1
|
Rahimi S, Shirin F, Moassesfar M, Zafari H, Bahmaie N, Baghebani K, Bidmeshki Y, Sajjadi Manesh SM, Rasoulzadeh Darabad K, Bahmaie M, Nouri E, Kilic A, Ansarin M, Özışık P, Simsek E, Ozensoy Guler O. Role of Hypoxia Induced by Medicinal Plants; A Revolutionary Era of Cellular and Molecular Herbal Medicine in Neuroblastoma Treatment. FRONT BIOSCI-LANDMRK 2024; 29:422. [PMID: 39735975 DOI: 10.31083/j.fbl2912422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 12/31/2024]
Abstract
As one of the most common solid pediatric cancers, Neuroblastoma (NBL) accounts for 15% of all of the cancer-related mortalities in infants with increasing incidence all around the world. Despite current therapeutic approaches for NBL (radiotherapies, surgeries, and chemotherapies), these approaches could not be beneficial for all of patients with NBL due to their low effectiveness, and some severe side effects. These challenges lead basic medical scientists and clinical specialists toward an optimal medical interventions for clinical management of NBL. Regardingly, taking molecular and cellular immunopathophysiology involved in the hypoxic microenvironment of NBL into account, it can practically be a contributing approach in the development of "molecular medicine" for treatment of NBL. Interestingly, pivotal roles of "herbal medicine" in the hypoxic microenvironment of NBL have been extensively interrogated for treating a NBL, functionally being served as an anti-cancer agent via inducing a wide range of molecular and cellular signaling, like apoptosis, cell cycle arrest, and inhibiting angiogenesis. Hence, in this review study, the authors aim to summarize the anti-tumor effects of some medicinal plants and their phytoconstituents through molecular immunopathophysiological mechanisms involved in the hypoxic microenvironment of NBL. In addition, they try to open promising windows to immune gene-based therapies for NBL "precision medicine" through clinical advantages of herbal and molecular medicine. An interdisciplinary collaboration among translation and molecular medicine specialists, immunobiologists, herbal medicine specialists, and pediatric neuro-oncologists is highly recommended.
Collapse
Affiliation(s)
- Samin Rahimi
- Department of Genetics, Faculty of Natural Sciences, Tabriz University, 5166616471 Tabriz, Iran
| | - Fatemeh Shirin
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, 1651153311 Tehran, Iran
| | - Mahdi Moassesfar
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, 1651153311 Tehran, Iran
| | - Hossein Zafari
- Department of Chemical Engineering, Faculty of Chemical Engineering, Shahreza Branch, Islamic Azad University, 8648146411 Shahreza, Iran
| | - Nazila Bahmaie
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Kimia Baghebani
- Department of Biology, College of Basic Sciences, Kermanshah Branch, Islamic Azad University, 6718997551 Kermanshah, Iran
- Now with Department of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, 54896 Jeonbuk, Republic of Korea
| | - Yasna Bidmeshki
- Department of Biology, College of Basic Sciences, Kermanshah Branch, Islamic Azad University, 6718997551 Kermanshah, Iran
| | - Seyede Masoumeh Sajjadi Manesh
- Department of Biomedical Engineering, College of Basic Sciences, Qom Branch, Islamic Azad University, 3716146611 Qom, Iran
| | | | - Massoud Bahmaie
- Department of Herbal Medicine, University of Poona, 411007 Poona, India
| | - Elham Nouri
- Clinical Diagnosis Laboratory, Shahid Beheshti University-affiliated Hospital, Zanjan University of Medical Sciences (ZUMS), 4513956111 Zanjan, Iran
- Department of Medical Laboratory Science, Faculty of Paramedicine, Zanjan University of Medical Sciences (ZUMS), 4513956111 Zanjan, Iran
| | - Ahmet Kilic
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Melika Ansarin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), 1449614535 Tehran, Iran
| | - Pınar Özışık
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Brain and Nerve Surgery, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Ender Simsek
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| |
Collapse
|
2
|
Sripunya A, Chittasupho C, Mangmool S, Angerhofer A, Imaram W. Gallic Acid-Encapsulated PAMAM Dendrimers as an Antioxidant Delivery System for Controlled Release and Reduced Cytotoxicity against ARPE-19 Cells. Bioconjug Chem 2024; 35:1959-1969. [PMID: 39641479 DOI: 10.1021/acs.bioconjchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Poly(amidoamine) (PAMAM) dendrimers have gained significant attention in various research fields, particularly in medicinal compound delivery. Their versatility lies in their ability to conjugate with functional molecules on their surfaces and encapsulate small molecules, making them suitable for diverse applications. Gallic acid is a potent antioxidant compound that has garnered considerable interest in recent years. Our research aims to investigate if the gallic acid-encapsulated PAMAM dendrimer generations 4 (G4(OH)-Ga) and 5 (G5(OH)-Ga) could enhance radical scavenging, which could potentially slow down the progression of age-related macular degeneration (AMD). Encapsulation of gallic acid in PAMAM dendrimers is a feasible alternative to prevent its degradation and toxicity. In vitro investigation of antioxidant activity was carried out using the DPPH and ABTS radical scavenging assays, as well as the FRAP assay. The IC50 values for DPPH and ABTS assays were determined through nonlinear dose-response curves, correlating the inhibition percentage with the concentration (μg/mL) of the sample and the concentration (μM) of gallic acid within each sample. G4(OH)-Ga and G5(OH)-Ga possess significant antioxidant activities as determined by the DPPH, ABTS, and FRAP assays. Moreover, gallic acid-encapsulated PAMAM dendrimers inhibit H2O2-induced reactive oxygen species (ROS) production in the human retinal pigment epithelium ARPE-19 cells, thereby improving antioxidant characteristics and potentially retarding AMD progression caused by ROS. In an evaluation of cell viability of ARPE-19 cells using the MTT assay, G4(OH)-Ga was found to reduce cytotoxic effects on ARPE-19 cells.
Collapse
Affiliation(s)
- Aorada Sripunya
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Alexander Angerhofer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Advanced Magnetic Resonance, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Alfei S, Zuccari G, Athanassopoulos CM, Domenicotti C, Marengo B. Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation. Int J Mol Sci 2024; 25:10071. [PMID: 39337557 PMCID: PMC11432396 DOI: 10.3390/ijms251810071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer with a poor prognosis. Drug-induced secondary tumorigenesis and the emergency of drug resistance worsen an already worrying scenario, thus rendering urgent the development of new treatments not dealing with mutable cellular processes. Triphenyl phosphonium salts (TPPSs), in addiction to acting as cytoplasmic membrane disruptors, are reported to be mitochondria-targeting compounds, exerting anticancer effects mainly by damaging their membranes and causing depolarization, impairing mitochondria functions and their DNA, triggering oxidative stress (OS), and priming primarily apoptotic cell death. TPP-based bola amphiphiles are capable of self-forming nanoparticles (NPs) with enhanced biological properties, as commonly observed for nanomaterials. Already employed in several other biomedical applications, the per se selective potent antibacterial effects of a TPP bola amphiphile have only recently been demonstrated on 50 multidrug resistant (MDR) clinical superbugs, as well as its exceptional and selective anticancer properties on sensitive and MDR neuroblastoma cells. Here, aiming at finding new molecules possibly developable as new treatments for counteracting CMM, the effects of this TPP-based bola amphiphile (BPPB) have been investigated against two BRAF mutants CMM cell lines (MeOV and MeTRAV) with excellent results (even IC50 = 49 nM on MeOV after 72 h treatment). With these findings and considering the low cytotoxicity of BPPB against different mammalian non-tumoral cell lines and red blood cells (RBCs, selectivity indexes up to 299 on MeOV after 72 h treatment), the possible future development of BPPB as topical treatment for CMM lesions was presumed. With this aim, a biodegradable hyaluronic acid (HA)-based hydrogel formulation (HA-BPPB-HG) was prepared without using any potentially toxic crosslinking agents simply by dispersing suitable amounts of the two ingredients in water and sonicating under gentle heating. HA-BPPB-HA was completely characterized, with promising outcomes such as high swelling capability, high porosity, and viscous elastic rheological behavior.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
4
|
