016/j.ijpharm.2022.122570] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Nanotechnology has ultimately come into the domain of drug delivery. Nanosystems for delivery of drugs are promptly emerging science utilizing different nanoparticles as carriers. Biocompatible and stable nanocarriers are novel diagnosis tools or therapy agents for explicitly targeting locates with controllable way. Nanocarriers propose numerous advantages to treat diseases via site-specific as well as targeted delivery of particular therapeutics. In recent times, there are number of outstanding nanocarriers use to deliver bio-, chemo-, or immuno- therapeutic agents to obtain effectual therapeutic reactions and to minimalize unwanted adverse-effects. Nanoparticles possess remarkable potential for active drug delivery. Moreover, conjugation of drugs with nanocarriers protects drugs from metabolic or chemical modifications, through their way to targeted cells and hence increased their bioavailability. In this review, various systems integrated with different types of nanocarriers (inorganic. organic, quantum dots, and carbon nanotubes) having different compositions, physical and chemical properties have been discussed for drug delivery applications.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | - Noor Alrushaid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France; Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France.
| |
Collapse
|
44
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
45
|
Mahmoud KY, Elhesaisy NA, Rashed AR, Mikhael ES, Fadl MI, Elsadek MS, Mohamed MA, Mostafa MA, Hassan MA, Halema OM, Elnemer YH, Swidan SA. Exploring the potential of intranasally administered naturally occurring quercetin loaded into polymeric nanocapsules as a novel platform for the treatment of anxiety. Sci Rep 2023; 13:510. [PMID: 36627363 PMCID: PMC9831377 DOI: 10.1038/s41598-023-27665-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Anxiety is one of the most prevalent forms of psychopathology that affects millions worldwide. It gained more importance under the pandemic status that resulted in higher anxiety prevalence. Anxiolytic drugs such as benzodiazepines have an unfavorable risk/benefit ratio resulting in a shift toward active ingredients with better safety profile such as the naturally occurring quercetin (QRC). The delivery of QRC is hampered by its low water solubility and low bioavailability. The potential to enhance QRC delivery to the brain utilizing polymeric nanocapsules administered intranasally is investigated in the current study. Polymeric nanocapsules were prepared utilizing the nanoprecipitation technique. The best formula displayed a particle size of 227.8 ± 11.9 nm, polydispersity index of 0.466 ± 0.023, zeta potential of - 17.5 ± 0.01 mV, and encapsulation efficiency % of 92.5 ± 1.9%. In vitro release of QRC loaded polymeric nanocapsules exhibited a biphasic release with an initial burst release followed by a sustained release pattern. Behavioral testing demonstrated the superiority of QRC loaded polymeric nanocapsules administered intranasally compared to QRC dispersion administered both orally and intranasally. The prepared QRC loaded polymeric nanocapsules also demonstrated good safety profile with high tolerability.
Collapse
Affiliation(s)
- Khaled Y. Mahmoud
- grid.440862.c0000 0004 0377 5514Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Nahla A. Elhesaisy
- grid.440862.c0000 0004 0377 5514Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Abdelrahman R. Rashed
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Ebram S. Mikhael
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Mahmoud I. Fadl
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Mahmoud S. Elsadek
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Merna A. Mohamed
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Merna A. Mostafa
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Mohamed A. Hassan
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Omar M. Halema
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Youssef H. Elnemer
- grid.440862.c0000 0004 0377 5514Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| | - Shady A. Swidan
- grid.440862.c0000 0004 0377 5514Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837 Cairo Egypt
| |
Collapse
|
46
|
Purohit D, Jalwal P, Manchanda D, Saini S, Verma R, Kaushik D, Mittal V, Kumar M, Bhattacharya T, Rahman MH, Dutt R, Pandey P. Nanocapsules: An Emerging Drug Delivery System. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:190-207. [PMID: 35142273 DOI: 10.2174/1872210516666220210113256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Controlled drug release and site-specific delivery of drugs make nanocapsules the most approbative drug delivery system for various kinds of drugs, bioactive, protein, and peptide compounds. Nanocapsules (NCs) are spherical shape microscopic shells consisting of a core (solid or liquid) in which the drug is positioned in a cavity enclosed by a distinctive polymeric membrane. OBJECTIVES The main objective of the present patent study is to elaborate on various formulation techniques and methods of nanocapsules (NCs). The review also spotlights various biomedical applications as well as on the patents of NCs to date. METHODS The review was extracted from the searches performed using various search engines such as PubMed, Google Patents, Medline, Google Scholars, etc. In order to emphasize the importance of NCs, some published patents of NCs have also been reported in the review. RESULTS NCs are tiny magical shells having incredible reproducibility. Various techniques can be used to formulate NCs. The pharmaceutical performance of the formulated NCs can be judged by evaluating their shape, size, entrapment efficiency, loading capacity, etc., using different analytical techniques. Their main applications are found in the field of agrochemicals, genetic manipulation, cosmetics, hygiene items, strategic distribution of drugs to tumors, nanocapsule bandages to combat infection, and radiotherapy. CONCLUSION In the present review, our team made a deliberate effort to summarize the recent advances in the field of NCs and focus on new patents related to the implementation of NCs delivery systems in the area of some life-threatening disorders like diabetes, cancer, and cardiovascular diseases.
