1
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2024:e2402737. [PMID: 39506433 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| |
Collapse
|
2
|
Gong P, Wang M, Wang J, Li J, Wang B, Bai X, Liu J, Liu Z, Wang D, Liu W. A biomimetic lubricating nanosystem for synergistic therapy of osteoarthritis. J Colloid Interface Sci 2024; 672:589-599. [PMID: 38852359 DOI: 10.1016/j.jcis.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Failure of articular cartilage lubrication and inflammation are the main causes of osteoarthritis (OA), and integrated treatment realizing joint lubrication and anti-inflammation is becoming the most effective treat model. Inspired by low friction of human synovial fluid and adhesive chemical effect of mussels, our work reports a biomimetic lubricating system that realizes long-time lubrication, photothermal responsiveness and anti-inflammation property. To build the system, a dopamine-mediated strategy is developed to controllably graft hyaluronic acid on the surface of metal organic framework. The design constructs a biomimetic core-shell structure that has good dispersity and stability in water with a high drug loading ratio of 99%. Temperature of the solution rapidly increases to 55 °C under near-infrared light, and the hard-soft lubricating system well adheres to wear surfaces, and greatly reduces frictional coefficient by 75% for more than 7200 times without failure. Cell experiments show that the nanosystem enters cells by endocytosis, and releases medication in a sustained manner. The anti-inflammatory outcomes validate that the nanosystem prevents the progression of OA by down-regulating catabolic proteases and pain-related genes and up-regulating genes that are anabolic in cartilage. The study provides a bioinspired strategy to employ metal organic framework with controlled surface and structure for friction reduction and anti-inflammation, and develops a new concept of OA synergistic therapy model for practical applications.
Collapse
Affiliation(s)
- Peiwei Gong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Meng Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiangli Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Junyao Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Bairen Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiao Bai
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhe Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dandan Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Yang L, Li W, Zhao Y, Shang L. Magnetic Polysaccharide Mesenchymal Stem Cells Exosomes Delivery Microcarriers for Synergistic Therapy of Osteoarthritis. ACS NANO 2024. [PMID: 39039744 DOI: 10.1021/acsnano.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease that afflicts more than 250 million people worldwide, impairing their mobility and quality of life. However, conventional drug therapy is palliative. Exosomes (Exo), although with the potential to fundamentally repair cartilage, face challenges in their efficient enrichment and delivery. In this study, we developed magnetic polysaccharide hydrogel particles as microcarriers for synergistic therapy of OA. The microcarriers were composed of modified natural polysaccharides, hyaluronic acid (HAMA), and chondroitin sulfate (CSMA), and were generated from microfluidic electrospray in combination with a cryogelation process. Magnetic nanoparticles with spiny structures capable of capturing stem cell Exo were encapsulated within the microcarriers together with an anti-inflammatory drug diclofenac sodium (DS). The released DS and Exo from the microcarriers had a synergistic effect in alleviating the OA symptoms and promoting cartilage repair. The in vitro and in vivo results demonstrated the excellent performance of the microcarrier for OA treatment. We believe this work has potential for Exo therapy of OA and other related diseases.
Collapse
Affiliation(s)
- Lei Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wenzhao Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Abbasifard M, Khorramdelazad H. Harmonizing hope: navigating the osteoarthritis melody through the CCL2/CCR2 axis for innovative therapeutic avenues. Front Immunol 2024; 15:1387651. [PMID: 39076996 PMCID: PMC11284107 DOI: 10.3389/fimmu.2024.1387651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Osteoarthritis (OA) is characterized by a complex interplay of molecular signals orchestrated by the CCL2/CCR2 axis. The pathogenesis of OA has been revealed to be influenced by a multifaceted effect of CCL2/CCR2 signaling on inflammation, cartilage degradation, and joint homeostasis. The CCL2/CCR2 axis promotes immune cell recruitment and tips the balance toward degeneration by influencing chondrocyte behavior. Insights into these intricate pathways will offer novel therapeutic approaches, paving the way for targeted interventions that may redefine OA management in the future. This review article explores the molecular symphony through the lens of the CCL2/CCR2 axis, providing a harmonious blend of current knowledge and future directions on OA treatment. Furthermore, in this study, through a meticulous review of recent research, the key players and molecular mechanisms that amplify the catabolic cascade within the joint microenvironment are identified, and therapeutic approaches to targeting the CCL2/CCR axis are discussed.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Yi X, Leng P, Wang S, Liu L, Xie B. Functional Nanomaterials for the Treatment of Osteoarthritis. Int J Nanomedicine 2024; 19:6731-6756. [PMID: 38979531 PMCID: PMC11230134 DOI: 10.2147/ijn.s465243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.