Alfei S, Giannoni P, Signorello MG, Torazza C, Zuccari G, Athanassopoulos CM, Domenicotti C, Marengo B. The Remarkable and Selective In Vitro Cytotoxicity of Synthesized Bola-Amphiphilic Nanovesicles on Etoposide-Sensitive and -Resistant Neuroblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1505. [PMID: 39330662 PMCID: PMC11434613 DOI: 10.3390/nano14181505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Neuroblastoma (NB) is a solid tumor occurring in infancy and childhood. Its high-risk form has currently a survival rate <50%, despite aggressive treatments. This worrying scenario is worsened by drug-induced secondary tumorigenesis and the emergency of drug resistance, calling for the urgent development of new extra-genomic treatments. Triphenyl phosphonium salts (TPPs) are mitochondria-targeting compounds that exert anticancer effects, impair mitochondria functions, and damage DNA at the same time. Despite several biochemical applications, TPP-based bola-amphiphiles self-assembling nanoparticles (NPs) in water have never been tested as antitumor agents. Here, with the aim of developing new antitumor devices to also counteract resistant forms of HR-NB, the anticancer effects of a TPP-based bola-amphiphile molecule have been investigated in vitro for the first time. To this end, we considered the previously synthesized and characterized sterically hindered quaternary phosphonium salt (BPPB). It embodies both the characteristics of mitochondria-targeting compounds and those of bola-amphiphiles. The anticancer effects of BPPB were assessed against HTLA-230 human stage-IV NB cells and their counterpart, which is resistant to etoposide (ETO), doxorubicin (DOX), and many other therapeutics (HTLA-ER). Very low IC50 values of 0.2 µM on HTLA-230 and 1.1 µM on HTLA-ER (538-fold lower than that of ETO) were already determined after 24 h of treatment. The very low cell viability observed after 24 h did not significantly differ from that observed for the longest exposure timing. The putative future inclusion of BPPB in a chemotherapeutic cocktail for HR-NB was assessed by investigating in vitro its cytotoxic effects against mammalian cell lines. These included monkey kidney cells (Cos-7, IC50 = 4.9 µM), human hepatic cells (HepG2, IC50 = 9.6 µM), a lung-derived fibroblast cell line (MRC-5, IC50 = 2.8 µM), and red blood cells (RBCs, IC50 = 14.9 µM). Appreciable to very high selectivity indexes (SIs) have been determined after 24 h treatments (SIs = 2.5-74.6), which provided evidence that both NB cell populations were already fully exterminated. These in vitro results pave the way for future investigations of BPPB on animal models and upon confirmation for the possible development of BPPB as a novel therapeutic to treat MDR HR-NB cells.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
| | - Paolo Giannoni
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
| | - Maria Grazia Signorello
- Biochemistry Laboratory, Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy;
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
5
|
Harwansh RK, Deshmukh R, Shukla VP, Khunt D, Prajapati BG, Rashid S, Ali N, Elossaily GM, Suryawanshi VK, Kumar A. Recent Advancements in Gallic Acid-Based Drug Delivery: Applications, Clinical Trials, and Future Directions. Pharmaceutics 2024; 16:1202. [PMID: 39339238 PMCID: PMC11435332 DOI: 10.3390/pharmaceutics16091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gallic acid (GA) is a well-known herbal bioactive compound found in many herbs and foods like tea, wine, cashew nuts, hazelnuts, walnuts, plums, grapes, mangoes, blackberries, blueberries, and strawberries. GA has been reported for several pharmacological activities, such as antioxidant, inflammatory, antineoplastic, antimicrobial, etc. Apart from its incredible therapeutic benefits, it has been associated with low permeability and bioavailability issues, limiting their efficacy. GA belongs to BCS (Biopharmaceutics classification system) class III (high solubility and low probability). In this context, novel drug delivery approaches played a vital role in resolving these GA issues. Nanocarrier systems help improve drug moiety's physical and chemical stability by encapsulating them into a lipidic or polymeric matrix or core system. In this regard, researchers have developed a wide range of nanocarrier systems for GA, including liposomes, transfersomes, niosomes, dendrimers, phytosomes, micelles, nanoemulsions, metallic nanoparticles, solid lipid nanoparticles (SLNs), nanoparticles, nanostructured lipid carriers, polymer conjugates, etc. In the present review, different search engines like Scopus, PubMed, ScienceDirect, and Google Scholar have been referred to for acquiring recent information on the theme of the work. Therefore, this review paper aims to emphasize several novel drug delivery systems, patents, and clinical updates of GA.
Collapse
Affiliation(s)
- Ranjit K. Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Vijay Pratap Shukla
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar 382027, India;
| | - Bhupendra Gopalbhai Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | | | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
6
|
Xie J, Wang H, Xie W, Liu Y, Chen Y. Gallic acid promotes ferroptosis in hepatocellular carcinoma via inactivating Wnt/β-catenin signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2437-2445. [PMID: 37847411 DOI: 10.1007/s00210-023-02770-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Hepatocellular carcinoma (HCC) has high morbidity and mortality, and effective therapies are lacking. Gallic acid (GA), a natural phenolic compound derived from plants, has been reported to prevent the onset and progression of various cancers. However, there is limited elaboration on the potential mechanisms and anticancer effects of GA on hepatocellular carcinoma. Inducing ferroptosis of tumor cells has become one of the most promising ways to eradicate tumor cells. However, the effect of GA on HCC ferroptosis remains unknown. We evaluated the impact of GA on cell viability, migration, and mitochondrial morphology in HepG2 cells. Our study identified a critical role of GA in inducing ferroptosis in HepG2 cells. Mechanistically, we found that GA could inhibit the expression of a ferroptosis-related protein SLC7A11 and GPX4 in HepG2, by blocking β-catenin transport from nuclear to the cytoplasm, thus inducing the inactivation of the Wnt/β-catenin pathway. Our study has confirmed that GA is a novel ferroptosis inducer of HC, suggesting GA could be a promising candidate for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Jingyi Xie
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Haijiao Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wuxing Xie
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yongping Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
7
|
Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, Dang R, Li M, Wang C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int 2024; 180:114068. [PMID: 38395544 DOI: 10.1016/j.foodres.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| |
Collapse
|
8
|
Valenti GE, Marengo B, Milanese M, Zuccari G, Brullo C, Domenicotti C, Alfei S. Imidazo-Pyrazole-Loaded Palmitic Acid and Polystyrene-Based Nanoparticles: Synthesis, Characterization and Antiproliferative Activity on Chemo-Resistant Human Neuroblastoma Cells. Int J Mol Sci 2023; 24:15027. [PMID: 37834475 PMCID: PMC10573130 DOI: 10.3390/ijms241915027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer, commonly treated with drugs, such as etoposide (ETO), whose efficacy is limited by the onset of resistance. Here, aiming at identifying new treatments for chemo-resistant NB, the effects of two synthesized imidazo-pyrazoles (IMPs) (4G and 4I) were investigated on ETO-sensitive (HTLA-230) and ETO-resistant (HTLA-ER) NB cells, detecting 4I as the more promising compound, that demonstrated IC50 values lower than those of ETO on HTLA ER. Therefore, to further improve the activity of 4I, we developed 4I-loaded palmitic acid (PA) and polystyrene-based (P5) cationic nanoparticles (P5PA-4I NPs) with high drug loading (21%) and encapsulation efficiency (97%), by a single oil-in-water emulsification technique. Biocompatible PA was adopted as an emulsion stabilizer, while synthesized P5 acted as an encapsulating agent, solubilizer and hydrophilic-lipophilic balance (HLB) improver. Optic microscopy and cytofluorimetric analyses were performed to investigate the micromorphology, size and complexity distributions of P5PA-4I NPs, which were also structurally characterized by chemometric-assisted Fourier transform infrared spectroscopy (FTIR). Potentiometric titrations allowed us to estimate the milliequivalents of PA and basic nitrogen atoms present in NPs. P5PA-4I NPs afforded dispersions in water with excellent buffer capacity, essential to escape lysosomal degradation and promote long residence time inside cells. They were chemically stable in an aqueous medium for at least 40 days, while in dynamic light scattering (DLS) analyses, P5PA-4I showed a mean hydrodynamic diameter of 541 nm, small polydispersity (0.194), and low positive zeta potentials (+8.39 mV), assuring low haemolytic toxicity. Biological experiments on NB cells, demonstrated that P5PA-4I NPs induced ROS-dependent cytotoxic effects significantly higher than those of pristine 4I, showing a major efficacy compared to ETO in reducing cell viability in HTLA-ER cells. Collectively, this 4I-based nano-formulation could represent a new promising macromolecular platform to develop a new delivery system able to increase the cytotoxicity of the anticancer drugs.
Collapse
Affiliation(s)
- Giulia Elda Valenti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Marco Milanese
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.Z.); (C.B.)
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.Z.); (C.B.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Silvana Alfei
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| |
Collapse
|
9
|
Hassani S, Ghanbari F, Lotfi M, Alam W, Aschner M, Popović-Djordjević J, Shahcheraghi SH, Khan H. How gallic acid regulates molecular signaling: role in cancer drug resistance. Med Oncol 2023; 40:308. [PMID: 37755616 DOI: 10.1007/s12032-023-02178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Cancer is one of the deadliest and most heterogeneous diseases. Cancers often develop drug resistance, which can lead to treatment failure or recurrence. Accordingly, anticancer compounds are essential for chemotherapy-resistant cancer cells. Phenolic compounds are of interest in the development of cancer drugs due to their medicinal properties and ability to target different molecular pathways. Gallic acid (GA), as one of the main components of phenol, which is abundantly present in plant compounds such as walnut, sumac, grapes, tea leaves, oak bark, and other plant compounds, has antitumor properties. GA can prevent cancer progression, cell invasion, and metastasis by targeting molecular pathways and is an effective complement to chemotherapy drugs and combating multidrug resistance (MDR). In this review, we discuss various mechanisms related to cancer, the therapeutic potential of GA, the antitumor properties of GA in various cancers, and the targeted delivery of GA with nanocarriers.
