1
|
Condes LC, Webb MT, Le TTB, Box WJ, Doherty CM, Gali A, Garrido L, Deng J, Matesanz-Niño L, Lozano AE, Alvarez C, Buongiorno Nardelli M, Striolo A, Hill AJ, Galizia M. Elucidating the Molecular Mechanisms by which Porous Polymer Networks Affect Structure, Aging Propensity, and Selectivity of Microporous Glassy Polymer Membranes using a Multiscale Approach. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53843-53854. [PMID: 39320115 DOI: 10.1021/acsami.4c11472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Microporous glassy polymer membranes suffer from physical aging, which adversely affects their performance in the short time frame. We show that the aging propensity of a model microporous polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), can be effectively mitigated by blending with as little as 5 wt % porous polymer network (PPN) composed of triptycene and isatin. The aging behavior of these materials was monitored via N2 pure gas permeability measurements over the course of 3 weeks, showing a 14% decline in PTMSP blended with 5 wt % PPN vs a 41% decline in neat PTMSP. Noteworthy, PPNs are 2 orders of magnitude cheaper than the porous aromatic frameworks previously used to control PTMSP aging. A variety of experimental and computational techniques, such as Positron Annihilation Lifetime Spectroscopy (PALS), free volume measurements, cross-polarization/magic angle spinning (CP/MAS) 13C NMR, transport measurements and molecular dynamics (MD) simulations were used to uncover the molecular mechanisms leading to enhanced aging resistance. We show that partial PTMSP chain adsorption into the PPN porosity reduces the PTMSP local segmental mobility, leading to improved aging resistance. Permeability coefficients were broken into their elementary sorption and diffusion contributions, to elucidate the mechanism by which the reduced PTMSP local segmental mobility affects selectivity in gas separation applications. Finally, we demonstrate that in these systems, where both chemical and physical interactions take place, transport coefficients must be corrected for thermodynamic nonidealities to avoid erroneous interpretation of the results.
Collapse
Affiliation(s)
- Lucas C Condes
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Matthew T Webb
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Tran T B Le
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - William J Box
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Cara M Doherty
- CSIRO Manufacturing, Research Way, 3168 Clayton, Australia
| | - Aditi Gali
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Leoncio Garrido
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Jing Deng
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Laura Matesanz-Niño
- University of Valladolid, UI CINQUIMA, Paseo Belén 5, E-47011 Valladolid, Spain
| | - Angel E Lozano
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- University of Valladolid, UI CINQUIMA, Paseo Belén 5, E-47011 Valladolid, Spain
- SMAP, UA-UVA, CSIC, Research Unit Associated to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 11, E-47011 Valladolid, Spain
| | - Cristina Alvarez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- SMAP, UA-UVA, CSIC, Research Unit Associated to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 11, E-47011 Valladolid, Spain
| | - Marco Buongiorno Nardelli
- Department of Physics, University of North Texas, 1155 Union Circle, Denton 76203, Texas, United States
| | - Alberto Striolo
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Anita J Hill
- CSIRO Manufacturing, Research Way, 3168 Clayton, Australia
| | - Michele Galizia
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| |
Collapse
|
2
|
Liang Z, Xie S, Wang Q, Zhang B, Xiao L, Wang C, Liu X, Chen Y, Yang S, Du H, Qian Y, Ling D, Wu L, Li F. Ligand-Induced Atomically Segregation-Tunable Alloy Nanoprobes for Enhanced Magnetic Resonance Imaging. ACS NANO 2024; 18:15249-15260. [PMID: 38818704 DOI: 10.1021/acsnano.4c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bimetallic iron-noble metal alloy nanoparticles have emerged as promising contrast agents for magnetic resonance imaging (MRI) due to their biocompatibility and facile control over the element distribution. However, the inherent surface energy discrepancy between iron and noble metal often leads to Fe atom segregation within the nanoparticle, resulting in limited iron-water molecule interactions and, consequently, diminished relaxometric performance. In this study, we present the development of a class of ligand-induced atomically segregation-tunable alloy nanoprobes (STAN) composed of bimetallic iron-gold nanoparticles. By manipulating the oxidation state of Fe on the particle surface through varying molar ratios of oleic acid and oleylamine ligands, we successfully achieve surface Fe enrichment. Under the application of a 9 T MRI system, the optimized STAN formulation, characterized by a surface Fe content of 60.1 at %, exhibits an impressive r1 value of 2.28 mM-1·s-1, along with a low r2/r1 ratio of 6.2. This exceptional performance allows for the clear visualization of hepatic tumors as small as 0.7 mm in diameter in vivo, highlighting the immense potential of STAN as a next-generation contrast agent for highly sensitive MR imaging.