Collapse
Affiliation(s)
- Xinyue Yi
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Pengyuan Leng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Supeng Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Bingju Xie
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
6
|
Liang Q, Cheng Z, Qin L. Advanced nanoparticles in osteoarthritis treatment. BIOMATERIALS TRANSLATIONAL 2024; 5:95-113. [PMID: 39351157 PMCID: PMC11438607 DOI: 10.12336/biomatertransl.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 04/11/2024] [Indexed: 10/04/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disorder, affecting hundreds of millions of people globally. Current clinical approaches are confined to providing only symptomatic relief. Research over the past two decades has established that OA is not merely a process of wear and tear of the articular cartilage but involves abnormal remodelling of all joint tissues. Although many new mechanisms of disease have been identified in the past several decades, the efficient and sustainable delivery of drugs targeting these mechanisms in joint tissues remains a major challenge. Nanoparticles recently emerged as favoured delivery vehicles in OA treatment, offering extended drug retention, enhanced drug targeting, and improved drug stability and solubility. In this review, we consider OA as a disease affecting the entire joint and initially explore the pathophysiology of OA across multiple joint tissues, including the articular cartilage, synovium, fat pad, bone, and meniscus. We then classify nanoparticles based on their composition and structure, such as lipids, polymers, inorganic materials, peptides/proteins, and extracellular vesicles. We summarise the recent advances in their use for treatment and diagnosis of OA. Finally, we discuss the current challenges and future directions in this field. In conclusion, nanoparticle-based nanosystems are promising carriers that advance OA treatment and diagnosis.
Collapse
Affiliation(s)
- Qiushi Liang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Iqbal Z, Xia J, Murtaza G, Shabbir M, Rehman K, Yujie L, Duan L. Targeting WNT signalling pathways as new therapeutic strategies for osteoarthritis. J Drug Target 2023; 31:1027-1049. [PMID: 37969105 DOI: 10.1080/1061186x.2023.2281861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023]
Abstract
Osteoarthritis (OA) is a highly prevalent chronic joint disease and the leading cause of disability. Currently, no drugs are available to control joint damage or ease the associated pain. The wingless-type (WNT) signalling pathway is vital in OA progression. Excessive activation of the WNT signalling pathway is pertinent to OA progression and severity. Therefore, agonists and antagonists of the WNT pathway are considered potential drug candidates for OA treatment. For example, SM04690, a novel small molecule inhibitor of WNT signalling, has demonstrated its potential in a recent phase III clinical trial as a disease-modifying osteoarthritis drug (DMOAD). Therefore, targeting the WNT signalling pathway may be a distinctive approach to developing particular agents helpful in treating OA. This review aims to update the most recent progress in OA drug development by targeting the WNT pathway. In this, we introduce WNT pathways and their crosstalk with other signalling pathways in OA development and highlight the role of the WNT signalling pathway as a key regulator in OA development. Several articles have reviewed the Wnt pathway from different aspects. This candid review provides an introduction to WNT pathways and their crosstalk with other signalling pathways in OA development, highlighting the role of the WNT signalling pathway as a key regulator in OA development with the latest research. Particularly, we emphasise the state-of-the-art in targeting the WNT pathway as a promising therapeutic approach for OA and challenges in their development and the nanocarrier-based delivery of WNT modulators for treating OA.
Collapse
Affiliation(s)
- Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore Campus, Pakistan
| | - Khurrum Rehman
- Department of Allied health sciences, The University of Agriculture, D.I.Khan, Pakistan
| | - Liang Yujie
- Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Chen Z, Liao Z, Liu M, Lin F, Chen S, Wang G, Zheng Z, Liu B, Li C, Wang Z, Chen T, Huang H, Liao Q, Cui W. Nucleus Pulposus-Targeting Nanocarriers Facilitate Mirna-Based Therapeutics for Intervertebral Disc Degeneration. Adv Healthc Mater 2023; 12:e2301337. [PMID: 37625164 DOI: 10.1002/adhm.202301337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain. Understanding its molecular mechanisms is the basis for developing specific treatment. To demonstrate that miR-22-3p is critical in the regulation of IDD, miRNA microarray analyses are conducted in conjunction with in vivo and in vitro experiments. The miR-22-3p knockout (KO) mice show a marked decrease in the histological scores. Bioinformatic analysis reveals that miR-22-3p plays a mechanistic role in the development of IDD by targeting SIRT1, which in turn activates the JAK1/STAT3 signaling pathway. This is confirmed by a luciferase reporter assay and western blot analysis. Therapeutically, the delivery of miR-22-3p inhibitors and mimics through the synthesized nanoparticles in the IDD model alleviates and aggravates IDD, respectively. The nanocarriers enhance transportation of miR-22-3p to nucleus pulposus cells, thus enabling the in vivo inhibition of miR-22-3p for therapeutic purposes and consequently promoting the development of miRNA-specific drugs for IDD.
