1
|
Prabhu C, Satyaprasad AU, Deekshit VK. Understanding Bacterial Resistance to Heavy Metals and Nanoparticles: Mechanisms, Implications, and Challenges. J Basic Microbiol 2024:e2400596. [PMID: 39696916 DOI: 10.1002/jobm.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Antimicrobial resistance is a global health problem as it contributes to high mortality rates in several infectious diseases. To address this issue, engineered nanoparticles/nano-formulations of antibiotics have emerged as a promising strategy. Nanoparticles are typically defined as materials with dimensions up to 100 nm and are made of different materials such as inorganic particles, lipids, polymers, etc. They are widely dispersed in the environment through various consumer products, and their clinical applications are diverse, ranging from contrast agents in imaging to carriers for gene and drug delivery. Nanoparticles can also act as antimicrobial agents either on their own or in combination with traditional antibiotics to produce synergistic effects, earning them the label of "next-generation therapeutics." They have also shown great effectiveness against multidrug-resistant pathogens responsible for nosocomial infections. However, overexposure or prolonged exposure to sublethal doses of nanoparticles can promote the development of resistance in human pathogens. The resistance can arise from various factors such as genetic mutation, horizontal gene transfer, production of reactive oxygen species, changes in the outer membrane of bacteria, efflux-induced resistance, cross-resistance from intrinsic antibiotic resistance determinants, plasmid-mediated resistance, and many more. Continuous exposure to nanoparticles can also transform an antibiotic-susceptible bacterial pathogen into multidrug resistance. Considering all these, the current review focuses on the mode of action of different heavy metals and nanoparticles and possible mechanisms through which bacteria attain resistance towards these heavy metals and nanoparticles.
Collapse
Affiliation(s)
- Chaitra Prabhu
- Department of Infectious Diseases and Microbial Genomics, NITTE (Deemed to be University), NITTE University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, India
| | - Akshath Uchangi Satyaprasad
- Department of Bio and Nano Technology, NITTE (Deemed to be University), NITTE University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, India
| | - Vijaya Kumar Deekshit
- Department of Infectious Diseases and Microbial Genomics, NITTE (Deemed to be University), NITTE University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, India
| |
Collapse
|
2
|
Salas-Orozco MF, Lorenzo-Leal AC, de Alba Montero I, Marín NP, Santana MAC, Bach H. Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102715. [PMID: 37907198 DOI: 10.1016/j.nano.2023.102715] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.
Collapse
Affiliation(s)
- Marco Felipe Salas-Orozco
- Facultad de Estomatología, Doctorado en Ciencias Odontológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Nuria Patiño Marín
- Facultad de Estomatología, Laboratorio de Investigación Clinica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Miguel Angel Casillas Santana
- Maestría en Estomatología con Opcion Terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Girma A. Alternative mechanisms of action of metallic nanoparticles to mitigate the global spread of antibiotic-resistant bacteria. Cell Surf 2023; 10:100112. [PMID: 37920217 PMCID: PMC10618811 DOI: 10.1016/j.tcsw.2023.100112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
One of the biggest issues for medical professionals and a serious global concern is the emergence of multi-drug-resistant bacteria, which is the result of the overuse or misuse of antimicrobial agents. To combat this urgent problem, new drugs with alternative mechanisms of action are continuously replacing conventional antimicrobials. Nanotechnology-fueled innovations provide patients and medical professionals with hope for overcoming drug resistance. The aim of the present work was to document the antimicrobial potential and mechanisms of action of metallic nanoparticles against bacterial pathogens. Cell wall interaction and membrane penetration, reactive oxygen species (ROS) production, DNA damage, and protein synthesis inhibition were some of the generalised mechanisms recognised in the current study. In vitro and in vivo studies demonstrated that toxicity concerns and the development of bacterial resistance against nanoparticles (NPs) harden the use of metallic NP products for the treatment of drug-resistant bacterial pathogens. Therefore, researchers across the globe should actively engage in solving the above-mentioned issues.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| |
Collapse
|
4
|
Salih SJ, Mahmood WM. Review on magnetic spinel ferrite (MFe 2O 4) nanoparticles: From synthesis to application. Heliyon 2023; 9:e16601. [PMID: 37274649 PMCID: PMC10238938 DOI: 10.1016/j.heliyon.2023.e16601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Magnetic spinel ferrite materials offer various applications in biomedical, water treatment, and industrial electronic devices, which has sparked a lot of attention. This review focuses on the synthesis, characterization, and applications of spinel ferrites in a variety of fields, particularly spinel ferrites with doping. Spinel ferrites nanoparticles doped with the elements have remarkable electrical and magnetic properties, allowing them to be used in a wide range of applications such as magnetic fields, microwave absorbers, and biomedicine. Furthermore, the physical properties of spinel ferrites can be modified by substituting metallic atoms, resulting in improved performance. The most recent and noteworthy applications of magnetic ferrite nanoparticles are reviewed and discussed in this review. This review goes over the synthesis, doping and applications of different types of metal ferrite nanoparticles, as well as views on how to choose the appropriate magnetic ferrites based on the intended application.