Collapse
Affiliation(s)
- Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenhan Wang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufan Qian
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Lianming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangyuan Li
- Songjiang Institute and Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
3
|
Orel VB, Kurapov YA, Lytvyn SY, Orel VE, Galkin OY, Dasyukevich OY, Rykhalskyi OY, Diedkov AG, Ostafiichuk VV, Lyalkin SA, Burlaka AP, Virko SV, Skoryk MA, Zagorodnii VV, Stelmakh YA, Didikin GG, Oranska OI, Calcagnile L, Manno DE, Rinaldi R, Nedostup YV. Characterization and antitumor effect of doxorubicin-loaded Fe 3O 4-Au nanocomposite synthesized by electron beam evaporation for magnetic nanotheranostics. RSC Adv 2024; 14:14126-14138. [PMID: 38686287 PMCID: PMC11056945 DOI: 10.1039/d4ra01777c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic nanocomposites (MNC) are promising theranostic platforms with tunable physicochemical properties allowing for remote drug delivery and multimodal imaging. Here, we developed doxorubicin-loaded Fe3O4-Au MNC (DOX-MNC) using electron beam physical vapor deposition (EB-PVD) in combination with magneto-mechanochemical synthesis to assess their antitumor effect on Walker-256 carcinosarcoma under the influence of a constant magnetic (CMF) and electromagnetic field (EMF) by comparing tumor growth kinetics, magnetic resonance imaging (MRI) scans and electron spin resonance (ESR) spectra. Transmission (TEM) and scanning electron microscopy (SEM) confirmed the formation of spherical magnetite nanoparticles with a discontinuous gold coating that did not significantly affect the ferromagnetic properties of MNC, as measured by vibrating-sample magnetometry (VSM). Tumor-bearing animals were divided into the control (no treatment), conventional doxorubicin (DOX), DOX-MNC and DOX-MNC + CMF + EMF groups. DOX-MNC + CMF + EMF resulted in 14% and 16% inhibition of tumor growth kinetics as compared with DOX and DOX-MNC, respectively. MRI visualization showed more substantial tumor necrotic changes after the combined treatment. Quantitative analysis of T2-weighted (T2W) images revealed the lowest value of skewness and a significant increase in tumor intensity in response to DOX-MNC + CMF + EMF as compared with the control (1.4 times), DOX (1.6 times) and DOX-MNC (1.8 times) groups. In addition, the lowest level of nitric oxide determined by ESR was found in DOX-MNC + CMF + EMF tumors, which was close to that of the muscle tissue in the contralateral limb. We propose that the reason for the relationship between the observed changes in MRI and ESR is the hyperfine interaction of nuclear and electron spins in mitochondria, as a source of free radical production. Therefore, these results point to the use of EB-PVD and magneto-mechanochemically synthesized Fe3O4-Au MNC loaded with DOX as a potential candidate for cancer magnetic nanotheranostic applications.
Collapse
Affiliation(s)
- Valerii B Orel
- National Cancer Institute Kyiv 03022 Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | | | | | - Valerii E Orel
- National Cancer Institute Kyiv 03022 Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | - Olexander Yu Galkin
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | | | | | | | | | | | - Anatoliy P Burlaka
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology Kyiv 03022 Ukraine
| | - Sergii V Virko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology Kyiv 03022 Ukraine
- V.E. Lashkaryov Institute of Semiconductor Physics Kyiv 03028 Ukraine
| | - Mykola A Skoryk
- G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine Kyiv 03142 Ukraine
| | - Viacheslav V Zagorodnii
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
- G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine Kyiv 03142 Ukraine
| | | | | | - Olena I Oranska
- Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine Kyiv 03164 Ukraine
| | | | | | | | - Yana V Nedostup
- Taras Shevchenko National University of Kyiv Kyiv 03680 Ukraine
| |
Collapse
|
4
|
Xiao Y, Xu RH, Dai Y. Nanoghosts: Harnessing Mesenchymal Stem Cell Membrane for Construction of Drug Delivery Platforms Via Optimized Biomimetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304824. [PMID: 37653618 DOI: 10.1002/smll.202304824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Mesenchymal stem cells (MSCs) are becoming hotspots for application in disease therapies recently, combining with biomaterials and drug delivery system. A major advantage of MSCs applied in drug delivery system is that these cells enable specific targeting and releasing of cargos to the disease sites. However, the potential tumor tropic effects of MSCs raised concerns on biosafety. To solve this problem, there are emerging methods of isolating cell membranes and developing nanoformulations to perform drug delivery, which avoids concerns on biosafety without disturbing the membrane functions of specific polarizing and locating. These cargoes are so called "nanoghosts." This review article summarizes the current applications of nanoghosts, the promising potential of MSCs to be applied in membrane isolation and nanoghost construction, and possible approaches to develop better drug delivery system harnessing from MSC ghost cell membranes.