Collapse
Affiliation(s)
- Zhonghui Chen
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Zhong Liao
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Ming Liu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Fengfei Lin
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Shunyou Chen
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Geng Wang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Zhong Zheng
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Boling Liu
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Chaoxiong Li
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Zheqiang Wang
- Department of Sport's Medicine, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, 350000, China
| | - Tianlai Chen
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Hongzhe Huang
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Qi Liao
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Weiliang Cui
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| |
Collapse
|
9
|
Santos MM, Santos AM, Nascimento Júnior JAC, Andrade TDA, Rajkumar G, Frank LA, Serafini MR. The management of osteoarthritis symptomatology through nanotechnology: a patent review. J Microencapsul 2023; 40:475-490. [PMID: 37698545 DOI: 10.1080/02652048.2023.2258955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Osteoarthritis is considered a degenerative joint disease that is characterised by inflammation, chronic pain, and functional limitation. The increasing development of nanotechnology in drug delivery systems has provided new ideas and methods for osteoarthritis therapy. This review aimed to evaluate patents that have developed innovations, therapeutic strategies, and alternatives using nanotechnology in osteoarthritis treatment. The results show patents deposited from 2015 to November 2021 in the online databases European Patent Office and World Intellectual Property Organisation. A total of 651 patents were identified for preliminary assessment and 16 were selected for full reading and discussion. The evaluated patents are focused on the intraarticular route, oral route, and topical route for osteoarthritis treatment. The intraarticular route presented a higher patent number, followed by the oral and topical routes, respectively. The development of new technologies allows us to envision a promising and positive future in osteoarthritis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Gomathi Rajkumar
- Department of Botany, Sri Sarada College for Women (Autonomous), Affiliated to Periyar University, Salem, India
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
10
|
Lin X, Bell RD, Catheline SE, Takano T, McDavid A, Jonason JH, Schwarz EM, Xing L. Targeting Synovial Lymphatic Function as a Novel Therapeutic Intervention for Age-Related Osteoarthritis in Mice. Arthritis Rheumatol 2023; 75:923-936. [PMID: 36625730 PMCID: PMC10238595 DOI: 10.1002/art.42441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The synovial lymphatic system (SLS) removes catabolic factors from the joint. Vascular endothelial growth factor C (VEGF-C) and its receptor, VEGFR-3, are crucial for lymphangiogenesis. However, their involvement in age-related osteoarthritis (OA) is unknown. This study was undertaken to determine whether the SLS and the VEGF-C/VEGFR-3 pathway contribute to the development and progression of age-related OA, using a murine model of naturally occurring joint disease. METHODS SLS function was assessed in the knees of young (3-month-old) and aged (19-24-month-old) male and female C57BL/6J mice via a newly established in vivo IVIS-dextran imaging approach, which, in addition to histology, was used to assess the effects of VEGF-C treatment on SLS function and OA pathology in aged mice. RNA-sequencing of synovial tissue was performed to explore molecular mechanisms of the disease in the mouse knee joints. RESULTS Results showed that aged mice had impaired SLS function, including decreases in joint clearance (mean T1/2 of signal intensity clearance, 2.8 hours in aged mice versus 0.5 hours in young mice; P < 0.0001), synovial influx (mean ± SD 1.7 ± 0.8% in aged mice versus 4.1 ± 1.9% in young mice; P = 0.0004), and lymph node draining capacity (mean ± SD epifluorescence total radiant intensity ([photons/second]/[μW/cm2 ]) 1.4 ± 0.8 in aged mice versus 3.7 ± 1.2 in young mice; P < 0.0001). RNA-sequencing of the synovial tissue showed that Vegf-c and Vegfr3 signaling genes were decreased in the synovium of aged mice. VEGF-C treatment resulted in improvements in SLS function in aged mice, including increased percentage of signal intensity joint clearance (mean ± SD 63 ± 9% in VEGF-C-treated aged mice versus 52 ± 15% in vehicle-treated aged mice; P = 0.012), increased total articular cartilage cross-sectional area (mean ± SD 0.38 ± 0.07 mm2 in VEGF-C-treated aged mice versus 0.26 ± 0.07 mm2 in vehicle-treated aged mice; P < 0.0001), and decreased percentage of matrix metallopeptidase 13-positive staining area within total synovial area in 22-month-old VEGF-C-treated mice versus 22-month-old vehicle-treated mice (mean ± SD decrease 7 ± 2% versus 4 ± 1%; P = 0.0004). CONCLUSION SLS function is reduced in the knee joints of aged mice due to decreased VEGF-C/VEGFR-3 signaling. VEGF-C treatment attenuates OA joint damage and improves synovial lymphatic drainage in aged mice. The SLS and VEGF-C/VEGFR-3 signaling represent novel physiopathologic mechanisms that could potentially be used as therapeutic targets for age-related OA.
