1
|
Dos Santos GG, Riofrio LVP, Sousa AP, Santos PC, Silva AV, Lopes EM, Costa DS, Pereira Júnior JDA, Ferreira GB, Silva GVGDM, Tedesco M, Nogueira DJ, Jerônimo GT, Martins ML. Antimicrobial and anthelmintic effects of copper nanoparticles against Koi carp parasites and their toxicity. JOURNAL OF FISH DISEASES 2024; 47:e14003. [PMID: 39075836 DOI: 10.1111/jfd.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
This study investigated the in vitro antimicrobial and anthelmintic effect of copper nanoparticles (CuNPs) against the bacterium Aeromonas hydrophila, the monogeneans Dactylogyrus minutus, Dactylogyrus extensus, Gyrodactylus cyprini, and the cestode Schyzocotyle acheilognathi, as well as their toxicity to Cyprinus carpio Koi. In the antimicrobial in vitro test, the inhibition zone method and minimum inhibitory concentration (MIC) were performed. In order to determine the time and efficacy of monogenean parasite mortality, the parasites were exposed to CuNP concentrations of 20, 50, 100, 150, 200, and 300 mg L-1, and a control group with tank water and one with copper sulphate pentahydrate (CuSO4.5H2O) at a concentration of 0.3 mg L-1, performed in triplicate. The parasites were observed every 10 min for 300 min, and mortality was recorded. For the cestodes, parasites were immersed in CuNP concentrations of 50, 100, 150, and 300 mg L-1. At the end of the in vitro tests, the anthelmintic efficacy of each treatment was calculated. To assess the tolerance and toxicity in fish, they were exposed to CuNP concentrations of 0.6, 1.25, 2.5, 5, 10, 20, and 50 mg L-1 for 12 h. The MIC demonstrated that CuNPs effectively inhibited the growth of A. hydrophila up to a dilution of 12,500 mg L-1 and showed an inhibition zone of 14.0 ± 1.6 mm for CuNPs. The results of anthelmintic activity showed a dose-dependent effect of concentration for both groups of parasites, with the most effective concentration being 300 mg L-1 in 120 min. In the toxicity test, the carps showed tolerance to lower concentrations. The study indicated that CuNPs were effective against the studied pathogens. However, it proved to be toxic to fish at high concentrations. The use of low concentrations is recommended still requires further investigation.
Collapse
Affiliation(s)
| | | | - Ana Paula Sousa
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| | - Paola Capistrano Santos
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| | - Alexandre Vaz Silva
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| | - Emilly Monteiro Lopes
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| | - Domickson Silva Costa
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| | | | - Giulia Beatrice Ferreira
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| | | | - Marilia Tedesco
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| | - Diego José Nogueira
- LABCAI- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, UFSC, Florianópolis, SC, Brazil
| | - Gabriela Tomas Jerônimo
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| | - Mauricio Laterça Martins
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, UFSC, Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Fang X, Pu X, Xie W, Yang W, Jia L. Poly(3,4-dihydroxyphenylalanine)-modified cellulose paper for the extraction of deoxyribonucleic acid by a laboratory-built automated extraction device. J Chromatogr A 2024; 1731:465199. [PMID: 39053252 DOI: 10.1016/j.chroma.2024.465199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The success of polymerase chain reaction (PCR) depends on the quality of deoxyribonucleic acid (DNA) templates. This study developed a cost-effective and eco-friendly DNA extraction system utilizing poly(3,4-dihydroxyphenylalanine)-modified cellulose paper (polyDOPA@paper). PolyDOPA@paper was prepared by oxidatively self-polymerizing DOPA under weak alkaline conditions and utilizing the adhesive property of polyDOPA on different materials. Compared to the uncoated cellulose paper, polyDOPA coating significantly enhances DNA adsorption owing to its abundant amino, carboxyl, and hydroxyl moieties. The DNA extraction mechanism using polyDOPA@paper was discussed. The maximum adsorption capacity of polyDOPA@paper for DNA was 20.7 μg cm-2. Moreover, an automated extraction system was designed and fabricated using 3D printing technology. The device simplifies the operation and ensures the reproducibility and consistency of the results. More importantly, it eliminates the need for specialized training of operators. The feasibility of the polyDOPA@paper-based automated extraction system was evaluated by quantitatively detecting Escherichia coli in spiked milk samples via a real-time PCR. The detection limit was 102 cfu mL-1. The results suggest that the system would have significant potential in detecting pathogens.