Collapse
Affiliation(s)
- Samira Hassani
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fahimeh Ghanbari
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jelena Popović-Djordjević
- Faculty of Agriculture, Department for Chemistry and Biochemistry, University of Belgrade, Nemanjina 6, 11080, Belgrade, Serbia
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
10
|
Vieira IRS, Tessaro L, Lima AKO, Velloso IPS, Conte-Junior CA. Recent Progress in Nanotechnology Improving the Therapeutic Potential of Polyphenols for Cancer. Nutrients 2023; 15:3136. [PMID: 37513554 PMCID: PMC10384266 DOI: 10.3390/nu15143136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphenols derived from fruits, vegetables, and plants are bioactive compounds potentially beneficial to human health. Notably, compounds such as quercetin, curcumin, epigallocatechin-3-gallate (EGCG), and resveratrol have been highlighted as antiproliferative agents for cancer. Due to their low solubility and limited bioavailability, some alternative nanotechnologies have been applied to encapsulate these compounds, aiming to improve their efficacy against cancer. In this comprehensive review, we evaluate the main nanotechnology approaches to improve the therapeutic potential of polyphenols against cancer using in vitro studies and in vivo preclinical models, highlighting recent advancements in the field. It was found that polymeric nanomaterials, lipid-based nanomaterials, inorganic nanomaterials, and carbon-based nanomaterials are the most used classes of nanocarriers for encapsulating polyphenols. These delivery systems exhibit enhanced antitumor activity and pro-apoptotic effects, particularly against breast, lung, prostate, cervical, and colorectal cancer cells, surpassing the performance of free bioactive compounds. Preclinical trials in xenograft animal models have revealed decreased tumor growth after treatment with polyphenol-loaded delivery systems. Moreover, the interaction of polyphenol co-delivery systems and polyphenol-drug delivery systems is a promising approach to increase anticancer activity and decrease chemotherapy side effects. These innovative approaches hold significant implications for the advancement of clinical cancer research.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Leticia Tessaro
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Alan Kelbis Oliveira Lima
- Nanobiotechnology Laboratory, Institute of Biology (IB), Department of Genetics and Morphology, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Isabela Portella Silva Velloso
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
11
|
Moreira DA, Santos SD, Leiro V, Pêgo AP. Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics 2023; 15:pharmaceutics15041054. [PMID: 37111540 PMCID: PMC10140951 DOI: 10.3390/pharmaceutics15041054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid β peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia D Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Pyrazole-Enriched Cationic Nanoparticles Induced Early- and Late-Stage Apoptosis in Neuroblastoma Cells at Sub-Micromolar Concentrations. Pharmaceuticals (Basel) 2023; 16:ph16030393. [PMID: 36986492 PMCID: PMC10056113 DOI: 10.3390/ph16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neuroblastoma (NB) is a severe form of tumor occurring mainly in young children and originating from nerve cells found in the abdomen or next to the spine. NB needs more effective and safer treatments, as the chance of survival against the aggressive form of this disease are very small. Moreover, when current treatments are successful, they are often responsible for unpleasant health problems which compromise the future and life of surviving children. As reported, cationic macromolecules have previously been found to be active against bacteria as membrane disruptors by interacting with the negative constituents of the surface of cancer cells, analogously inducing depolarization and permeabilization, provoking lethal damage to the cytoplasmic membrane, and cause loss of cytoplasmic content and consequently, cell death. Here, aiming to develop new curative options for counteracting NB cells, pyrazole-loaded cationic nanoparticles (NPs) (BBB4-G4K and CB1H-P7 NPs), recently reported as antibacterial agents, were assayed against IMR 32 and SHSY 5Y NB cell lines. Particularly, while BBB4-G4K NPs demonstrated low cytotoxicity against both NB cell lines, CB1H-P7 NPs were remarkably cytotoxic against both IMR 32 and SHSY 5Y cells (IC50 = 0.43–0.54 µM), causing both early-stage (66–85%) and late-stage apoptosis (52–65%). Interestingly, in the nano-formulation of CB1H using P7 NPs, the anticancer effects of CB1H and P7 were increased by 54–57 and 2.5–4-times, respectively against IMR 32 cells, and by 53–61 and 1.3–2 times against SHSY 5Y cells. Additionally, based on the IC50 values, CB1H-P7 was also 1-12-fold more potent than fenretinide, an experimental retinoid derivative in a phase III clinical trial, with remarkable antineoplastic and chemopreventive properties. Collectively, due to these results and their good selectivity for cancer cells (selectivity indices = 2.8–3.3), CB1H-P7 NPs represent an excellent template material for developing new treatment options against NB.
Collapse
|
13
|
Alfei S, Grasso F, Orlandi V, Russo E, Boggia R, Zuccari G. Cationic Polystyrene-Based Hydrogels as Efficient Adsorbents to Remove Methyl Orange and Fluorescein Dye Pollutants from Industrial Wastewater. Int J Mol Sci 2023; 24:ijms24032948. [PMID: 36769270 PMCID: PMC9918298 DOI: 10.3390/ijms24032948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Water pollution from dyes is harmful to the environment, plants, animals, and humans and is one of the most widespread problems afflicting people throughout the world. Adsorption is a widely used method to remove contaminants derived from the textile industry, food colorants, printing, and cosmetic manufacturing from water. Here, aiming to develop new low-cost and up-scalable adsorbent materials for anionic dye remediation and water decontamination by electrostatic interactions, two cationic resins (R1 and R2) were prepared. In particular, they were obtained by copolymerizing 4-ammonium methyl and ethyl styrene monomers (M1 and M2) with dimethylacrylamide (DMAA), using N-(2-acryloylamino-ethyl)-acrylamide (AAEA) as cross-linker. Once characterized by several analytical techniques, upon their dispersion in an excess of water, R1 and R2 provided the R1- and R2-based hydrogels (namely R1HG and R2HG) with equilibrium degrees of swelling (EDS) of 900% and 1000% and equilibrium water contents (EWC) of 90 and 91%, respectively. By applying Cross' rheology equation to the data of R1HG and R2HG's viscosity vs. shear rate, it was established that both hydrogels are shear thinning fluids with pseudoplastic/Bingham plastic behavior depending on share rate. The equivalents of -NH3+ groups, essential for the electrostatic-based absorbent activity, were estimated by the method of Gaur and Gupta on R1 and R2 and by potentiometric titrations on R1HG and R2HG. In absorption experiments in bulk, R1HG and R2HG showed high removal efficiency (97-100%) towards methyl orange (MO) azo dye, fluorescein (F), and their mixture (MOF). Using F or MO solutions (pH = 7.5, room temperature), the maximum absorption was 47.8 mg/g in 90' (F) and 47.7 mg/g in 120' (MO) for R1, while that of R2 was 49.0 mg/g in 20' (F) and 48.5 mg/g in 30' (MO). Additionally, R1HG and R2HG-based columns, mimicking decontamination systems by filtration, were capable of removing MO, F, and MOF from water with a 100% removal efficiency, in different conditions of use. R1HG and R2HG represent low-cost and up-scalable column packing materials that are promising for application in industrial wastewater treatment.
Collapse
Affiliation(s)
- Silvana Alfei
- Correspondence: (S.A.); (G.Z.); Tel.: +39-010-355-2296 (S.A.)
| | | | | | | | | | | |
Collapse
|
14
|
Attenuation of Hyperlipidemia by Medicinal Formulations of Emblica officinalis Synergized with Nanotechnological Approaches. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010064. [PMID: 36671636 PMCID: PMC9854976 DOI: 10.3390/bioengineering10010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The ayurvedic herb Emblica officinalis (E. officinalis) is a gift to mankind to acquire a healthy lifestyle. It has great therapeutic and nutritional importance. Emblica officinalis, also known as Indian gooseberry or Amla, is a member of the Euphorbiaceae family. Amla is beneficial for treating illnesses in all its forms. The most crucial component is a fruit, which is also the most common. It is used frequently in Indian medicine as a restorative, diuretic, liver tonic, refrigerant, stomachic, laxative, antipyretic, hair tonic, ulcer preventive, and for the common cold and fever. Hyperlipidemia is also known as high cholesterol or an increase in one or more lipid-containing blood proteins. Various phytocompounds, including polyphenols, vitamins, amino acids, fixed oils, and flavonoids, are present in the various parts of E. officinalis. E. officinalis has been linked to a variety of pharmacological effects in earlier studies, including hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. The amla-derived active ingredients and food products nevertheless encounter challenges such as instability and interactions with other food matrices. Considering the issue from this perspective, food component nanoencapsulation is a young and cutting-edge field for controlled and targeted delivery with a range of preventative activities. The nanoformulation of E. officinalis facilitates the release of active components or food ingredients, increased bioaccessibility, enhanced therapeutic activities, and digestion in the human body. Accordingly, the current review provides a summary of the phytoconstituents of E. officinalis, pharmacological actions detailing the plant E. officinalis's traditional uses, and especially hyperlipidemic activity. Correspondingly, the article describes the uses of nanotechnology in amla therapeutics and functional ingredients.