Collapse
Affiliation(s)
- Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Richard D. Bell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sarah E. Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrew McDavid
- Department of Biostatistics and computational biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jennifer H. Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Hanga-Farcaș A, Miere (Groza) F, Filip GA, Clichici S, Fritea L, Vicaș LG, Marian E, Pallag A, Jurca T, Filip SM, Muresan ME. Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2055. [PMID: 37653972 PMCID: PMC10222459 DOI: 10.3390/plants12102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds-such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others-presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering.
Collapse
Affiliation(s)
- Alina Hanga-Farcaș
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Florina Miere (Groza)
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Simona Clichici
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Sanda Monica Filip
- Department of Physics, Faculty of Informatics and Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| |
Collapse
|
12
|
Zhou D, Zhou F, Sheng S, Wei Y, Chen X, Su J. Intra-articular nanodrug delivery strategies for treating osteoarthritis. Drug Discov Today 2023; 28:103482. [PMID: 36584875 DOI: 10.1016/j.drudis.2022.103482] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Osteoarthritis (OA) is characterized by progressive cartilage degeneration. Pharmaceutical intervention remains a main treatment approach. However, drug delivery via intra-articular administration (IA) can be restricted by rapid clearance, the dense and highly negatively charged extracellular matrix (ECM) of cartilage, and uneven distribution of diseased chondrocytes. Nanodrug delivery systems, such as liposomes, micelles, and nanoparticles (NPs), have shown great potential to prolong intra-articular residence, penetrate the ECM, and achieve diseased chondrocyte-specific delivery. In this review, we discuss the challenges associated with intra-articular drug delivery in OA and the nanodrug delivery strategies developed to overcome these challenges. It is anticipated that these nanodrug delivery strategies will advance IA of drugs into broader applications in OA treatment.
Collapse
Affiliation(s)
- Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China; College of Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Shihao Sheng
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China.
| | - Xiao Chen
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Manivong S, Cullier A, Audigié F, Banquy X, Moldovan F, Demoor M, Roullin VG. New trends for osteoarthritis: Biomaterials, models and modeling. Drug Discov Today 2023; 28:103488. [PMID: 36623796 DOI: 10.1016/j.drudis.2023.103488] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The burden of osteoarthritis (OA), one of the major causes of functional disabilities in humans and animals, continues to increase worldwide while no disease-modifying OA drugs (DMOADs) that either slow down or reverse disease progression have been made available. Here, we provide a brief overview of recent advances in: designing new OA drug delivery approaches, focusing on lubrication-based biomaterials and drug delivery systems, such as hydrogels, liposomes, dendrimers, micro- and nanoparticles; using either large (horse) or small (zebrafish) relevant animal models to evaluate new therapeutic strategies; and OA in vitro modeling, focusing on 3D (organoid) models of cartilage regarding the Replace, Reduce and Refine (3R) principle of animal experimentation.
Collapse
Affiliation(s)
- Seng Manivong
- Faculty of Pharmacy, Faculty of Dentistry, and CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada
| | | | - Fabrice Audigié
- Center of Imaging and Research in Locomotor Affections on Equines, Veterinary School of Alfort, Goustranville, France
| | - Xavier Banquy
- Faculty of Pharmacy, Faculty of Dentistry, and CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada
| | - Florina Moldovan
- Faculty of Pharmacy, Faculty of Dentistry, and CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France.
| | - V Gaëlle Roullin
- Faculty of Pharmacy, Faculty of Dentistry, and CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
14
|
Amirsaadat S, Amirazad H, Hashemihesar R, Zarghami N. An update on the effect of intra-articular intervention strategies using nanomaterials in osteoarthritis: Possible clinical application. Front Bioeng Biotechnol 2023; 11:1128856. [PMID: 36873347 PMCID: PMC9978162 DOI: 10.3389/fbioe.2023.1128856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Osteoarthritis (OA) is the most common progressive condition affecting joints. It mainly affects the knees and hips as predominant weight-bearing joints. Knee osteoarthritis (KOA) accounts for a large proportion of osteoarthritis and presents numerous symptoms that impair quality of life, such as stiffness, pain, dysfunction, and even deformity. For more than two decades, intra-articular (IA) treatment options for managing knee osteoarthritis have included analgesics, hyaluronic acid (HA), corticosteroids, and some unproven alternative therapies. Before effective disease-modifying treatments for knee osteoarthritis, treatments are primarily symptomatic, mainly including intra-articular corticosteroids and hyaluronic acid, so these agents represent the most frequently used class of drugs for managing knee osteoarthritis. But research suggests other factors, such as the placebo effect, have an essential role in the effectiveness of these drugs. Several novel intra-articular therapies are currently in the clinical trial processes, such as biological therapies, gene and cell therapies. Besides, it has been shown that the development of novel drug nanocarriers and delivery systems could improve the effectiveness of therapeutic agents in osteoarthritis. This review discusses the various treatment methods and delivery systems for knee osteoarthritis and the new agents that have been introduced or are in development.