Collapse
Affiliation(s)
- Xun Fang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoxiao Pu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenting Xie
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenjuan Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Ghaffari SB, Sarrafzadeh MH. Cationic cellulose filter papers modified with ZnO/Ag/GO nanocomposite as point of use gravity-driven filters for bacterial removal from water. Sci Rep 2023; 13:22604. [PMID: 38114628 PMCID: PMC10730911 DOI: 10.1038/s41598-023-50114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
The surface modification of filters with large pore sizes for the development of low-cost gravity-driven point-of-use (POU) technologies for water disinfection can be an effective strategy to empower people to access safe water instantly, especially in low- and middle-income countries. In this study, the surface of commercial cellulose filter papers, as cheap and bio-based filters, was modified with polydopamine (PDA), polyethyleneimine (PEI) and ZnO/Ag/GO nanocomposite (ZnO/Ag/GO@PDA/PEI papers) for bacterial removal from water. PDA/PEI incorporation introduced a cationic functional layer, which can entrap negative bacteria and make a stable chemical bond with the nanocomposite. ZnO/Ag/GO exhibited promising synergistic antibacterial activities (30 times stronger than ZnO). As a result, 3 sheets of ZnO/Ag/GO@PDA/PEI papers showed a 99.98% bacterial reduction (E. coli), which met the WHO standards. Moreover, the leached zinc and silver in the filtrate were far below the WHO's limits (380 and 10 ppb, respectively). The results showed that the modified papers could be reused multiple times. After six times of reuse, the flow rate dropped slightly (below 20%) and the bacterial removal efficiency was more than 99.9%. This study is valuable for developing filters for treating bacterial-contaminated water on-site with no need for energy, which is a demand in many countries.
Collapse
Affiliation(s)
- Seyed-Behnam Ghaffari
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| |
Collapse
|
4
|
Hasan MS, Sundberg C, Tolosa M, Andar A, Ge X, Kostov Y, Rao G. A novel, low-cost microfluidic device with an integrated filter for rapid, ultrasensitive, and high-throughput bioburden detection. Sci Rep 2023; 13:12084. [PMID: 37495652 PMCID: PMC10372024 DOI: 10.1038/s41598-023-38770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Rapid and accurate bioburden detection has become increasingly necessary for food, health, pharmaceutical and environmental applications. To detect bioburden accurately, and in a highly sensitive manner, we have fabricated a novel microfluidic device with an integrated filter to trap the cells. Bioburden is detected on the filter paper in situ using the redox reaction of fluorescent label resorufin and a portable multichannel fluorometer is used for fluorescence measurement. The microfluidic device was fabricated in a facile, low-cost, and rapid way with microwave-induced thermally assisted bonding. To characterize the bonding quality of the microfluidic cassettes, different tests were performed, and the filter paper material and size were optimized. Primary Bacillus subtilis culture bacterial samples were filtered through the device to validate and investigate the performance parameters. Our results show that a limit of detection (LOD) of 0.037 CFU/mL can be achieved through this microfluidic device whereas the LOD in a normal microfluidic cassette in the fluorometer and the golden standard spectrophotometer are 0.378 and 0.128 CFU/mL respectively. The results depict that three to ten times LOD improvement is possible through this microfluidic cassette and more sensitive detection is possible depending on the volume filtered within a rapid 3 min. This novel microfluidic device along with the fluorometer can be used as a rapid portable tool for highly sensitive, accurate and high-throughput bacterial detection for different applications.