Collapse
|
15
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
16
|
Picos-Corrales LA, Licea-Claverie A, Sarmiento-Sánchez JI, Ruelas-Leyva JP, Osuna-Martínez U, García-Carrasco M. Methods of nanoencapsulation of phytochemicals using organic platforms. PHYTOCHEMICAL NANODELIVERY SYSTEMS AS POTENTIAL BIOPHARMACEUTICALS 2023:123-184. [DOI: 10.1016/b978-0-323-90390-5.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
A Self-Forming Hydrogel from a Bactericidal Copolymer: Synthesis, Characterization, Biological Evaluations and Perspective Applications. Int J Mol Sci 2022; 23:ijms232315092. [PMID: 36499417 PMCID: PMC9741259 DOI: 10.3390/ijms232315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Objects touched by patients and healthcare workers in hospitals may harbor pathogens, including multi-drug resistant (MDR) staphylococci, enterococci (VRE), Escherichia coli, Acinetobacter, and Pseudomonas species. Medical devices contaminated by these pathogens may also act as a source of severe and difficult-to-treat human infections, thus becoming a critical public health concern requiring urgent resolutions. To this end, we recently reported the bactericidal effects of a cationic copolymer (CP1). Here, aiming at developing a bactericidal formulation possibly to be used either for surfaces disinfection or to treat skin infections, CP1 was formulated as a hydrogel (CP1_1.1-Hgel). Importantly, even if not cross-linked, CP1 formed the gel upon simple dispersion in water, without requiring gelling agents or other additives which could be skin-incompatible or interfere with CP1 bactericidal effects in possible future topical applications. CP1_1.1-Hgel was characterized by attenuated-total-reflectance Fourier transform infrared (ATR-FTIR) and UV-Vis spectroscopy, as well as optic and scanning electron microscopy (OM and SEM) to investigate its chemical structure and morphology. Its stability was assessed by monitoring its inversion properties over time at room temperature, while its mechanical characteristics were assessed by rheological experiments. Dose-dependent cytotoxicity studies performed on human fibroblasts for 24 h with gel samples obtained by diluting CP_1.1-Hgel at properly selected concentrations established that the 3D network formation did not significantly affect the cytotoxic profile of CP1. Also, microbiologic investigations carried out on two-fold serial dilutions of CP1-gel confirmed the minimum inhibitory concentrations (MICs) previously reported for the not formulated CP1.Selectivity indices values up to 12 were estimated by the values of LD50 and MICs determined here on gel samples.
Collapse
|
18
|
Mutual Jellification of Two Bactericidal Cationic Polymers: Synthesis and Physicochemical Characterization of a New Two-Component Hydrogel. Pharmaceutics 2022; 14:pharmaceutics14112444. [PMID: 36432635 PMCID: PMC9692830 DOI: 10.3390/pharmaceutics14112444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Here, a new two-component hydrogel (CP1OP2-Hgel) was developed, simply by dispersing in water two cationic bactericidal polymers (CP1 and OP2) effective against several multidrug-resistant (MDR) clinical isolates of the most relevant Gram-positive and Gram-negative species. Interestingly, while OP2 acts only as an antibacterial ingredient when in gel, CP1 works as both an antibacterial and a gelling agent. To verify whether it would be worthwhile to use CP1 and OP2 as bioactive ingredients of a new hydrogel supposed for a future treatment of skin infections, dose-dependent cytotoxicity studies with CP1 and OP2 were performed on human fibroblasts for 24 h, before preparing the formulation. Although a significant cytotoxicity at concentrations > 2 µM was evidenced for both polymers, selectivity indices (SIs) over 12 (CP1) and up to six (OP2) were determined, due to the powerful antibacterial properties of the two polymers, thus supporting the rationale for their formulation as a hydrogel. The chemical structure and morphology of CP1OP2-Hgel were investigated by PCA-assisted attenuated total reflectance (ATR) Fourier-transform infrared (FTIR) analysis and scanning electron microscopy (SEM), while its rheological properties were assessed by determining its dynamic viscosity. The cumulative weight loss and swelling percentage curves, the porosity, and the maximum swelling capability of CP1OP2-Hgel were also determined and reported. Overall, due to the potent bactericidal effects of CP1 and OP2 and their favorable selectivity indices against several MDR pathogens, good rheological properties, high porosity, and strong swelling capability, CP1OP2-Hgel may, in the future, become a new weapon for treating severe nosocomial skin infections or infected chronic wounds. Further investigations in this sense are currently being carried out.
Collapse
|
19
|
Schito AM, Caviglia D, Piatti G, Alfei S. A Highly Efficient Polystyrene-Based Cationic Resin to Reduce Bacterial Contaminations in Water. Polymers (Basel) 2022; 14:polym14214690. [PMID: 36365682 PMCID: PMC9654381 DOI: 10.3390/polym14214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Nowadays, new water disinfection materials attract a lot of attention for their cost-saving and ease of application. Nevertheless, the poor durability of the matrices and the loss of physically incorporated or chemically attached antibacterial agents that can occur during water purification processes considerably limit their prolonged use. In this study, a polystyrene-based cationic resin (R4) with intrinsic broad-spectrum antibacterial effects was produced without needing to be enriched with additional antibacterial agents that could detach during use. Particularly, R4 was achieved by copolymerizing 4-ammonium-butyl-styrene (4-ABSTY) with N,N-dimethylacrylamide (DMAA) and using N-(2-acryloylamino-ethyl)-acrylamide (AAEA) as a cross-linker. The R4 obtained showed a spherical morphology, micro-dimensioned particles, high hydrophilicity, high-level porosity, and excellent swelling capabilities. Additionally, the swollen R4 to its maximum swelling capability, when dried with gentle heating for 3 h, released water following the Higuchi’s kinetics, thus returning to the original structure. In time–kill experiments on the clinical isolates of multidrug-resistant (MDR) pathogens of fecal origin, such as enterococci, Group B Salmonella species, and Escherichia coli, R4 showed rapid bactericidal effects on enterococci and Salmonella, and reduced E. coli viable cells by 99.8% after 4 h. When aqueous samples artificially infected by a mixture of the same bacteria of fecal origin were exposed for different times to R4 in a column, simulating a water purification system, 4 h of contact was sufficient for R4 to show the best bacterial killing efficiency of 99%. Overall, thanks to its physicochemical properties, killing efficiency, low costs of production, and scalability, R4 could become a cost-effective material for building systems to effectively reduce bacterial, even polymicrobial, water contamination.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
- Correspondence: (A.M.S.); (S.A.); Tel.: +39-010-355-2296 (S.A.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- Correspondence: (A.M.S.); (S.A.); Tel.: +39-010-355-2296 (S.A.)
| |
Collapse
|
20
|
Synthesis and Activity of Ionic Antioxidant-Functionalized PAMAMs and PPIs Dendrimers. Polymers (Basel) 2022; 14:polym14173513. [PMID: 36080588 PMCID: PMC9459880 DOI: 10.3390/polym14173513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
For this study, new dendrimers were prepared from poly(propylene imine) (PPI) and polyamidoamine (PAMAM) dendrimers using an efficient acid-base reaction with various phenolic acids. The syntheses were also optimized in both microwave and microfluidic reactors. These ionic and hydrophilic dendrimers were fully characterized and showed excellent antioxidant properties. Their cytotoxic properties have been also determined in the case of fibroblast dermal cells.
Collapse
|
21
|
Synthesis and Characterization of Pyrazole-Enriched Cationic Nanoparticles as New Promising Antibacterial Agent by Mutual Cooperation. NANOMATERIALS 2022; 12:nano12071215. [PMID: 35407333 PMCID: PMC9000707 DOI: 10.3390/nano12071215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
A pyrazole derivative (CB1) was previously evaluated in vivo for various pharmacological activities (with the exception of antimicrobial effects), using DMSO as the administrative medium, mainly due to its water insolubility. Considering the global necessity for new antimicrobial agents, CB1 attracted our attention as a candidate to meet this need, mainly because the secondary amine group in its structure would make it possible to obtain its hydrochloride salt (CB1H), thus effortlessly solving its water-solubility drawbacks. In preliminary microbiologic investigations on Gram-negative and Gram-positive bacteria, CB1H displayed weak antibacterial effects on MDR isolates of Gram-positive species, nonetheless better than those displayed by the commonly-used available antibiotics. Therefore, aiming at improving such activity and extending the antibacterial spectrum of CB1H to Gram-negative pathogens, in this first work CB1 was strategically formulated in nanoparticles using a cationic copolymer (P7) previously developed by us, possessing potent broad-spectrum bactericidal activity. Using the nanoprecipitation method, CB1H-loaded polymer nanoparticles (CB1H-P7 NPs) were obtained, which were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to confirm the successful loading. Additionally, CB1H-P7 NPs were fully characterized in terms of morphology, size, polydispersity indices, surface charge, DL%, and EE%, as well as release and potentiometric profiles.