Collapse
Affiliation(s)
- Soumayeh Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hashemihesar
- Department of Histology and Embryology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Xu XL, Xue Y, Ding JY, Zhu ZH, Wu XC, Song YJ, Cao YL, Tang LG, Ding DF, Xu JG. Nanodevices for deep cartilage penetration. Acta Biomater 2022; 154:23-48. [PMID: 36243371 DOI: 10.1016/j.actbio.2022.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease and is the main cause of chronic pain and functional disability in adults. Articular cartilage is a hydrated soft tissue that is composed of normally quiescent chondrocytes at a low density, a dense network of collagen fibrils with a pore size of 60-200 nm, and aggrecan proteoglycans with high-density negative charge. Although certain drugs, nucleic acids, and proteins have the potential to slow the progression of OA and restore the joints, these treatments have not been clinically applied owing to the lack of an effective delivery system capable of breaking through the cartilage barrier. Recently, the development of nanotechnology for delivery systems renders new ideas and treatment methods viable in overcoming the limited penetration. In this review, we focus on current research on such applications of nanotechnology, including exosomes, protein-based cationic nanocarriers, cationic liposomes/solid lipid nanoparticles, amino acid-based nanocarriers, polyamide derivatives-based nanocarriers, manganese dioxide, and carbon nanotubes. Exosomes are the smallest known nanoscale extracellular vesicles, and they can quickly deliver nucleic acids or proteins to the required depth. Through electrostatic interactions, nanocarriers with appropriate balance in cationic property and particle size have a strong ability to penetrate cartilage. Although substantial preclinical evidence has been obtained, further optimization is necessary for clinical transformation. STATEMENT OF SIGNIFICANCE: The dense cartilage matrix with high-negative charge was associated with reduced therapeutic effect in osteoarthritis patients with deep pathological changes. However, a systematic review in nanodevices for deep cartilage penetration is still lacking. Current approaches to assure penetration of nanosystems into the depth of cartilage were reviewed, including nanoscale extracellular vesicles from different cell lines and nanocarriers with appropriate balance in cationic property and size particle. Moreover, nanodevices entering clinical trials and further optimization were also discussed, providing important guiding significance to future research.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai 201613, China
| | - Jia-Ying Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Heng Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi-Chen Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong-Jia Song
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue-Long Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Long-Guang Tang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
16
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
17
|
Wang Y, Liu L, Le Z, Tay A. Analysis of Nanomedicine Efficacy for Osteoarthritis. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Ling Liu
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Andy Tay
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
- Tissue Engineering Programme National University of Singapore Singapore 117510 Singapore
| |
Collapse
|
18
|
von Mentzer U, Selldén T, Råberg L, Erensoy G, Hultgård Ekwall AK, Stubelius A. Synovial fluid profile dictates nanoparticle uptake into cartilage - implications of the protein corona for novel arthritis treatments. Osteoarthritis Cartilage 2022; 30:1356-1364. [PMID: 35840018 DOI: 10.1016/j.joca.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Drug delivery strategies for joint diseases need to overcome the negatively charged cartilage matrix. Previous studies have extensively investigated particle approaches to increase uptake efficiency by harnessing the anionic charge of the cartilage but have neglected to address potential interactions with the protein-rich biological environment of the joint space. We aimed to evaluate the effects of hard protein coronas derived from osteoarthritis (OA) and rheumatoid arthritis (RA) patient synovial fluids as well as the commonly used fetal calf serum (FCS) on nanoparticle (NP) uptake into tissues and cells. METHODS We developed a NP panel with varying PEGylation and incubated them with synovial fluid from either OA, RA patients or FCS. We evaluated the effects of the formed NP-biocorona complex uptake into the porcine articular cartilage explants, chondrocytes and monocyte cell lines and primary patient FLS cells. Proteins composing hard biocoronas were identified using a quantitative proteomics approach. RESULTS Formed biocoronas majorly impacted NP uptake into cartilage tissue and dictated their uptake in chondrocytes and monocytes. The most suitable NP for potential OA applications was identified. A variety of proteins that were found on all NPs, irrespective of surface modifications. NP-, and protein-specific differences were also observed between the groups, and candidate proteins were identified that could account for the observed differences. CONCLUSIONS This study demonstrates the impact of protein coronas from OA and RA patient synovial fluids on NP uptake into cartilage, emphasizing the importance of biological microenvironment considerations for successful translation of drug delivery vehicles into clinics.