Collapse
Affiliation(s)
- Md Sadique Hasan
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Chad Sundberg
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Michael Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Abhay Andar
- Champions Oncology Inc, 855 N Wolfe St, Baltimore, MD, 21205, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
5
|
Fu L, Deng S, Luo Y, Fu Q, Fan Y, Jia L. An ultrasensitive colorimetric biosensor for the detection of Gram-positive bacteria by integrating paper-based enrichment and carbon dot-based selective recognition. Talanta 2023; 265:124920. [PMID: 37451123 DOI: 10.1016/j.talanta.2023.124920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Rapid screening of bacteria by low-cost and eco-friendly material-based approaches is still a major challenge. Herein, a colorimetric biosensor was designed for the ultrasensitive and rapid detection of Gram-positive bacteria. The biosensor exploited polydopamine and polyethyleneimine (PDA-PEI)-modified papers for separating bacteria and carbon dots (CDs) for selective colorimetric detection of Gram-positive bacteria. Noble metal-free CDs can target Gram-positive bacteria by binding with peptidoglycan and possess peroxidase-like activity. Thus, they can avert the step of modifying recognition probes, facilitating biosensor fabrication, and reducing the cost. This biosensor can detect S. aureus as low as 1 cfu mL-1, L. monocytogenes as low as 5 cfu mL-1, and B. subtilis as low as 9 cfu mL-1 within 55 min. In addition, a portable device was constructed to enable convenient and on-site quantitative detection of Gram-positive bacteria. The feasibility of the biosensor was verified by detecting Gram-positive bacteria in eggshell and sausage samples with recoveries ranging from 91.2% to 110%.
Collapse
Affiliation(s)
- Li Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Suqi Deng
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yimin Luo
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qiang Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yi Fan
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Nan Y, Gomez-Maldonado D, Whitehead DC, Yang M, Peresin MS. Comparison between nanocellulose-polyethylenimine composites synthesis methods towards multiple water pollutants removal: A review. Int J Biol Macromol 2023; 232:123342. [PMID: 36716836 DOI: 10.1016/j.ijbiomac.2023.123342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
Nanocellulose/polyethylenimine composites have attracted growing attention due to their versatility as new materials for application in different fields. Water remediation is one of the traditional applications of these composites and their investigation as adsorbents for single water pollutants is well established. However, most water resources such as rivers, lakes, and even oceans contain complex mixtures of pollutants. Despite several recently published reviews on water purification technology, they only focused on these material as single pollutant removers and hardly mentioned their capacity to simultaneously recover multiple pollutants. Therefore, there is still a gap in the archived literature considering nanocellulose/polyethylenimine composites targeting water remediation with multiple water pollutants. In this review, methods for synthesizing such composites are classified and compared according to the mechanism of reactions, such as chemical crosslinking and physical adsorption, while outlining advantages and limitations. Then, the water pollutants mainly targeted by those composites are discussed in detail to expound the relationship between the synthesis method and the type and adsorption capacity. Finally, the last section presents challenges and opportunities of these nanocellulose/polyethylenimine composites as emerging sorbents for sustainable multiple water pollutants purification technologies. This review aims to lay out the basis for future developments of these composites for multiple water pollutants.
Collapse
Affiliation(s)
- Yufei Nan
- Sustainable Bio-Based Materials Laboratory, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - Diego Gomez-Maldonado
- Sustainable Bio-Based Materials Laboratory, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | | | - Ming Yang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Maria S Peresin
- Sustainable Bio-Based Materials Laboratory, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA.