Collapse
Affiliation(s)
- Yuan Xiao
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ren-He Xu
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yunlu Dai
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
5
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
6
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
7
|
de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev 2022; 189:114484. [PMID: 35944586 DOI: 10.1016/j.addr.2022.114484] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery. Nanostructures comprising iron oxide and gold are usually selected for biomedical applications, as they display size-dependent properties, biocompatibility, and unique physical and chemical characteristics that can be tuned through highly precise synthetic protocols. We provide herein an overview of the most recent synthetic protocols to prepare magnetic-plasmonic nanostructures made of iron oxide and gold, to then highlight the progress made on multifunctional magnetic-plasmonic bioimaging and heating-based therapies. We discuss the advantages and limitations of the various systems in these directions.
Collapse
Affiliation(s)
- Cristina de la Encarnación
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
8
|
Siqueira ERL, Pinheiro WO, Aquino VRR, Coelho BCP, Bakuzis AF, Azevedo RB, Sousa MH, Morais PC. Engineering Gold Shelled Nanomagnets for Pre-Setting the Operating Temperature for Magnetic Hyperthermia. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2760. [PMID: 36014626 PMCID: PMC9413094 DOI: 10.3390/nano12162760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the fabrication of spherical gold shelled maghemite nanoparticles for use in magnetic hyperthermia (MHT) assays. A maghemite core (14 ± 3 nm) was used to fabricate two samples with different gold thicknesses, which presented gold (g)/maghemite (m) content ratios of 0.0376 and 0.0752. The samples were tested in MHT assays (temperature versus time) with varying frequencies (100-650 kHz) and field amplitudes (9-25 mT). The asymptotic temperatures (T∞) of the aqueous suspensions (40 mg Fe/mL) were found to be in the range of 59-77 °C (naked maghemite), 44-58 °C (g/m=0.0376) and 33-51 °C (g/m=0.0752). The MHT data revealed that T∞ could be successful controlled using the gold thickness and cover the range for cell apoptosis, thereby providing a new strategy for the safe use of MHT in practice. The highest SAR (specific absorption rate) value was achieved (75 kW/kg) using the thinner gold shell layer (334 kHz, 17 mT) and was roughly twenty times bigger than the best SAR value that has been reported for similar structures. Moreover, the time that was required to achieve T∞ could be modeled by changing the thermal conductivity of the shell layer and/or the shape/size of the structure. The MHT assays were pioneeringly modeled using a derived equation that was analytically identical to the Box-Lucas method (which was reported as phenomenological).
Collapse
Affiliation(s)
- Elis Regina Lima Siqueira
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília DF 70910-900, Brazil
| | - Willie Oliveira Pinheiro
- Green Nanotechnology Group, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-900, Brazil
- Post-Graduation Program in Sciences and Health Technologies, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-275, Brazil
| | - Victor Raul Romero Aquino
- Institute of Physics, Federal University of Goiás, Goiânia GO 74690-631, Brazil
- Institute of Physics, University of Brasília, Brasília DF 70910-900, Brazil
| | | | - Andris Figueiroa Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia GO 74690-631, Brazil
- CNanoMed, Federal University of Goiás, Goiânia GO 74690-631, Brazil
| | - Ricardo Bentes Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília DF 70910-900, Brazil
| | - Marcelo Henrique Sousa
- Green Nanotechnology Group, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-900, Brazil
- Post-Graduation Program in Sciences and Health Technologies, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-275, Brazil
| | - Paulo Cesar Morais
- Institute of Physics, University of Brasília, Brasília DF 70910-900, Brazil
- Catholic University of Brasília, Brasília DF 70790-160, Brazil
| |
Collapse
|
9
|
Candreva A, Parisi F, Bartucci R, Guzzi R, Di Maio G, Scarpelli F, Aiello I, Godbert N, La Deda M. Synthesis and Characterization of Hyper‐Branched Nanoparticles with Magnetic and Plasmonic Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202201375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| | - Francesco Parisi
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- Department of Physics Molecular Biophysics Laboratory University of Calabria 87036 Rende CS Italy
| | - Rita Guzzi
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
- Department of Physics Molecular Biophysics Laboratory University of Calabria 87036 Rende CS Italy
| | - Giuseppe Di Maio
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Francesca Scarpelli
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Iolinda Aiello
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| | - Nicolas Godbert
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| |
Collapse
|
10
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
11
|
Gohain SB, Boruah PK, Das MR, Thakur AJ. Gold-coated iron oxide core–shell nanostructures for the oxidation of indoles and the synthesis of uracil-derived spirooxindoles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of isatins and uracil-based spirooxindoles catalysed by Au/Fe3O4 core–shell nanoparticles under mild conditions and low reaction times.
