1
|
Stindlova M, Peroutka V, Jencova V, Havlickova K, Lencova S. Application of MTT assay for probing metabolic activity in bacterial biofilm-forming cells on nanofibrous materials. J Microbiol Methods 2024; 224:107010. [PMID: 39098403 DOI: 10.1016/j.mimet.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The quantification of cellular metabolic activity via MTT assay has become a widespread practice in eukaryotic cell studies and is progressively extending to bacterial cell investigations. This study pioneers the application of MTT assay to evaluate the metabolic activity of biofilm-forming cells within bacterial biofilms on nanofibrous materials. The biofilm formation of Staphylococcus aureus and Escherichia coli on nanomaterials electrospun from polycaprolactone (PCL), polylactic acid (PLA), and polyamide (PA) was examined. Various parameters of the MTT assay were systematically investigated, including (i) the dissolution time of the formed formazan, (ii) the addition of glucose, and (iii) the optimal wavelength for spectrophotometric determination. Based on interim findings, a refined protocol suitable for application to nanofibrous materials was devised. We recommend 2 h of the dissolution, the application of glucose, and spectrophotometric measurement at 595 nm to obtain reliable data. Comparative analysis with the reference CFU counting protocol revealed similar trends for both tested bacteria and all tested nanomaterials. The proposed MTT protocol emerges as a suitable method for assessing the metabolic activity of bacterial biofilms on PCL, PLA, and PA nanofibrous materials.
Collapse
Affiliation(s)
- Marta Stindlova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Vaclav Peroutka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Kristyna Havlickova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Simona Lencova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
2
|
Purandare S, Li R, Xiang C, Song G. Development of Innovative Composite Nanofiber: Enhancing Polyamide-6 with ε-Poly-L-Lysine for Medical and Protective Textiles. Polymers (Basel) 2024; 16:2046. [PMID: 39065363 PMCID: PMC11281277 DOI: 10.3390/polym16142046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Polyamide-6 (PA) is a popular textile polymer having desirable mechanical and thermal properties, chemical stability, and biocompatibility. However, PA nanofibers are prone to bacterial growth and user discomfort. ε-Poly-L-lysine (PL) is non-toxic, antimicrobial, and hydrophilic but lacks spinnability due to its low molecular weight. Given its similar backbone structure to PA, with an additional amino side chain, PL was integrated with PA to develop multifunctional nanofibers. This study explores a simple, scalable method by which to obtain PL nanofibers by utilizing the structurally similar PA as the base. The goal was to enhance the functionality of PA by addressing its drawbacks. The study demonstrates spinnability of varying concentrations of PL with base PA while exploring compositions with higher PL concentrations than previously reported. Electrospinning parameters were studied to optimize the nanofiber properties. The effects of PL addition on morphology, hydrophilicity, thermal stability, mechanical performance, and long-term antimicrobial activity of nanofibers were evaluated. The maximum spinnable concentration of PL in PA-based nanofibers resulted in super hydrophilicity (0° static water contact angle within 10 s), increased tensile strength (1.02 MPa from 0.36 MPa of control), and efficient antimicrobial properties with long-term stability. These enhanced characteristics hold promise for the composite nanofiber's application in medical and protective textiles.
Collapse
Affiliation(s)
| | | | - Chunhui Xiang
- Department of Apparel, Events, and Hospitality Management, Iowa State University of Science and Technology, Ames, IA 50011, USA; (S.P.); (R.L.)
| | - Guowen Song
- Department of Apparel, Events, and Hospitality Management, Iowa State University of Science and Technology, Ames, IA 50011, USA; (S.P.); (R.L.)