| |
Collapse
|
7
|
Municoy S, Antezana PE, Bellino MG, Desimone MF. Development of 3D-Printed Collagen Scaffolds with In-Situ Synthesis of Silver Nanoparticles. Antibiotics (Basel) 2022; 12:antibiotics12010016. [PMID: 36671217 PMCID: PMC9855044 DOI: 10.3390/antibiotics12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
UV-irradiation method has grown as an alternative approach to in situ synthetize silver nanoparticles (AgNPs) for avoiding the use of toxic reducing agents. In this work, an antimicrobial material by in situ synthesizing AgNPs within 3D-printed collagen-based scaffolds (Col-Ag) was developed. By modifying the concentration of AgNO3 (0.05 and 0.1 M) and UV irradiation time (2 h, 4 h, and 6 h), the morphology and size of the in situ prepared AgNPs could be controlled. As a result, star-like silver particles of around 23 ± 4 μm and spherical AgNPs of 220 ± 42 nm were obtained for Ag 0.05 M, while for Ag 0.1 M cubic particles from 0.3 to 1.0 μm and round silver precipitates of 3.0 ± 0.4 μm were formed in the surface of the scaffolds at different UV irradiation times. However, inside the material AgNPs of 10-28 nm were obtained. The DSC thermal analysis showed that a higher concentration of Ag stabilizes the 3D-printed collagen-based scaffolds, while a longer UV irradiation interval produces a decrease in the denaturation temperature of collagen. The enzymatic degradation assay also revealed that the in situ formed AgNPs act as stabilizing and reinforcement agent which also improve the swelling capacity of collagen-based material. Finally, antimicrobial activity of Col-Ag was studied, showing high bactericidal efficiency against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. These results showed that the UV irradiation method was really attractive to modulate the size and shape of in situ synthesized AgNPs to develop antimicrobial 3D-printed collagen scaffolds with different thermal, swelling and degradation properties.
Collapse
Affiliation(s)
- Sofia Municoy
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Martín Gonzalo Bellino
- Instituto de Nanociencia y Nanotecnología, Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín 1650, Argentina
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- Correspondence:
| |
Collapse
|
8
|
Thach-Nguyen R, Lam HH, Phan HP, Dang-Bao T. Cellulose nanocrystals isolated from corn leaf: straightforward immobilization of silver nanoparticles as a reduction catalyst. RSC Adv 2022; 12:35436-35444. [PMID: 36540239 PMCID: PMC9742858 DOI: 10.1039/d2ra06689k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 10/29/2023] Open
Abstract
As the most abundant natural biopolymer on earth, celluloses have long-term emerged as a capable platform for diverse purposes. In the context of metal nanoparticles applied to catalysis, the alternatives to traditional catalyst supports by using biomass-derived renewable materials, likely nanocelluloses, have been paid a great effort, in spite of being less exploited. In this study, cellulose nanocrystals were isolated from corn leaf via chemical treatment involving alkalizing, bleaching and acid hydrolysis. The crystallinity of obtained cellulose was evaluated in each step, focusing on the effects of reactant concentration and reaction time. Cellulose nanocrystals were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), evidencing the presence of cellulose nanospheres (crystallinity index of 67.3% in comparison with 38.4% from untreated raw material) in the size range of 50 nm. Without using any additional surfactants or stabilizers, silver nanoparticles (AgNPs) well-dispersed on the surface of cellulose nanocrystals (silver content of 5.1 wt%) could be obtained by a simple chemical reduction using NaBH4 at room temperature. The catalytic activity was evaluated in the selective reductions of 4-nitrophenol towards 4-aminophenol and methyl orange towards aromatic amine derivatives in water at room temperature. The effects of catalyst amount and reaction time were also studied in both reduction processes, showing near-quantitative conversions within 5 minutes and obeying the pseudo-first-order kinetics, with the apparent kinetic rate constants of 8.9 × 10-3 s-1 (4-nitrophenol) and 13.6 × 10-3 s-1 (methyl orange). The chemical structure of the catalytic system was found to be highly stable during reaction and no metal leaching was detected in reaction medium, evidencing adaptability of cellulose nanocrystals in immobilizing noble metal nanoparticles.