Collapse
|
22
|
Alfei S, Spallarossa A, Lusardi M, Zuccari G. Successful Dendrimer and Liposome-Based Strategies to Solubilize an Antiproliferative Pyrazole Otherwise Not Clinically Applicable. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:233. [PMID: 35055251 PMCID: PMC8780786 DOI: 10.3390/nano12020233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Water-soluble formulations of the pyrazole derivative 3-(4-chlorophenyl)-5-(4-nitrophenylamino)-1H-pyrazole-4-carbonitrile (CR232), which were proven to have in vitro antiproliferative effects on different cancer cell lines, were prepared by two diverse nanotechnological approaches. Importantly, without using harmful organic solvents or additives potentially toxic to humans, CR232 was firstly entrapped in a biodegradable fifth-generation dendrimer containing lysine (G5K). CR232-G5K nanoparticles (CR232-G5K NPs) were obtained with high loading (DL%) and encapsulation efficiency (EE%), which showed a complex but quantitative release profile governed by Weibull kinetics. Secondly, starting from hydrogenated soy phosphatidylcholine and cholesterol, we prepared biocompatible CR232-loaded liposomes (CR232-SUVs), which displayed DL% and EE% values increasing with the increase in the lipids/CR232 ratio initially adopted and showed a constant prolonged release profile ruled by zero-order kinetics. When relevant, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM) and dynamic light scattering (DLS) experiments, as well as potentiometric titrations completed the characterization of the prepared NPs. CR232-G5K NPs were 2311-fold more water-soluble than the pristine CR232, and the CR232-SUVs with the highest DL% were 1764-fold more soluble than the untreated CR232, thus establishing the success of both our strategies.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (A.S.); (M.L.); (G.Z.)
| | | | | | | |
Collapse
|
23
|
Alfei S, Brullo C, Caviglia D, Piatti G, Zorzoli A, Marimpietri D, Zuccari G, Schito AM. Pyrazole-Based Water-Soluble Dendrimer Nanoparticles as a Potential New Agent against Staphylococci. Biomedicines 2021; 10:17. [PMID: 35052697 PMCID: PMC8773120 DOI: 10.3390/biomedicines10010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/18/2022] Open
Abstract
Although the antimicrobial potency of the pyrazole nucleus is widely reported, the antimicrobial effects of the 2-(4-bromo-3,5-diphenyl-pyrazol-1-yl)-ethanol (BBB4), found to be active against several other conditions, have never been investigated. Considering the worldwide need for new antimicrobial agents, we thought it noteworthy to assess the minimum inhibitory concentration (MICs) of BBB4 but, due to its scarce water-solubility, unequivocal determinations were tricky. To obtain more reliable MICs and to obtain a substance also potentially applicable in vivo, we recently prepared water-soluble, BBB4-loaded dendrimer nanoparticles (BBB4-G4K NPs), which proved to have physicochemical properties suitable for clinical application. Here, with the aim of developing a new antibacterial agent based on BBB4, the BBB4-G4K NPs were tested on several strains of different species of the Staphylococcus genus. Very low MICs (1.5-3.0 µM), 15.5-124.3-fold lower than those of the free BBB4, were observed against several isolates of S. aureus and S. epidermidis, the most pathogenic species of this genus, regardless of their resistance patterns to antibiotics. Aiming at hypothesizing a clinical use of BBB4-G4K NPs for staphylococcal skin infections, cytotoxicity experiments on human keratinocytes were performed; it was found that the nano-manipulated BBB4 released from BBB4-G4K NPs (LD50 138.6 µM) was 2.5-fold less cytotoxic than the untreated BBB4 (55.9 µM). Due to its physicochemical and biological properties, BBB4-G4K NPs could be considered as a promising novel therapeutic option against the very frequent staphylococcal skin infections.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (G.P.); (A.M.S.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (G.P.); (A.M.S.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (G.P.); (A.M.S.)
| |
Collapse
|
24
|
Tuli HS, Mistry H, Kaur G, Aggarwal D, Garg VK, Mittal S, Yerer MB, Sak K, Khan MA. Gallic acid: a dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anticancer Agents Med Chem 2021; 22:499-514. [PMID: 34802408 DOI: 10.2174/1871520621666211119085834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022]
Abstract
Phytochemicals are being used for thousands of years to prevent dreadful malignancy. Side effects of existing allopathic treatment have also initiated intense research in the field of bioactive phytochemicals. Gallic acid, a natural polyphenolic compound, exists freely as well as in polymeric forms. The anti-cancer properties of gallic acid are indomitable by a variety of cellular pathways such as induction of programmed cell death, cell cycle apprehension, reticence of vasculature and tumor migration, and inflammation. Furthermore, gallic acid is found to show synergism with other existing chemotherapeutic drugs. Therefore, the antineoplastic role of gallic acid suggests its promising therapeutic candidature in the near future. The present review describes all these aspects of gallic acid at a single platform. In addition nanotechnology-mediated approaches are also discussed to enhance bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana. India
| | - Hiral Mistry
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, Maharashtra. India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, Maharashtra. India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana. India
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali - 140413, Punjab. India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi. India
| | - Mükerrem Betül Yerer
- Erciyes University, Faculty of Pharmacy Department of Pharmacology, Erciyes University Drug Application and Research Center, 05056784551. Turkey
| | | | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000. China
| |
Collapse
|
25
|
Owumi SE, Bello SA, Najophe SE, O Nwozo S, O Esan I. Coadministration of gallic acid abates zearalenone-mediated defects in male rat's reproductive function. J Biochem Mol Toxicol 2021; 36:e22940. [PMID: 34723416 DOI: 10.1002/jbt.22940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023]
Abstract
As gallic acid (GA) role in zearalenone (ZEN); mediated reproductive dysfunction has not been studied, we report on GA's effect on reproductive dysfunction in rats treated with ZEN-100 µg/kg alone, or with GA-40 mg/kg; for 4 weeks. The mycotoxin ZEN contaminates crops, causing toxicity on ingestion, economic losses, and alters reproductive function. Relative to control, GA reversed ZEN-induced reduction of rats' testicular function enzymes and reproductive hormones and improved ZEN-impaired sperm quality. GA significantly (p < 0.05) increased rats antioxidant status, inhibited (p < 0.05) reactive oxygen and nitrogen species and lipid peroxidation levels, and abated (p < 0.05) proinflammatory biomarkers in the examined organs: hypothalamus, testis, and epididymis. Histopathology revealed that GA facilitated the preservation of testicular and epididymal cytoarchitecture significantly altered in rat cohorts treated with ZEN alone. Conclusively, GA protected against ZEN-induced toxicity in the rats' organs examined, enhanced endogenous antioxidative protective mechanism, and abated proinflammatory responses. GA further averted a decline in circulatory, reproductive enzymes, hormone levels. GA also protected against reproductive tissue damage and improved parameters of sperm functionality.