| |
Collapse
|
3
|
Lencova S, Stindlova M, Havlickova K, Jencova V, Peroutka V, Navratilova K, Zdenkova K, Stiborova H, Hauzerova S, Kostakova EK, Jankovsky O, Kejzlar P, Lukas D, Demnerova K. Influence of Fiber Diameter of Polycaprolactone Nanofibrous Materials on Biofilm Formation and Retention of Bacterial Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25813-25824. [PMID: 38717992 PMCID: PMC11129108 DOI: 10.1021/acsami.4c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024]
Abstract
To develop microbiologically safe nanofibrous materials, it is crucial to understand their interactions with microbial cells. Current research indicates that the morphology of nanofibers, particularly the diameter of the fibers, may play a significant role in biofilm formation and retention. However, it has not yet been determined how the fiber diameter of poly-ε-caprolactone (PCL), one of the most widely used biopolymers, affects these microbial interactions. In this study, two nanofibrous materials electrospun from PCL (PCL45 and PCL80) with different fiber diameter and characteristic distance δ between fibers were compared in terms of their ability to support or inhibit bacterial biofilm formation and retain bacterial cells. Strains of Escherichia coli (ATCC 25922 and ATCC 8739) and Staphylococcus aureus (ATCC 25923 and ATCC 6538) were used as model bacteria. Biofilm formation rate and retention varied significantly between the E. coli and S. aureus strains (p < 0.05) for the tested nanomaterials. In general, PCL showed a lower tendency to be colonized by the tested bacteria compared to the control material (polystyrene). Fiber diameter did not influence the biofilm formation rate of S. aureus strains and E. coli 25922 (p > 0.05), but it did significantly impact the biofilm formation rate of E. coli 8739 and biofilm morphology formed by all of the tested bacterial strains. In PCL45, thick uniform biofilm layers were formed preferably on the surface, while in PCL80 smaller clusters formed preferably inside the structure. Further, fiber diameter significantly influenced the retention of bacterial cells of all the tested strains (p < 0.001). PCL45, with thin fibers (average fiber diameter of 376 nm), retained up to 7 log (CFU mL-1) of staphylococcal cells (100% retention). The overall results indicate PCL45's potential for further research and highlight the nanofibers' morphology influence on bacterial interactions and differences in bacterial strains' behavior in the presence of nanomaterials.
Collapse
Affiliation(s)
- Simona Lencova
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Marta Stindlova
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Kristyna Havlickova
- Department
of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Vera Jencova
- Department
of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Vaclav Peroutka
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Katerina Navratilova
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Kamila Zdenkova
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Hana Stiborova
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Sarka Hauzerova
- Department
of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Eva Kuzelova Kostakova
- Department
of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Ondrej Jankovsky
- Department
of Inorganic Chemistry, University of Chemistry
and Technology, 160 00 Prague Czech
Republic
| | - Pavel Kejzlar
- Department
of Advanced Materials, Institute for Nanomaterials, Advanced Technologies
and Innovation, Technical University of
Liberec, 461 17 Liberec, Czech Republic
| | - David Lukas
- Department
of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Katerina Demnerova
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, 160 00 Prague, Czech Republic
| |
Collapse
|
4
|
Rajati H, Alvandi H, Rahmatabadi SS, Hosseinzadeh L, Arkan E. A nanofiber-hydrogel composite from green synthesized AgNPs embedded to PEBAX/PVA hydrogel and PA/Pistacia atlantica gum nanofiber for wound dressing. Int J Biol Macromol 2023; 226:1426-1443. [PMID: 36442567 DOI: 10.1016/j.ijbiomac.2022.11.255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
A polyamide/Pistacia atlantica (P.a) gum nanofiber, fabricated by electrospinning method, was coated on a layer of PEBAX/PVA hydrogel embedded with green synthesized Ag nanoparticles (AgNPs) and the prepared nanofiber-hydrogel composite was assessed for wound dressing application. The AgNPs were characterized using ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta potential analysis. The PEBAX/PVA/Ag hydrogel, prepared using solution casting method, displayed strong mechanical properties as Young's modulus and the elongation at break for the hydrogel containing AgNPs increased by 12 % and 96 %, respectively. The PEBAX/PVA/Ag hydrogel showed a high antimicrobial activity towards the E. coli (22.8 mm) with no cytotoxicity. The effect of adding the P.a gum on the properties of polyamide nanofiber was investigated using FTIR, SEM, and tensile tests. Samples were assessed by swelling, degradation, and water vapor transfer measurements. Very fine and continuous fibers with average diameters of ≤200 nm were observed by SEM analysis due to the addition of the P.a gum. The result of tensile test indicated that the addition of P.a gum improves the mechanical properties of nanofibers. The physical properties and biocompatibility of the two layers were shown to be complementary when combined.