Collapse
Affiliation(s)
- Roya Thach-Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hoa-Hung Lam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hong-Phuong Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Trung Dang-Bao
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Green synthesis of silver nanoparticles using the extract of spent coffee used for paper-based hydrogen peroxide sensing device. Sci Rep 2022; 12:20099. [PMID: 36418393 PMCID: PMC9684408 DOI: 10.1038/s41598-022-22067-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Hydrogen peroxide (H2O2) has attracted considerable attention for use as a disinfectant ingredient for various applications over the decades. The use of H2O2 within the safety regulations can avoid its toxicity to human health and the environment. In this study, a paper-based sensor containing green-synthesized silver nanoparticles (P-AgNPs) was developed for use in a smartphone in the determination of the H2O2 concentration. In the synthesis process, an extract of spent coffee grounds was used as a bioreducing agent. The effects of reaction time and silver nitrate (AgNO3) concentration on the green synthesis of silver nanoparticles (AgNPs) were investigated. The optimum conditions for the preparation of P-AgNPs were determined to be 100 mM AgNO3 (P-AgNPs-100) and 15 h synthesis time. The P-AgNPs-100 sensor exhibited high sensitivity with a detection limit of 1.26 mM H2O2, which might be suitable for the detection of H2O2-based household and beverage sanitizers. The H2O2 detection capability of P-AgNPs-100 was comparable to that of a commercial strip sensor. Furthermore, P-AgNPs-100 had a detection efficiency of more than 95% after long-term storage for 100 days.
Collapse
|
10
|
Sun BY, Cheang WH, Chou SC, Chiao JC, Wu PW. Fabrication of Cu Micromembrane as a Flexible Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3829. [PMID: 36364606 PMCID: PMC9654814 DOI: 10.3390/nano12213829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
A Cu micromembrane is successfully fabricated and validated as a porous flexible electrode. The Cu micromembrane is prepared by functionalizing individual polypropylene (PP) fibers in a polypropylene micromembrane (PPMM) using a mixture of polydopamine (PDA) and polyethyleneimine (PEI). The mixture of PDA and PEI provides adhesive, wetting, and reducing functionalities that facilitate subsequent Ag activation and Cu electroless plating. Scanning electron microscopy reveals conformal deposition of Cu on individual PP fibers. Porometer analysis indicates that the porous nature of PPMM is properly maintained. The Cu micromembrane demonstrates impressive electrical conductivities in both the X direction (1.04 ± 0.21 S/cm) and Z direction (2.99 ± 0.54 × 10-3 S/cm). In addition, its tensile strength and strain are better than those of pristine PPMM. The Cu micromembrane is flexible and mechanically robust enough to sustain 10,000 bending cycles with moderate deterioration. Thermogravimetric analysis shows a thermal stability of 400 °C and an effective Cu loading of 5.36 mg/cm2. Cyclic voltammetric measurements reveal that the Cu micromembrane has an electrochemical surface area of 277.8 cm2 in a 1 cm2 geometric area (a roughness factor of 227.81), a value that is 45 times greater than that of planar Cu foil.