Collapse
Affiliation(s)
| | - Purna Kanta Boruah
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Manash Ranjan Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
12
|
Influence of Spatial Dispersion on the Electromagnetic Properties of Magnetoplasmonic Nanostructures. NANOMATERIALS 2021; 11:nano11123297. [PMID: 34947646 PMCID: PMC8708994 DOI: 10.3390/nano11123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Magnetoplasmonics based on composite nanostructures is widely used in many biomedical applications. Nanostructures, consisting of a magnetic core and a gold shell, exhibit plasmonic properties, that allow the concentration of electromagnetic energy in ultra-small volumes when used, for example, in imaging and therapy. Magnetoplasmonic nanostructures have become an indispensable tool in nanomedicine. The gold shell protects the core from oxidation and corrosion, providing a biocompatible platform for tumor imaging and cancer treatment. By adjusting the size of the core and the shell thickness, the maximum energy concentration can be shifted from the ultraviolet to the near infrared, where the depth of light penetration is maximum due to low scattering and absorption by tissues. A decrease in the thickness of the gold shell to several nanometers leads to the appearance of the quantum effect of spatial dispersion in the metal. The presence of the quantum effect can cause both a significant decrease in the level of energy concentration by plasmon particles and a shift of the maxima to the short-wavelength region, thereby reducing the expected therapeutic effect. In this study, to describe the influence of the quantum effect of spatial dispersion, we used the discrete sources method, which incorporates the generalized non-local optical response theory. This approach made it possible to account for the influence of the nonlocal effect on the optical properties of composite nanoparticles, including the impact of the asymmetry of the core-shell structure on the energy characteristics. It was found that taking spatial dispersion into account leads to a decrease in the maximum value of the concentration of electromagnetic energy up to 25%, while the blue shift can reach 15 nm.
Collapse
|
13
|
Investigation into the Use of Microfluidics in the Manufacture of Metallic Gold-Coated Iron Oxide Hybrid Nanoparticles. NANOMATERIALS 2021; 11:nano11112976. [PMID: 34835738 PMCID: PMC8622423 DOI: 10.3390/nano11112976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Hybrid iron oxide-gold nanoparticles are of increasing interest for applications in nanomedicine, photonics, energy storage, etc. However, they are often difficult to synthesise without experience or ‘know-how’. Additionally, standard protocols do not allow for scale up, and this is significantly hindering their future potential. In this study, we seek to determine whether microfluidics could be used as a new manufacturing process to reliably produce hybrid nanoparticles with the line of sight to their continuous manufacture and scaleup. Using a Precision Nano NanoAssemblr Benchtop® system, we were able to perform the intermediate coating steps required in order to construct hybrid nanoparticles around 60 nm in size with similar chemical and physical properties to those synthesised in the laboratory using standard processes, with Fe/Au ratios of 1:0.6 (standard) and 1:0.7 (microfluidics), indicating that the process was suitable for their manufacture with optimisation required in order to configure a continuous manufacturing plant.