Collapse
Affiliation(s)
- U von Mentzer
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - T Selldén
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - L Råberg
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - G Erensoy
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - A-K Hultgård Ekwall
- The Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Stubelius
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
19
|
Nanomedicine and regenerative medicine approaches in osteoarthritis therapy. Aging Clin Exp Res 2022; 34:2305-2315. [PMID: 35867240 DOI: 10.1007/s40520-022-02199-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022]
Abstract
Osteoarthritis (OA), the most common chronic joint disease, is a degenerative disease that affects 7% of the worldwide population, more than 500 million people all over the world. OA is the main factor of disability in elderly people which decreases the quality of life of patients. It is characterized by joint pain, low bone density, and deterioration of the joint structure. Despite ongoing novel advances in drug discovery and drug delivery, OA therapy is still a big challenge since there is no available effective treatment and the existing therapies mainly focus on pain and symptomatic management rather than improving and/or suppressing its progression. This review aims to summarize the currently available and novel emerging therapies for OA including regenerative medicine and nanotechnology-based materials and formulations at the clinical and experimental levels. Applications of regenerative medicine and novel technologies such as nanotechnology in OA treatments have opened a new window to support OA patients by offering treatments that could halt or delay OA progression satisfactorily or provide an effective cure in near future. Nanomedicine and regenerative medicine suggest novel alternatives in the regeneration of cartilage, repair of bone damage, and control of chronic pain in OA therapy.
Collapse
|
20
|
Chen P, Tang S, Gao H, Zhang H, Chen C, Fang Z, Peng G, Weng H, Chen A, Zhang C, Qiu Z, Li S, Chen J, Chen L, Chen X. Wharton's jelly mesenchymal stem cell-derived small extracellular vesicles as natural nanoparticles to attenuate cartilage injury via microRNA regulation. Int J Pharm 2022; 623:121952. [PMID: 35753534 DOI: 10.1016/j.ijpharm.2022.121952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
The main strategy of tissue repair and regeneration focuses on the application of mesenchymal stem cells and cell-based nanoparticles, but there are still multiple challenges that may have negative impacts on human safety and therapeutic efficacy. Cell-free nanotechnology can effectively overcome these obstacles and limitations. Mesenchymal stem cell (MSC)-derived natural small extracellular vesicles (sEVs) represent ideal nanotherapeutics due to their low immunogenicity and lack of tumorigenicity. Here, sEVs harvested from Wharton's jelly mesenchymal stem cells (WJMSCs) were identified. In vitro results showed that WJMSC-sEVs efficiently entered chondrocytes in the osteoarthritis (OA) model, further promoted chondrocyte migration and proliferation and modulated immune reactivity. In vivo, WJMSC-sEVs notably promoted chondrogenesis, which was consistent with the effect of WJMSCs. RNA sequencing results revealed that sEV-microRNA-regulated biocircuits can significantly contribute to the treatment of OA, such as by promoting the activation of the calcium signaling pathway, ECM-receptor interaction pathway and NOTCH signaling pathway. In particular, let-7e-5p, which is found in WJMSC-sEVs, was shown to be a potential core molecule for promoting cartilage regeneration by regulating the levels of STAT3 and IGF1R. Our findings suggest that WJMSC-sEV-induced chondrogenesis is a promising innovative and feasible cell-free nanotherapy for OA treatment.
Collapse
Affiliation(s)
- Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Hangqi Gao
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Haoruo Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Caixiang Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Zhuoqun Fang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Haiyan Weng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Chaoyu Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350004, China
| | - Zhihuang Qiu
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shirong Li
- Department of Plastic and Reconstructive Surgery, Shinrong Plastic Surgery Hospital, Chongqing, China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, the School of Pharmacy, Fujian Medical University, Fuzhou, 350100, China.
| | - Liangwan Chen
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China.