Collapse
Affiliation(s)
- Shameran Jamal Salih
- Department of Chemistry, Koya University Koya KOY45, Kurdistan Region – F.R, Iraq
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Tishk International University, KRG, Erbil, Iraq
| | - Wali M. Mahmood
- Department of Chemistry, Koya University Koya KOY45, Kurdistan Region – F.R, Iraq
| |
Collapse
|
5
|
Zhang X, Hou X, Ma L, Shi Y, Zhang D, Qu K. Analytical methods for assessing antimicrobial activity of nanomaterials in complex media: advances, challenges, and perspectives. J Nanobiotechnology 2023; 21:97. [PMID: 36941596 PMCID: PMC10026445 DOI: 10.1186/s12951-023-01851-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Assessing the antimicrobial activity of engineered nanomaterials (ENMs), especially in realistic scenarios, is of great significance for both basic research and applications. Multiple analytical methods are available for analysis via off-line or on-line measurements. Real-world samples are often complex with inorganic and organic components, which complicates the measurements of microbial viability and/or metabolic activity. This article highlights the recent advances achieved in analytical methods including typical applications and specifics regarding their accuracy, cost, efficiency, and user-friendliness. Methodological drawbacks, technique gaps, and future perspectives are also discussed. This review aims to help researchers select suitable methods for gaining insight into antimicrobial activities of targeted ENMs in artificial and natural complex matrices.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiangyi Hou
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liangyu Ma
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yaqi Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Keming Qu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
6
|
Jeje O, Ewunkem AJ, Jeffers-Francis LK, Graves JL. Serving Two Masters: Effect of Escherichia coli Dual Resistance on Antibiotic Susceptibility. Antibiotics (Basel) 2023; 12:antibiotics12030603. [PMID: 36978471 PMCID: PMC10044975 DOI: 10.3390/antibiotics12030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The prevalence of multidrug-resistant bacteria and their increased pathogenicity has led to a growing interest in metallic antimicrobial materials and bacteriophages as potential alternatives to conventional antibiotics. This study examines how resistance to excess iron (III) influences the evolution of bacteriophage resistance in the bacterium Escherichia coli. We utilized experimental evolution in E. coli to test the effect of the evolution of phage T7 resistance on populations resistant to excess iron (III) and populations without excess iron resistance. Phage resistance evolved rapidly in both groups. Dual-resistant (iron (III)/phage) populations were compared to their controls (excess iron (III)-resistant, phage-resistant, no resistance to either) for their performance against each stressor, excess iron (III) and phage; and correlated resistances to excess iron (II), gallium (III), silver (I) and conventional antibiotics. Excess iron (III)/phage-resistant populations demonstrated superior 24 h growth compared to all other populations when exposed to increasing concentrations of iron (II, III), gallium (III), ampicillin, and tetracycline. No differences in 24 h growth were shown between excess iron (III)/phage-resistant and excess iron (III)-resistant populations in chloramphenicol, sulfonamide, and silver (I). The genomic analysis identified selective sweeps in the iron (III) resistant (rpoB, rpoC, yegB, yeaG), phage-resistant (clpX →/→ lon, uvaB, yeaG, fliR, gatT, ypjF, waaC, rpoC, pgi, and yjbH) and iron (III)/phage resistant populations (rcsA, hldE, rpoB, and waaC). E. coli selected for resistance to both excess iron (III) and T7 phage showed some evidence of a synergistic effect on various components of fitness. Dual selection resulted in correlated resistances to ionic metals {iron (II), gallium (III), and silver (I)} and several conventional antibiotics. There is a likelihood that this sort of combination antimicrobial treatment may result in bacterial variants with multiple resistances.
Collapse
Affiliation(s)
- Olusola Jeje
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Akamu J Ewunkem
- Department of Biological Sciences, Winston Salem State University, 601 S Martin Luther King Jr Drive, Winston Salem, NC 27110, USA
| | - Liesl K Jeffers-Francis
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Joseph L Graves
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
7
|
Kamat S, Kumari M. Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Front Microbiol 2023; 14:1102615. [PMID: 36778867 PMCID: PMC9909277 DOI: 10.3389/fmicb.2023.1102615] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial nanoparticles have gained the status of a new generation of drugs that can kill bacterial pathogens by multiple means; however, nanoparticle resistance acquired by some bacterial pathogens has evoked a cause of concern. Several reports suggested that bacteria can develop nanoparticles, specifically metal nanoparticle resistance, by mechanisms: nanoparticle transformation-induced oxidative stress, membrane alterations, reversible adaptive resistance, irreversible modifications to cell division, and a change in bacterial motility and resistance. Surface properties, concentration and aggregation of nanoparticles, biofilm forming and metal exclusion capacity, and R plasmid and flagellin synthesis by bacteria are crucial factors in the development of nanoparticle resistance in bacteria. Studies reported the resistance reversal by modifying the surface corona of nanoparticles or inhibiting flagellin production by bacterial pathogens. Furthermore, strict regulation regarding the use and disposal of nano-waste across the globe, the firm knowledge of microbe-nanoparticle interaction, and the regulated disposal of nanoparticles in soil and water is required to prevent microbes from developing nanoparticle resistance.