Collapse
Affiliation(s)
- Solomon E Owumi
- Department of Biochemistry, CRMBL Unit, Faculty of Basic Medical Sciences, ChangeLab, Ibadan, Nigeria
| | - Samuel A Bello
- Department of Biochemistry, Faculty of Basic Medical Sciences, Nutrition and Industrial Biochemistry Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Sarah E Najophe
- Department of Biochemistry, Faculty of Basic Medical Sciences, Nutrition and Industrial Biochemistry Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Sarah O Nwozo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Nutrition and Industrial Biochemistry Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Esan
- Department of Biochemistry, Babcock University, Ilishan-Remo, Nigeria
| |
Collapse
|
26
|
Thalji MR, Ibrahim AA, Ali GA. Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Alfei S, Brullo C, Caviglia D, Zuccari G. Preparation and Physicochemical Characterization of Water-Soluble Pyrazole-Based Nanoparticles by Dendrimer Encapsulation of an Insoluble Bioactive Pyrazole Derivative. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2662. [PMID: 34685102 PMCID: PMC8537834 DOI: 10.3390/nano11102662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
2-(4-Bromo-3,5-diphenyl-pyrazol-1-yl)-ethanol (BBB4) was synthetized and successfully evaluated concerning numerous biological activities, except for antimicrobial and cytotoxic effects. Due to the antimicrobial effects possessed by pyrazole nucleus, which have been widely reported, and the worldwide need for new antimicrobial agents, we thought it would be interesting to test BBB4 and to evaluate its possible antibacterial effects. Nevertheless, since it is water-insoluble, the future clinical application of BBB4 will remain utopic unless water-soluble BBB4 formulations are developed. To this end, before implementing biological evaluations, BBB4 was herein re-synthetized and characterized, and a new water-soluble BBB4-based nano-formulation was developed by its physical entrapment in a biodegradable non-cytotoxic cationic dendrimer (G4K), without recovering harmful solvents as DMSO or surfactants. The obtained BBB4 nanoparticles (BBB4-G4K NPs) showed good drug loading (DL%), satisfying encapsulation efficiency (EE%), and a biphasic quantitative release profile governed by first-order kinetics after 24 h. Additionally, BBB4-G4K was characterized by ATR-FTIR spectroscopy, NMR, SEM, dynamic light scattering analysis (DLS), and potentiometric titration experiments. While, before the nanotechnological manipulation, BBB4 was completely water-insoluble, in the form of BBB4-G4K NPs, its water-solubility resulted in being 105-fold higher than that of the pristine form, thus establishing the feasibility of its clinical application.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Chiara Brullo
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| |
Collapse
|
28
|
Ashrafizadeh M, Zarrabi A, Mirzaei S, Hashemi F, Samarghandian S, Zabolian A, Hushmandi K, Ang HL, Sethi G, Kumar AP, Ahn KS, Nabavi N, Khan H, Makvandi P, Varma RS. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol 2021; 157:112576. [PMID: 34571052 DOI: 10.1016/j.fct.2021.112576] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Majority of recent research efforts in the field aim to address why cancer resistance to therapy develops and how to overcome or prevent it. In line with this, novel anti-cancer compounds are desperately needed for chemoresistant cancer cells. Phytochemicals, in view of their pharmacological activities and capacity to target various molecular pathways, are of great interest in the development of therapeutics against cancer. Plant-derived-natural products have poor bioavailability which restricts their anti-tumor activity. Gallic acid (GA) is a phenolic acid exclusively found in natural sources such as gallnut, sumac, tea leaves, and oak bark. In this review, we report on the most recent research related to anti-tumor activities of GA in various cancers with a focus on its underlying molecular mechanisms and cellular pathwaysthat that lead to apoptosis and migration of cancer cells. GA down-regulates the expression of molecular pathways involved in cancer progression such as PI3K/Akt. The co-administration of GA with chemotherapeutic agents shows improvements in suppressing cancer malignancy. Various nano-vehicles such as organic- and inorganic nano-materials have been developed for targeted delivery of GA at the tumor site. Here, we suggest that nano-vehicles improve GA bioavailability and its ability for tumor suppression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Phd student of pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
29
|
Bizzarri BM, Fanelli A, Botta L, Zippilli C, Cesarini S, Saladino R. Dendrimeric Structures in the Synthesis of Fine Chemicals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5318. [PMID: 34576547 PMCID: PMC8471025 DOI: 10.3390/ma14185318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Dendrimers are highly branched structures with a defined shape, dimension, and molecular weight. They consist of three major components: the central core, branches, and terminal groups. In recent years, dendrimers have received great attention in medicinal chemistry, diagnostic field, science of materials, electrochemistry, and catalysis. In addition, they are largely applied for the functionalization of biocompatible semiconductors, in gene transfection processes, as well as in the preparation of nano-devices, including heterogeneous catalysts. Here, we describe recent advances in the design and application of dendrimers in catalytic organic and inorganic processes, sustainable and low environmental impact, photosensitive materials, nano-delivery systems, and antiviral agents' dendrimers.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| | | | | | | | | | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| |
Collapse
|
30
|
Alfei S, Schito AM, Zuccari G. Considerable Improvement of Ursolic Acid Water Solubility by Its Encapsulation in Dendrimer Nanoparticles: Design, Synthesis and Physicochemical Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2196. [PMID: 34578512 PMCID: PMC8464973 DOI: 10.3390/nano11092196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6-16132 Genova, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| |
Collapse
|
31
|
Alfei S, Schito AM, Zuccari G. Nanotechnological Manipulation of Nutraceuticals and Phytochemicals for Healthy Purposes: Established Advantages vs. Still Undefined Risks. Polymers (Basel) 2021; 13:2262. [PMID: 34301020 PMCID: PMC8309409 DOI: 10.3390/polym13142262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous foods, plants, and their bioactive constituents (BACs), named nutraceuticals and phytochemicals by experts, have shown many beneficial effects including antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant activities. Producers, consumers, and the market of food- and plant-related compounds are increasingly attracted by health-promoting foods and plants, thus requiring a wider and more fruitful exploitation of the healthy properties of their BACs. The demand for new BACs and for the development of novel functional foods and BACs-based food additives is pressing from various sectors. Unfortunately, low stability, poor water solubility, opsonization, and fast metabolism in vivo hinder the effective exploitation of the potential of BACs. To overcome these issues, researchers have engineered nanomaterials, obtaining food-grade delivery systems, and edible food- and plant-related nanoparticles (NPs) acting as color, flavor, and preservative additives and natural therapeutics. Here, we have reviewed the nanotechnological transformations of several BACs implemented to increase their bioavailability, to mask any unpleasant taste and flavors, to be included as active ingredients in food or food packaging, to improve food appearance, quality, and resistance to deterioration due to storage. The pending issue regarding the possible toxic effect of NPs, whose knowledge is still limited, has also been discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, I-16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| |
Collapse
|
32
|
Lang S, Chen C, Xiang J, Liu Y, Li K, Hu Q, Liu G. Facile and Robust Antibacterial Functionalization of Medical Cotton Gauze with Gallic Acids to Accelerate Wound Healing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shiying Lang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Chaojian Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jun Xiang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yuqi Liu
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Kaijun Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qinsheng Hu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gongyan Liu
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
33
|
Liu W, Mirzoeva S, Yuan Y, Deng J, Chen S, Lai B, Vogt S, Shah K, Shroff R, Bleher R, Jin Q, Vo N, Bazak R, Ritner C, Gutionov S, Raha S, Sedlmair J, Hirschmugl C, Jacobsen C, Paunesku T, Kalapurkal J, Woloschak GE. Development of Fe3O4 core–TiO2 shell nanocomposites and nanoconjugates as a foundation for neuroblastoma radiosensitization. Cancer Nanotechnol 2021; 12:12. [PMID: 34777621 PMCID: PMC8550682 DOI: 10.1186/s12645-021-00081-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Neuroblastoma is the most common extracranial solid malignancy in childhood which, despite the current progress in radiotherapy and chemotherapy protocols, still has a high mortality rate in high risk tumors. Nanomedicine offers exciting and unexploited opportunities to overcome the shortcomings of conventional medicine. The photocatalytic properties of Fe3O4 core-TiO2 shell nanocomposites and their potential for cell specific targeting suggest that nanoconstructs produced using Fe3O4 core-TiO2 shell nanocomposites could be used to enhance radiation effects in neuroblastoma. In this study, we evaluated bare, metaiodobenzylguanidine (MIBG) and 3,4-Dihydroxyphenylacetic acid (DOPAC) coated Fe3O4@TiO2 as potential radiosensitizers for neuroblastoma in vitro.
Results
The uptake of bare and MIBG coated nanocomposites modestly sensitized neuroblastoma cells to ionizing radiation. Conversely, cells exposed to DOPAC coated nanocomposites exhibited a five-fold enhanced sensitivity to radiation, increased numbers of radiation induced DNA double-strand breaks, and apoptotic cell death. The addition of a peptide mimic of the epidermal growth factor (EGF) to nanoconjugates coated with MIBG altered their intracellular distribution. Cryo X-ray fluorescence microscopy tomography of frozen hydrated cells treated with these nanoconjugates revealed cytoplasmic as well as nuclear distribution of the nanoconstructs.
Conclusions
The intracellular distribution pattern of different nanoconjugates used in this study was different for different nanoconjugate surface molecules. Cells exposed to DOPAC covered nanoconjugates showed the smallest nanoconjugate uptake, with the most prominent pattern of large intracellular aggregates. Interestingly, cells treated with this nanoconjugate also showed the most pronounced radiosensitization effect in combination with the external beam x-ray irradiation. Further studies are necessary to evaluate mechanistic basis for this increased radiosensitization effect. Preliminary studies with the nanoparticles carrying an EGF mimicking peptide showed that this approach to targeting could perhaps be combined with a different approach to radiosensitization – use of nanoconjugates in combination with the radioactive iodine. Much additional work will be necessary in order to evaluate possible benefits of targeted nanoconjugates carrying radionuclides.
Graphic abstract
Collapse
|
34
|
Synthesis of Polystyrene-Based Cationic Nanomaterials with Pro-Oxidant Cytotoxic Activity on Etoposide-Resistant Neuroblastoma Cells. NANOMATERIALS 2021; 11:nano11040977. [PMID: 33920180 PMCID: PMC8069339 DOI: 10.3390/nano11040977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023]
Abstract
Drug resistance is a multifactorial phenomenon that limits the action of antibiotics and chemotherapeutics. Therefore, it is essential to develop new therapeutic strategies capable of inducing cytotoxic effects circumventing chemoresistance. In this regard, the employment of natural and synthetic cationic peptides and polymers has given satisfactory results both in microbiology, as antibacterial agents, but also in the oncological field, resulting in effective treatment against several tumors, including neuroblastoma (NB). To this end, two polystyrene-based copolymers (P5, P7), containing primary ammonium groups, were herein synthetized and tested on etoposide-sensitive (HTLA-230) and etoposide-resistant (HTLA-ER) NB cells. Both copolymers were water-soluble and showed a positive surface charge due to nitrogen atoms, which resulted in protonation in the whole physiological pH range. Furthermore, P5 and P7 exhibited stability in solution, excellent buffer capacity, and nanosized particles, and they were able to reduce NB cell viability in a concentration-dependent way. Interestingly, a significant increase in reactive oxygen species (ROS) production was observed in both NB cell populations treated with P5 or P7, establishing for both copolymers an unequivocal correlation between cytotoxicity and ROS generation. Therefore, P5 and P7 could be promising template macromolecules for the development of new chemotherapeutic agents able to fight NB chemoresistance.