| |
Collapse
|
21
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
22
|
Mu P, Feng J, Hu Y, Xiong F, Ma X, Tian L. Botanical Drug Extracts Combined With Biomaterial Carriers for Osteoarthritis Cartilage Degeneration Treatment: A Review of 10 Years of Research. Front Pharmacol 2022; 12:789311. [PMID: 35173609 PMCID: PMC8841352 DOI: 10.3389/fphar.2021.789311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a long-term chronic arthrosis disease which is usually characterized by pain, swelling, joint stiffness, reduced range of motion, and other clinical manifestations and even results in disability in severe cases. The main pathological manifestation of OA is the degeneration of cartilage. However, due to the special physiological structure of the cartilage, once damaged, it is unable to repair itself, which is one of the challenges of treating OA clinically. Abundant studies have reported the application of cartilage tissue engineering in OA cartilage repair. Among them, cell combined with biological carrier implantation has unique advantages. However, cell senescence, death and dedifferentiation are some problems when cultured in vitro. Botanical drug remedies for OA have a long history in many countries in Asia. In fact, botanical drug extracts (BDEs) have great potential in anti-inflammatory, antioxidant, antiaging, and other properties, and many studies have confirmed their effects. BDEs combined with cartilage tissue engineering has attracted increasing attention in recent years. In this review, we will explain in detail how cartilage tissue engineering materials and BDEs play a role in cartilage repair, as well as the current research status.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yimei Hu,
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Ebada HM, Nasra MM, Nassra RA, Solaiman AA, Abdallah OY. Cationic nanocarrier of rhein based on hydrophobic ion pairing approach as intra-articular targeted regenerative therapy for osteoarthritis. Colloids Surf B Biointerfaces 2021; 211:112285. [PMID: 34942464 DOI: 10.1016/j.colsurfb.2021.112285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Cartilage deterioration is the hallmark of osteoarthritis (OA). Rapid clearance of intra-articularly injected drugs and inherent cartilage barrier properties represent enormous challenges facing the effective local OA therapy. Rhein (RH), a dihydroxy-anthraquinone acid molecule, possess a potential chondroprotective effect. However, RH suffers from poor oral bioavailability besides its gastrointestinal side effects. Herein, for the first time, we exploited cationic carriers to target anionic cartilage matrix to create a RH-reservoir within the cartilage matrix, improving RH therapeutic efficacy with reduced side effects. Firstly, we improved RH lipophilic characteristics employing hydrophobic ion pairing (HIP) to be efficiently loaded within lipid nanoparticles with slow-release properties. RH-HIP integrated solid lipid nanoparticles (RH-SLNs) rapidly penetrated through cartilage tissue and lasted for 3 weeks into healthy and arthritic rat joints. Furthermore, RH-SLNs significantly inhibited inflammatory response, oxidative stress and cartilage deterioration in MIA-arthritic rats. In conclusion, intra-articular cationic RH-SLNs represented a meaningful step towards OA therapy.
Collapse
Affiliation(s)
- Heba Mk Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Maha Ma Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Rasha A Nassra
- Department of Medical Biochemistery, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Amany A Solaiman
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
24
|
Ana ID, Barlian A, Hidajah AC, Wijaya CH, Notobroto HB, Kencana Wungu TD. Challenges and strategy in treatment with exosomes for cell-free-based tissue engineering in dentistry. Future Sci OA 2021; 7:FSO751. [PMID: 34840808 PMCID: PMC8609983 DOI: 10.2144/fsoa-2021-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
In dentistry, problems of craniofacial, osteochondral, periodontal tissue, nerve, pulp or endodontics injuries, and osteoarthritis need regenerative therapy. The use of stem cells in dental tissue engineering pays a lot of increased attention, but there are challenges for its clinical applications. Therefore, cell-free-based tissue engineering using exosomes isolated from stem cells is regarded an alternative approach in regenerative dentistry. However, practical use of exosome is restricted by limited secretion capability of cells. For future regenerative treatment with exosomes, efficient strategies for large-scale clinical applications are being studied, including the use of ceramics-based scaffold to enhance exosome production and secretion which can resolve limited exosome secretory from the cells when compared with the existing methods available. Indeed, more research needs to be done on these strategies going forward.
Collapse
Affiliation(s)
- Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Anggraini Barlian
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Atik Choirul Hidajah
- Department of Epidemiology, Biostatistics, Population Studies, & Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Christofora Hanny Wijaya
- Department of Food Science & Technology, Faculty of Agricultural Engineering & Technology, IPB University, Bogor, 16002, Indonesia
| | - Hari Basuki Notobroto
- Department of Epidemiology, Biostatistics, Population Studies, & Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Triati Dewi Kencana Wungu
- Department of Physics, Faculty of Mathematics & Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
25
|
Abdel-Aziz MA, Ahmed HMS, El-Nekeety AA, Abdel-Wahhab MA. Osteoarthritis complications and the recent therapeutic approaches. Inflammopharmacology 2021; 29:1653-1667. [PMID: 34755232 DOI: 10.1007/s10787-021-00888-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
The accelerated prevalence of osteoarthritis (OA) disease worldwide and the lack of convenient management led to the frequent search for unprecedented and specific treatment approaches. OA patients usually suffer from many annoying complications that negatively influence their quality of life, especially in the elderly. Articular erosions may lead eventually to the loss of joint function as a whole which occurs over time according to the risk factors presented in each case and the grade of the disease. Conventional therapies are advancing, showing most appropriate results but still greatly associated with many adverse effects and have restricted curative actions as well. Hence, novel management tools are usually required. In this review, we summarized the recent approaches in OA treatment and the role of natural products, dietary supplements and nanogold application in OA treatment to provide new research tracks for more therapeutic opportunities to those who are in care in this field.