Collapse
Affiliation(s)
- Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 123401, India
| | - Pawan Jalwal
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, 124001, India
| | - Deeksha Manchanda
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 123401, India
| | - Sapna Saini
- PDM School of Pharmacy, Karsindhu, Jind, 126102, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Kumar
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, 133207, India
| | - Tanima Bhattacharya
- Innovation, Incubation and Industry (i-cube) Laboratory, Techno India NJR Institute of Technology, Udaipur, 313003, Rajasthan, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Rohit Dutt
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
47
|
Agrawal V, Patel R, Patel M. Design, characterization, and evaluation of efinaconazole loaded poly(D, L-lactide-co-glycolide) nanocapsules for targeted treatment of onychomycosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Uspenskii SA, Khaptakhanova PA. Boron nanoparticles in chemotherapy and radiotherapy: the synthesis, state-of-the-art, and prospects. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
49
|
Zhang R, Zhang H, Shi H, Zhang D, Zhang Z, Liu H. Strategic developments in the drug delivery of natural product dihydromyricetin: applications, prospects, and challenges. Drug Deliv 2022; 29:3052-3070. [PMID: 36146939 PMCID: PMC9518266 DOI: 10.1080/10717544.2022.2125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dihydromyricetin (DHM) is an important natural flavonoid that has attracted much attention because of its various functions such as protecting the cardiovascular system and liver, treating cancer and neurodegenerative diseases, and anti-inflammation effect, etc. Despite its great development potential in pharmacy, DHM has some problems in pharmaceutical applications such as low solubility, permeability, and stability. To settle these issues, extensive research has been carried out on its physicochemical properties and dosage forms to produce all kinds of DHM preparations in the past ten years. In addition, the combined use of DHM with other drugs is a promising strategy to expand the application of DHM. However, although invention patents for DHM preparations have been issued in several countries, the current transformation of DHM research results into market products is insufficient. To date, there is still a lack of deep research into the pharmacokinetics, pharmacodynamics, toxicology, and action mechanism of DHM preparations. Besides, preparations for combined therapy of DHM with other drugs are scarcely reported, which necessitates the development of dosage forms for this application. Apart from medicine, the development of DHM in the food industry is also of great potential. Due to its multiple effects and excellent safety, DHM preparations can be developed for functional drinks and foods. Through this review, we hope to draw more attention to the development potential of DHM and the above challenges and provide valuable references for the research and development of other natural products with a similar structure-activity relationship to this drug.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Houyin Shi
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| |
Collapse
|
50
|
Deng W, Yan Y, Zhuang P, Liu X, Tian K, Huang W, Li C. Synthesis of nanocapsules blended polymeric hydrogel loaded with bupivacaine drug delivery system for local anesthetics and pain management. Drug Deliv 2022; 29:399-412. [PMID: 35098821 PMCID: PMC8812756 DOI: 10.1080/10717544.2021.2023702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/01/2023] Open
Abstract
Local anesthetics are used clinically for the control of postoperative pain management. This study aimed to develop chitosan (CS) with genipin (GP) hydrogels as the hydrophilic lipid shell loaded poly(ε-caprolactone) (PC) nanocapsules as the hydrophobic polymeric core composites (CS-GP/PC) to deliver bupivacaine (BPV) for the prolongation of anesthesia and pain relief. The swelling ratio, in vitro degradation, and rheological properties enhancement of CS-GP/PC polymeric hydrogel. The incorporation of PC nanocapsules into CS-GP hydrogels was confirmed by SEM, FTIR, and XRD analysis. Scanning electron microscopy results demonstrated that the CS-GP hydrogels and CS-GP/PC polymeric hydrogels have a porous structure, the pore dimensions being non-uniform with diameters between 25 and 300 μm. The in vitro drug release profile of CS-GP/PC polymeric hydrogel has been achieved 99.2 ± 1.12% of BPV drug release in 36 h. Cellular viability was evaluated using the CCK-8 test on 3T3 fibroblast cells revealed that the obtained CS-GP/PC polymeric hydrogel with BPV exhibited no obvious cytotoxicity. The CS-GP/PC polymeric hydrogel loaded with BPV showed significant improvement in pain response compared to the control group animals for at least 7 days. When compared with BPV solution, CS-GP hydrogel and CS-GP/PC polymeric hydrogel improved the skin permeation of BPV 3-fold and 5-fold in 24 h, respectively. In vitro and in vivo results pointed out PC nanocapsules loaded CS-GP hydrogel can act as effective drug carriers, thus prolonging and enhancing the anesthetic effect of BPV. Histopathological results demonstrated the excellent biodegradability and biocompatibility of the BPV-loaded CS-GP/PC polymeric hydrogel system on 7, 14, and 21 days without neurotoxicity.HIGHLIGHTSPreparation and characterization of CS-GP/PC polymeric hydrogel system.BPV-loaded CS-GP/PC exhibited prolonged in vitro release in PBS solution.Cytotoxicity of BPV-loaded CS-GP/PC polymeric hydrogel against fibroblast (3T3) cells.Development of CS-GP/PC a promising skin drug-delivery system for local anesthetic BPV.
Collapse
Affiliation(s)
- Wentao Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yu Yan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Peipei Zhuang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xiaoxu Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Ke Tian
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Wenfang Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|