Collapse
Affiliation(s)
- Hajar Rajati
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Alvandi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Soheil Rahmatabadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Abdallah EM, Modwi A, Al-Mijalli SH, Mohammed AE, Idriss H, Omar AS, Afifi M, AL-Farga A, Goh KW, Ming LC. In Vitro Influence of ZnO, CrZnO, RuZnO, and BaZnO Nanomaterials on Bacterial Growth. Molecules 2022; 27:molecules27238309. [PMID: 36500402 PMCID: PMC9740921 DOI: 10.3390/molecules27238309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.
Collapse
Affiliation(s)
- Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
- Correspondence: (E.M.A.); (K.W.G.); (L.C.M.)
| | - Abueliz Modwi
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdulkader Shaikh Omar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21589, Saudi Arabia
| | - Mohamed Afifi
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21589, Saudi Arabia
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ammar AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (E.M.A.); (K.W.G.); (L.C.M.)
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (E.M.A.); (K.W.G.); (L.C.M.)
| |
Collapse
|
6
|
Lencova S, Stiborova H, Munzarova M, Demnerova K, Zdenkova K. Potential of Polyamide Nanofibers With Natamycin, Rosemary Extract, and Green Tea Extract in Active Food Packaging Development: Interactions With Food Pathogens and Assessment of Microbial Risks Elimination. Front Microbiol 2022; 13:857423. [PMID: 35369475 PMCID: PMC8965076 DOI: 10.3389/fmicb.2022.857423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing microbial safety and prolonging the shelf life of products is one of the major challenges in the food industry. Active food packaging made from nanofibrous materials enhanced with antimicrobial substances is considered a promising way. In this study, electrospun polyamide (PA) nanofibrous materials functionalized with 2.0 wt% natamycin (NAT), rosemary extract (RE), and green tea extract (GTE), respectively, were prepared as active packaging and tested for the food pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. The PAs exhibited: (i) complete retention of bacterial cells reaching 6.0-6.4 log10removal, (ii) antimicrobial activity with 1.6-3.0 log10suppression, and (iii) antibiofilm activity with 1.7-3.0 log10suppression. The PAs prolonged the shelf life of chicken breast; up to 1.9 log10(CFU/g) suppression of total viable colonies and 2.1 log10(CFU/g) suppression of L. monocytogenes were observed after 7 days of storage at 7°C. A beneficial effect on pH and sensory quality was verified. The results confirm microbiological safety and benefits of PA/NAT, PA/RE, and PA/GTE and their potential in developing functional and ecological packaging.
Collapse
Affiliation(s)
- Simona Lencova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | | | - Katerina Demnerova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Kamila Zdenkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
7
|
Lencova S, Zdenkova K, Demnerova K, Stiborova H. Short communication: Antibacterial and antibiofilm effect of natural substances and their mixtures over Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chlumsky O, Purkrtova S, Michova H, Sykorova H, Slepicka P, Fajstavr D, Ulbrich P, Viktorova J, Demnerova K. Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens. Int J Mol Sci 2021; 22:ijms22157892. [PMID: 34360657 PMCID: PMC8346086 DOI: 10.3390/ijms22157892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3–2.4 (PdNPs) and 0.8–2.0 (PtNPs), average inhibitory rates of 55.2–99% for PdNPs and of 83.8–99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25–44.5 mg/L for PdNPs and 50.5–101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens.
Collapse
Affiliation(s)
- Ondrej Chlumsky
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
- Correspondence:
| | - Sabina Purkrtova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Hana Michova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Hana Sykorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (P.S.); (D.F.)
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (P.S.); (D.F.)
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (S.P.); (H.M.); (H.S.); (P.U.); (J.V.); (K.D.)
| |
Collapse
|