Collapse
|
35
|
Ferrández-Montero A, Eguiluz A, Vazquez E, Guerrero JD, Gonzalez Z, Sanchez-Herencia AJ, Ferrari B. Controlled SrR Delivery by the Incorporation of Mg Particles on Biodegradable PLA-Based Composites. Polymers (Basel) 2021; 13:polym13071061. [PMID: 33800563 PMCID: PMC8036937 DOI: 10.3390/polym13071061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Among several ions playing a vital role in the body, Sr2+ and Mg2+ are involved in the mechanism of bone formation, making them especially useful for bone tissue engineering applications. Recently, polylactic acid (PLA)/Mg composites have emerged as a promising family of biomaterials due to their inherent biocompatibility and biodegradability properties. In these composites, polymer and bio-metal have a synergetic effect—while the PLA inhibits the Mg fast reactivity, Mg provides bioactivity to the inert polymer buffering the medium pH during degradation. Meanwhile, the typical form of administrating Sr2+ to patients is through the medication strontium ranelate (SrR), which increases the bone mineral density. Following this interesting research line, a new group of composites, which integrates Mg particles and SrR charged onto halloysite nanotubes (HNT) in a polymeric matrix, was proposed. PLA/Mg/SrR–HNT composites have been processed following a colloidal route, obtaining homogenous composites granulated and film-shaped. The drug delivery profile was evaluated in terms of in vitro lixiviation/dissolution paying special attention to the synergism of both ions release. The combination of two of the most reported ions involved in bone regeneration in the composite biomaterial may generate extra interest in bone healing applications.
Collapse
Affiliation(s)
- Ana Ferrández-Montero
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
- Laboratory of Physicochemistry of Polymers and Interfaces (LPPI), CY Cergy Paris University, Neuville-sur-Oise, 95031 Cergy, France
- Correspondence:
| | - Alvaro Eguiluz
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| | - Elena Vazquez
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| | - Joab David Guerrero
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| | - Zoilo Gonzalez
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
- Inorganic Chemistry and Chemical Engineering Department, University of Córdoba, Campus de Rabanales 14071 Córdoba, Spain
| | - Antonio Javier Sanchez-Herencia
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| | - Begoña Ferrari
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| |
Collapse
|
36
|
Zuccari G, Baldassari S, Alfei S, Marengo B, Valenti GE, Domenicotti C, Ailuno G, Villa C, Marchitto L, Caviglioli G. D-α-Tocopherol-Based Micelles for Successful Encapsulation of Retinoic Acid. Pharmaceuticals (Basel) 2021; 14:ph14030212. [PMID: 33806321 PMCID: PMC7999664 DOI: 10.3390/ph14030212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
All-trans-retinoic acid (ATRA) represents the first-choice treatment for several skin diseases, including epithelial skin cancer and acne. However, ATRA's cutaneous side effects, like redness and peeling, and its high instability limit its efficacy. To address these drawbacks and to improve ATRA solubilization, we prepared ATRA-loaded micelles (ATRA-TPGSs), by its encapsulation in D-α-tocopheryl-polyethylene-glycol-succinate (TPGS). First, to explore the feasibility of the project, a solubility study based on the equilibrium method was performed; then, six ATRA-TPGS formulations were prepared by the solvent-casting method using different TPGS amounts. ATRA-TPGSs showed small sizes (11-20 nm), low polydispersity, slightly negative zeta potential, and proved good encapsulation efficiency, confirmed by a chemometric-assisted Fourier transform infrared spectroscopy (FTIR) investigation. ATRA-TPGS stability was also investigated to choose the most stable formulation. Using Carbopol® 980 as gelling agent, ATRA-TPGS-loaded gels were obtained and analyzed for their rheological profiles. Ex vivo release studies from ATRA-TPGSs were performed by Franz cells, demonstrating a permeation after 24 h of 22 ± 4 µ cm-2. ATRA-TPGSs showed enhanced cytotoxic effects on melanoma cells, suggesting that these formulations may represent a valid alternative to improve patient compliance and to achieve more efficacious therapeutic outcomes.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (S.B.); (S.A.); (G.A.); (C.V.); (G.C.)
- Correspondence:
| | - Sara Baldassari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (S.B.); (S.A.); (G.A.); (C.V.); (G.C.)
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (S.B.); (S.A.); (G.A.); (C.V.); (G.C.)
| | - Barbara Marengo
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy; (B.M.); (G.E.V.); (C.D.)
| | - Giulia Elda Valenti
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy; (B.M.); (G.E.V.); (C.D.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy; (B.M.); (G.E.V.); (C.D.)
| | - Giorgia Ailuno
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (S.B.); (S.A.); (G.A.); (C.V.); (G.C.)
| | - Carla Villa
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (S.B.); (S.A.); (G.A.); (C.V.); (G.C.)
| | - Leonardo Marchitto
- Department of Sciences for the Quality of Life, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (S.B.); (S.A.); (G.A.); (C.V.); (G.C.)
| |
Collapse
|
37
|
Schito AM, Schito GC, Alfei S. Synthesis and Antibacterial Activity of Cationic Amino Acid-Conjugated Dendrimers Loaded with a Mixture of Two Triterpenoid Acids. Polymers (Basel) 2021; 13:521. [PMID: 33572439 PMCID: PMC7916190 DOI: 10.3390/polym13040521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/25/2022] Open
Abstract
To counteract the growing bacterial resistance, we previously reported the remarkable antimicrobial activity of amino acid-conjugated cationic dendrimers (CDs) against several Gram-negative species, establishing that the cationic lysine was essential for their potency. In this paper, CDs conjugated with lysine and arginine and encapsulating ursolic and oleanolic acids (UOACDs) were assumed to be excellent candidates for developing new antibacterial agents, possibly active against Gram-positive species. Indeed, both the guanidine group of arginine and the two triterpenoid acids are items known for directing antibacterial effects, particularly against Gram-positive bacteria. The cationic dendrimers were obtained by peripheral conjugation with the selected amino acids and by entrapping a physical mixture of the commercial triterpenoid acids. The cationic compounds were characterized and successfully tested against 15 Gram-positive isolates. Interesting minimum inhibitory concentration (MIC) values were obtained for all the dendrimer-drug agents, establishing that the antibacterial activity observed for the UOACDs strongly depended on the density and on the type of the cationic groups of the cationic amino acid-conjugated dendrimers and not on the presence and the release of UOA. Particularly, lysine was critical for potency, while arginine was critical for redirecting activity against Gram-positive species. Especially, a high cationic character, associated with a balanced content of lysine/arginine, produced a remarkable antimicrobial effect (MIC = 0.5-8.7 µM).
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy; (A.M.S.); (G.C.S.)
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy; (A.M.S.); (G.C.S.)