Collapse
Affiliation(s)
- Bo-Yao Sun
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wai-Hong Cheang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shih-Cheng Chou
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jung-Chih Chiao
- Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX 75205, USA
| | - Pu-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
11
|
Kawasaki T, Yamaguchi Y, Kitahara H, Irizawa A, Tani M. Exploring Biomolecular Self-Assembly with Far-Infrared Radiation. Biomolecules 2022; 12:biom12091326. [PMID: 36139165 PMCID: PMC9496551 DOI: 10.3390/biom12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Physical engineering technology using far-infrared radiation has been gathering attention in chemical, biological, and material research fields. In particular, the high-power radiation at the terahertz region can give remarkable effects on biological materials distinct from a simple thermal treatment. Self-assembly of biological molecules such as amyloid proteins and cellulose fiber plays various roles in medical and biomaterials fields. A common characteristic of those biomolecular aggregates is a sheet-like fibrous structure that is rigid and insoluble in water, and it is often hard to manipulate the stacking conformation without heating, organic solvents, or chemical reagents. We discovered that those fibrous formats can be conformationally regulated by means of intense far-infrared radiations from a free-electron laser and gyrotron. In this review, we would like to show the latest and the past studies on the effects of far-infrared radiation on the fibrous biomaterials and to suggest the potential use of the far-infrared radiation for regulation of the biomolecular self-assembly.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
- Correspondence:
| | - Yuusuke Yamaguchi
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| | - Hideaki Kitahara
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| | - Akinori Irizawa
- SR Center, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| |
Collapse
|
12
|
Chen WC, Chien HW. Enhancing the antibacterial property of chitosan through synergistic alkylation and chlorination. Int J Biol Macromol 2022; 217:321-329. [PMID: 35839951 DOI: 10.1016/j.ijbiomac.2022.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/23/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
Abstract
Chitosan exhibits moderate antimicrobial properties. Here, we enhanced the antimicrobial properties of chitosan through alkylation and chlorination and evaluated the effect of alkylation on chitosan's hydrophobicity, bacterial attachment, chlorination, biocidal property, and stability. First, chitosan films were prepared through casting and were then immersed in a hexanal solution of different concentrations. The aldehyde groups of hexanal reacted with the amino group in chitosan through a Schiff base reaction. Next, the hexanal-modified chitosan films were soaked in 10 % bleach to form N-halamine. The results demonstrated that the surface became more hydrophobic, and chitosan films with increased hexanal-grafting concentrations exhibited less bacterial attachment. However, the degree of chlorination decreased as the degree of alkylation increased, further reducing the diameter of the zone of inhibition. Nevertheless, all chlorinated samples could kill ~5 log of Staphylococcus aureus and Escherichia coli within 30 min. Unlike previous results for chlorinated chitosan, in this study, alkylation before chlorination enhanced antibacterial properties and bactericidal ability and decelerated the degradation of chlorinated samples. The results of a systematic evaluation indicated that a hexanal-grafting concentration of approximately 80 mM maintains the equilibrium of the various properties of chitosan. Alkylated and chlorinated chitosan has considerable potential application as mask filter layers.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan.
| |
Collapse
|
13
|
Belal AS, Nady JE, Shokry A, Ebrahim S, Soliman M, Khalil M. Superhydrophobic functionalized cellulosic paper by copper hydroxide nanorods for oils purification. Sci Rep 2021; 11:16261. [PMID: 34376750 PMCID: PMC8355275 DOI: 10.1038/s41598-021-95784-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Oily water contamination has been sighted as one of the most global environmental pollution. Herein, copper hydroxide nanorods layer was constructed onto cellulosic filter paper surface cured with polydopamine, Ag nanoparticles, and Cu NPs through immersion method. This work has been aimed to produce a superhydrophobic and superoleophilic cellulosic filter paper. The structure, crystalline, and morphological properties of these modified cellulosic filter paper were investigated. Scanning electron microscope images confirmed that the modified surface was rougher compared with the pristine surface. The contact angle measurement confirmed the hydrophobic nature of these modified surfaces with a water contact angle of 169.7°. The absorption capacity was 8.2 g/g for diesel oil and the separation efficiency was higher than 99%. It was noted that the flux in the case of low viscosity solvent as n-hexane was 9663.5 Lm-2 h-1, while for the viscous oil as diesel was 1452.7 Lm-2 h-1.
Collapse
Affiliation(s)
- Ahmed S Belal
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Jehan El Nady
- Electronic Materials Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box 21934, Alexandria, Egypt
| | - Azza Shokry
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Shaker Ebrahim
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Moataz Soliman
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Marwa Khalil
- Nanotechnology and Composite Materials Department, Institute of New Materials and Advanced Technology, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City, P.O. Box 21934, Alexandria, Egypt.
| |
Collapse
|