Collapse
|
14
|
Hayat H, Hayat H, Dwan BF, Gudi M, Bishop JO, Wang P. A Concise Review: The Role of Stem Cells in Cancer Progression and Therapy. Onco Targets Ther 2021; 14:2761-2772. [PMID: 33907419 PMCID: PMC8068480 DOI: 10.2147/ott.s260391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
The properties of cancer stem cells (CSCs) have recently gained attention as an avenue of intervention for cancer therapy. In this review, we highlight some of the key roles of CSCs in altering the cellular microenvironment in favor of cancer progression. We also report on various studies in this field which focus on transformative properties of CSCs and their influence on surrounding cells or targets through the release of cellular cargo in the form of extracellular vesicles. The findings from these studies encourage the development of novel interventional therapies that can target and prevent cancer through efficient, more effective methods. These methods include targeting immunosuppressive proteins and biomarkers, promoting immunization against tumors, exosome-mediated CSC conversion, and a focus on the quiescent properties of CSCs and their role in cancer progression. The resulting therapeutic benefit and transformative potential of these novel approaches to stem cell-based cancer therapy provide a new direction in cancer treatment, which can focus on nanoscale, molecular properties of the cellular microenvironment and establish a more precision medicine-oriented paradigm of treatment.
Collapse
Affiliation(s)
- Hasaan Hayat
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA
| | - Hanaan Hayat
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Bennett Francis Dwan
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Mithil Gudi
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Jack Owen Bishop
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Félix LL, Porcel JM, Aragón FFH, Pacheco-Salazar DG, Sousa MH. Simple synthesis of gold-decorated silica nanoparticles by in situ precipitation method with new plasmonic properties. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractWe describe a simple method for the preparation of gold-decorated silica (SiO2) nanoparticles (NPs) by the in situ precipitation method using simple BH4− ions reduction as a procedure, where BH4− ions are adsorbed onto PEI-functionalized SiO2 NPs for stabilizing and reducing gold ions onto PEI-SiO2 surface in water under ambient conditions. The result was 3-nm gold nanoshell NPs attached to SiO2 core (~ 75 nm) with a surface plasmon resonance (SPR) at ~ 680 nm. SPR band is associated with Au NP aggregates that arise from strong interparticle interaction. This is an alternative to the gold-seeding methods and the use of anionic gold species for the obtention of gold-decorated SiO2 NPs with an important red-shift in UV–Vis absorption and with potential applications in biosensors and photothermal therapy.
Collapse
|
16
|
Brennan G, Ryan S, Soulimane T, Tofail SAM, Silien C. Dark Field and Coherent Anti-Stokes Raman (DF-CARS) Imaging of Cell Uptake of Core-Shell, Magnetic-Plasmonic Nanoparticles. NANOMATERIALS 2021; 11:nano11030685. [PMID: 33803430 PMCID: PMC7998699 DOI: 10.3390/nano11030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
Magnetic-plasmonic, Fe3O4-Au, core-shell nanoparticles are popular in many applications, most notably in therapeutics and diagnostics, and thus, the imaging of these nanostructures in biological samples is of high importance. These nanostructures are typically imaged in biological material by dark field scatter imaging, which requires an even distribution of nanostructures in the sample and, therefore, high nanoparticle doses, potentially leading to toxicology issues. Herein, we explore the nonlinear optical properties of magnetic nanoparticles coated with various thicknesses of gold using the open aperture z-scan technique to determine the nonlinear optical properties and moreover, predict the efficacy of the nanostructures in nonlinear imaging. We find that the magnetic nanoparticles coated with gold nanoseeds and thinner gold shells (ca. 4 nm) show the largest nonlinear absorption coefficient β and imaginary part of the third-order susceptibility Im χ(3), suggesting that these nanostructures would be suitable contrast agents. Next, we combine laser dark field microscopy and epi-detected coherent anti-Stokes Raman (CARS) microscopy to image the uptake of magnetic-plasmonic nanoparticles in human pancreatic cancer cells. We show the epi-detected CARS technique is suitable for imaging of the magnetic-plasmonic nanoparticles without requiring a dense distribution of nanoparticles. This technique achieves superior nanoparticle contrasting over both epi-detected backscatter imaging and transmission dark field imaging, while also attaining label-free chemical contrasting of the cell. Lastly, we show the high biocompatibility of the Fe3O4 nanoparticles with ca. 4-nm thick Au shell at concentrations of 10-100 µg/mL.
Collapse
Affiliation(s)
- Grace Brennan
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
| | - Sally Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (S.R.); (T.S.)
| | - Tewfik Soulimane
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (S.R.); (T.S.)
| | - Syed A. M. Tofail
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
| | - Christophe Silien
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
- Correspondence:
| |
Collapse
|