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|
38
|
Montané X, Matulewicz K, Balik K, Modrakowska P, Łuczak M, Pérez Pacheco Y, Reig-Vano B, Montornés JM, Bajek A, Tylkowski B. Present trends in the encapsulation of anticancer drugs. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Different nanomedicine devices that were developed during the recent years can be suitable candidates for their application in the treatment of various deadly diseases such as cancer. From all the explored devices, the nanoencapsulation of several anticancer medicines is a very promising approach to overcome some drawbacks of traditional medicines: administered dose of the drugs, drug toxicity, low solubility of drugs, uncontrolled drug delivery, resistance offered by the physiological barriers in the body to drugs, among others. In this chapter, the most important and recent progress in the encapsulation of anticancer medicines is examined: methods of preparation of distinct nanoparticles (inorganic nanoparticles, dendrimers, biopolymeric nanoparticles, polymeric micelles, liposomes, polymersomes, carbon nanotubes, quantum dots, and hybrid nanoparticles), drug loading and drug release mechanisms. Furthermore, the possible applications in cancer prevention, diagnosis, and cancer therapy of some of these nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Xavier Montané
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili Facultat de Quimica , Carrer Marcel·lí Domingo s/n, 43007, Tarragona , Spain
| | - Karolina Matulewicz
- Department of Tissue Engineering Chair of Urology , Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz , Karlowicza St. 24, 85-092, Bydgoszcz , Poland
| | - Karolina Balik
- Department of Tissue Engineering Chair of Urology , Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz , Karlowicza St. 24, 85-092, Bydgoszcz , Poland
| | - Paulina Modrakowska
- Department of Tissue Engineering Chair of Urology , Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz , Karlowicza St. 24, 85-092, Bydgoszcz , Poland
| | - Marcin Łuczak
- Wrzesińskiego Pułku Piechoty we Wrześni , Samorządowa Szkoła Podstawowa nr 1 im. 68 , 62-300, Września , Poland
| | - Yaride Pérez Pacheco
- Departament d’Enginyeria Química , Universitat Rovira i Virgili Escola Tècnica Superior d’Enginyeria Química , Av. Països Catalans, 26, 43007, Tarragona , Spain
| | - Belen Reig-Vano
- Departament d’Enginyeria Química , Universitat Rovira i Virgili Escola Tècnica Superior d’Enginyeria Química , Av. Països Catalans, 26, 43007, Tarragona , Spain
| | - Josep M. Montornés
- Chemical Unit , Eurecat Centre Tecnològic de Catalunya , Carrer Marcel·lí Domingo, s/n,43007, Tarragona , Spain
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology , Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz , Karlowicza St. 24, 85-092, Bydgoszcz , Poland
| | - Bartosz Tylkowski
- Chemical Unit , Eurecat Centre Tecnològic de Catalunya , Carrer Marcel·lí Domingo, s/n,43007, Tarragona , Spain
| |
Collapse
|
39
|
Biodegradable and Compostable Shopping Bags under Investigation by FTIR Spectroscopy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the recent years, plastic-based shopping bags have become irregular and progressively replaced by compostable ones. To be marketed, these “new plastics” must possess suitable requirements verified by specific bodies, which grant the conformity mark, and the approved physicochemical properties are periodically verified. The fast, inexpensive, non-destructive, easy to use, and reproducible Fourier-Transform infrared (FTIR) spectroscopy is a technique routinely applied to perform analysis in various industrial sectors. To get reliable information from spectral data, chemometric methods, such as Principal Component Analysis (PCA), are commonly suggested. In this context, PCA was herein performed on 4, 5, and 21 × 3251 matrices, collecting the FTIR data from regular and irregular shopping bags, including three freshly extruded films from the Italian industry MecPlast, to predict their compliance with legislation. The results allowed us to unequivocally achieve such information and to classify the bags as suitable for containing fresh food in bulk or only for transport. A self-validated linear model was developed capable to estimate, by acquiring a single FTIR spectrum if, after the productive process, the content of renewable poly-lactic-acid (PLA) in a new produced film respect the expectations. Surprisingly, our findings established that among the grocery bags available on the market, irregular plastic-based shopping bags continue to survive.
Collapse
|
40
|
Treatment of Breast Cancer-Bearing BALB/c Mice with Magnetic Hyperthermia using Dendrimer Functionalized Iron-Oxide Nanoparticles. NANOMATERIALS 2020; 10:nano10112310. [PMID: 33266461 PMCID: PMC7700443 DOI: 10.3390/nano10112310] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
The development of novel nanoparticles for diagnostic and therapeutic applications has been one of the most crucial challenges in cancer theranostics for the last decades. Herein, we functionalized iron oxide nanoparticles (IONPs) with the fourth generation (G4) of poly amidoamine (PAMAM) dendrimers (G4@IONPs) for magnetic hyperthermia treatment of breast cancer in Bagg albino strain C (BALB/c)mice. The survival of breast cancer cells significantly decreased after incubation with G4@IONPs and exposure to an alternating magnetic field (AMF) due to apoptosis and elevation of Bax (Bcl-2 associated X)/Bcl-2(B-cell lymphoma 2) ratio. After intratumoral injection of G4@IONPs, tumor-bearing BALB/c mice were exposed to AMF for 20 min; this procedure was repeated three times every other day. After the last treatment, tumor size was measured every three days. Histopathological and Immunohistochemical studies were performed on the liver, lung, and tumor tissues in treated and control mice. The results did not show any metastatic cells in the liver and lung tissues in the treatment group, while the control mice tissues contained metastatic breast cancer cells. Furthermore, the findings of the present study showed that magnetic hyperthermia treatment inhibited tumor growth by increasing cancer cell apoptosis, as well as reducing the tumor angiogenesis.
Collapse
|
41
|
Alfei S, Schito AM. From Nanobiotechnology, Positively Charged Biomimetic Dendrimers as Novel Antibacterial Agents: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2022. [PMID: 33066468 PMCID: PMC7602242 DOI: 10.3390/nano10102022] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023]
Abstract
The alarming increase in antimicrobial resistance, based on the built-in abilities of bacteria to nullify the activity of current antibiotics, leaves a growing number of bacterial infections untreatable. An appealing approach, advanced in recent decades, concerns the development of novel agents able to interact with the external layers of bacteria, causing irreparable damage. Regarding this, some natural cationic antimicrobial peptides (CAMPs) have been reconsidered, and synthetic cationic polymers, mimicking CAMPs and able to kill bacteria by non-specific detrimental interaction with the negative bacterial membranes, have been proposed as promising solutions. Lately, also dendrimers were considered suitable macromolecules for the preparation of more advanced cationic biomimetic nanoparticles, able to harmonize the typical properties of dendrimers, including nanosize, mono-dispersion, long-term stability, high functionality, and the non-specific mechanism of action of CAMPs. Although cationic dendrimers are extensively applied in nanomedicine for drug or gene delivery, their application as antimicrobial agents is still in its infancy. The state of the art of their potential applications in this important field has therefore been reviewed here, with particular attention to the innovative case studies in the literature including also amino acid-modified polyester-based dendrimers, practically unexplored as membrane-active antimicrobials and able to kill bacteria on contact.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy;
| |
Collapse
|
42
|
Tanaka Y, Obinata H, Konishi A, Yamagiwa N, Tsuneoka M. Production of ROS by Gallic Acid Activates KDM2A to Reduce rRNA Transcription. Cells 2020; 9:E2266. [PMID: 33050392 PMCID: PMC7601038 DOI: 10.3390/cells9102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin, which is suggested to have anti-cancer effects, activates KDM2A to reduce rRNA transcription and proliferation of cancer cells. Thus, the specific activation of KDM2A may be applicable to the treatment of cancers. In this study, we screened a food-additive compound library to identify compounds that control cell proliferation. We found that gallic acid activated KDM2A to reduce rRNA transcription and cell proliferation in breast cancer MCF-7 cells. Gallic acid accelerated ROS production and activated AMPK. When ROS production or AMPK activity was inhibited, gallic acid did not activate KDM2A. These results suggest that both ROS production and AMPK activation are required for activation of KDM2A by gallic acid. Gallic acid did not reduce the succinate level, which was required for KDM2A activation by metformin. Metformin did not elevate ROS production. These results suggest that the activation of KDM2A by gallic acid includes mechanisms distinct from those by metformin. Therefore, signals from multiple intracellular conditions converge in KDM2A to control rRNA transcription. Gallic acid did not induce KDM2A-dependent anti-proliferation activity in non-tumorigenic MCF10A cells. These results suggest that the mechanism of KDM2A activation by gallic acid may be applicable to the treatment of breast cancers.
Collapse
Affiliation(s)
- Yuji Tanaka
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
| | - Noriyuki Yamagiwa
- Laboratory of Molecular Design Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Makoto Tsuneoka
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| |
Collapse
|
43
|
Sharma A, Mishra T, Thacker G, Mishra M, Narender T, Trivedi AK. Chebulinic acid inhibits MDA‐MB‐231 breast cancer metastasis and promotes cell death through down regulation of SOD1 and induction of autophagy. Cell Biol Int 2020; 44:2553-2569. [DOI: 10.1002/cbin.11463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Akshay Sharma
- Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Tripti Mishra
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute (CSIR‐CDRI) Lucknow Uttar Pradesh India
| | - Gatha Thacker
- Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Mukul Mishra
- Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Tadigoppula Narender
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute (CSIR‐CDRI) Lucknow Uttar Pradesh India
| | - Arun Kumar Trivedi
- Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
44
|
Schito AM, Alfei S. Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria. Polymers (Basel) 2020; 12:E1818. [PMID: 32823557 PMCID: PMC7464783 DOI: 10.3390/polym12081818] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Due to the rapid increase of antimicrobial resistance with ensuring therapeutic failures, the purpose of this study was to identify novel synthetic molecules as alternatives to conventional available, but presently ineffective antibiotics. Variously structured cationic dendrimers previously reported have provided promising outcomes. However, the problem of their cytotoxicity towards eukaryotic cells has not been completely overcome. We have now investigated the antibacterial activities of three not cytotoxic cationic dendrimers (G5Ds: G5H, G5K, and G5HK) against several multidrug-resistant (MDR) clinical strains. All G5Ds displayed remarkable activity against MDR non-fermenting Gram-negative species such as P. aeruginosa, S. maltophilia, and A. baumannii (MICs = 0.5-33.2 µM). In particular, very low MIC values (0.5-2.1 µM) were observed for G5K, which proved to be more active than the potent colistin (2.1 versus 3.19 µM) against P. aeruginosa. Concerning its mechanism of action, in time-killing and turbidimetric studies, G5K displayed a rapid non-lytic bactericidal activity. Considering the absence of cytotoxicity of these new compounds and their potency, comparable or even higher than that provided by the dendrimers previously reported, G5Ds may be proposed as promising novel antibacterial agents capable of overcoming the alarming resistance rates of several nosocomial non-fermenting Gram-negative pathogens.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy;
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|