Collapse
Affiliation(s)
- Manal A Abdel-Aziz
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M S Ahmed
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
26
|
Mei L, Wang H, Chen J, Zhang Z, Li F, Xie Y, Huang Y, Peng T, Cheng G, Pan X, Wu C. Self-assembled lyotropic liquid crystal gel for osteoarthritis treatment via anti-inflammation and cartilage protection. Biomater Sci 2021; 9:7205-7218. [PMID: 34554160 DOI: 10.1039/d1bm00727k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease with occurrence of articular inflammation and cartilage degeneration. An ideal drug delivery system for effective treatment of OA should integrate inflammation alleviation with cartilage protection. Herein, a lyotropic liquid crystal (LLC) precursor co-loading hyaluronic acid (HA) and celecoxib, formulated as the HLC precursor, was developed for the combined therapeutic efficacy. The in situ gelling property of the HLC precursor effectively prolongs drug retention in the articular cavity to achieve a long-term anti-inflammation effect. Based on the rheological tests, HLC gel with a cubic lattice structure endows it with a spring-like effect to buffer joint shock and shows great potential in providing cartilage protection by resisting mechanical destruction, lubricating joint, and decomposing intensive stress (about 50%). Meanwhile, the pharmacodynamics study on the OA-induced SD rats demonstrated that HLC gel was the most effective to reduce inflammation levels and to protect the cartilage against abrasion and degeneration. Furthermore, the in vivo degradation behavior and the intra-articular irritation results of LLC/HLC gel demonstrated that it was biodegradable and biocompatible. These results collectively demonstrated that HLC gel with anti-inflammation and cartilage protection performance provides a useful approach to treat OA.
Collapse
Affiliation(s)
- Liling Mei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ziqian Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yecheng Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Guohua Cheng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
27
|
Craciunescu O, Icriverzi M, Florian PE, Roseanu A, Trif M. Mechanisms and Pharmaceutical Action of Lipid Nanoformulation of Natural Bioactive Compounds as Efficient Delivery Systems in the Therapy of Osteoarthritis. Pharmaceutics 2021; 13:1108. [PMID: 34452068 PMCID: PMC8399940 DOI: 10.3390/pharmaceutics13081108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.
Collapse
Affiliation(s)
- Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Madalina Icriverzi
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Paula Ecaterina Florian
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Anca Roseanu
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Mihaela Trif
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| |
Collapse
|
28
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:864. [PMID: 33800636 PMCID: PMC8066900 DOI: 10.3390/nano11040864] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023]
Abstract
Microfluidic devices emerged due to an interdisciplinary "collision" between chemistry, physics, biology, fluid dynamics, microelectronics, and material science. Such devices can act as reaction vessels for many chemical and biological processes, reducing the occupied space, equipment costs, and reaction times while enhancing the quality of the synthesized products. Due to this series of advantages compared to classical synthesis methods, microfluidic technology managed to gather considerable scientific interest towards nanomaterials production. Thus, a new era of possibilities regarding the design and development of numerous applications within the pharmaceutical and medical fields has emerged. In this context, the present review provides a thorough comparison between conventional methods and microfluidic approaches for nanomaterials synthesis, presenting the most recent research advancements within the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
29
|
Schulze-Tanzil G. Experimental Therapeutics for the Treatment of Osteoarthritis. J Exp Pharmacol 2021; 13:101-125. [PMID: 33603501 PMCID: PMC7887204 DOI: 10.2147/jep.s237479] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) therapy remains a large challenge since no causative treatment options are so far available. Despite some main pathways contributing to OA are identified its pathogenesis is still rudimentary understood. A plethora of therapeutically promising agents are currently tested in experimental OA research to find an opportunity to reverse OA-associated joint damage and prevent its progression. Hence, this review aims to summarize novelly emerging experimental approaches for OA. Due to the diversity of strategies shown only main aspects could be summarized here including herbal medicines, nanoparticular compounds, growth factors, hormones, antibody-, cell- and extracellular vesicle (EV)-based approaches, optimized tools for joint viscosupplementation, genetic regulators such as si- or miRNAs and promising combinations. An abundant multitude of compounds obtained from plants, environmental, autologous or synthetic sources have been identified with anabolic, anti-inflammatory, -catabolic and anti-apoptotic properties. Some ubiquitous signaling pathways such as wingless and Integration site-1 (Wnt), Sirtuin, Toll-like receptor (TLR), mammalian target of rapamycin (mTOR), Nuclear Factor (NF)-κB and complement are involved in OA and addressed by them. Hyaluronan (HA) provided benefit in OA since many decades, and novel HA formulations have been developed now with higher HA content and long-term stability achieved by cross-linking suitable to be combined with other agents such as components from herbals or chemokines to attract regenerative cells. pH- or inflammation-sensitive nanoparticular compounds could serve as versatile slow-release systems of active compounds, for example, miRNAs. Some light has been brought into the intimate regulatory network of small RNAs in the pathogenesis of OA which might be a novel avenue for OA therapy in future. Attraction of autologous regenerative cells by chemokines and exosome-based treatment strategies could also innovate OA therapy.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| |
Collapse
|