Collapse
|
8
|
Baig MMFA, Fatima A, Gao X, Farid A, Ajmal Khan M, Zia AW, Wu H. Disrupting biofilm and eradicating bacteria by Ag-Fe 3O 4@MoS 2 MNPs nanocomposite carrying enzyme and antibiotics. J Control Release 2022; 352:98-120. [PMID: 36243235 DOI: 10.1016/j.jconrel.2022.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/07/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
In this study, novel multilayered magnetic nanoparticles (ML-MNPs) loaded with DNase and/or vancomycin (Vanc) were fabricated for eliminating multispecies biofilms. Iron-oxide MNPs (IO-core) (500-800 nm) were synthesized via co-precipitation; further, the IO-core was coated with heavy-metal-based layers (Ag and MoS2 NPs) using solvent evaporation. DNase and Vanc were loaded onto the outermost layer of the ML-MNP formed by nanoporous MoS2 NPs through physical deposition and adsorption. The biofilms of S. mutans or E. faecalis (or both) were formed in a brain-heart-infusion broth (BHI) for 3 days, followed by treatment with ML-MNPs for 24 h. The results revealed that coatings of Ag (200 nm) and ultrasmall MoS2 (20 nm) were assembled as outer layers of ML-MNPs successfully, and they formed Ag-Fe3O4@MoS2 MNPs (3-5 μm). The DNase-Vanc-loaded MNPs caused nanochannels digging and resulted in the enhanced penetration of MNPs towards the bottom layers of biofilm, which resulted in a decrease in the thickness of the 72-h biofilm from 48 to 58 μm to 0-4 μm. The sustained release of Vanc caused a synergistic bacterial killing up to 96%-100%. The heavy-metal-based layers of MNPs act as nanozymes to interfere with bacterial metabolism and proliferation, which adversely affects biofilm integrity. Further, loading DNase/Vanc onto the nanoporous-MoS2-layer of ML-MNPs promoted nanochannel creation through the biofilm. Therefore, DNase-and Vanc-loaded ML-MNPs exhibited potent effects on biofilm disruption and bacterial killing.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | - Arshia Fatima
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Xiuli Gao
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China.
| | - Awais Farid
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Marie Curie Research Unit, Northumbria University, Newcastle, United Kingdom
| | - Hongkai Wu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; Department of Chemical and Biological Engineering, Division of Biomedical Engineering, School of Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
9
|
Boyd SM, Rhinehardt KL, Ewunkem AJ, Harrison SH, Thomas MD, Graves JL. Experimental Evolution of Copper Resistance in Escherichia coli Produces Evolutionary Trade-Offs in the Antibiotics Chloramphenicol, Bacitracin, and Sulfonamide. Antibiotics (Basel) 2022; 11:antibiotics11060711. [PMID: 35740118 PMCID: PMC9219993 DOI: 10.3390/antibiotics11060711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 02/01/2023] Open
Abstract
The rise in antimicrobial resistant bacteria have prompted the need for antibiotic alternatives. To address this problem, significant attention has been given to the antimicrobial use and novel applications of copper. As novel applications of antimicrobial copper increase, it is important to investigate how bacteria may adapt to copper over time. Here, we used experimental evolution with re-sequencing (EER-seq) and RNA-sequencing to study the evolution of copper resistance in Escherichia coli. Subsequently, we tested whether copper resistance led to rifampicin, chloramphenicol, bacitracin, and/or sulfonamide resistance. Our results demonstrate that E. coli is capable of rapidly evolving resistance to CuSO4 after 37 days of selection. We also identified multiple de novo mutations and differential gene expression patterns associated with copper, most notably those mutations identified in the cpx gene. Furthermore, we found that the copper resistant bacteria had decreased sensitivity when compared to the ancestors in the presence of chloramphenicol, bacitracin, and sulfonamide. Our data suggest that the selection of copper resistance may inhibit growth in the antimicrobials tested, resulting in evolutionary trade-offs. The results of our study may have important implications as we consider the antimicrobial use of copper and how bacteria may respond to increased use over time.
Collapse
Affiliation(s)
- Sada M. Boyd
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Correspondence:
| | - Kristen L. Rhinehardt
- Department of Computational Data Science and Engineering, North Carolina Agricultural and Technical State University, 1601 E. Market Street, Greensboro, NC 27411, USA;
| | - Akamu J. Ewunkem
- Department of Biological Sciences, Winston Salem State University, 601 S. Martin Luther King Jr. Drive, Win-ston-Salem, NC 27110, USA;
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (S.H.H.); (M.D.T.); (J.L.G.J.)
| | - Misty D. Thomas
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (S.H.H.); (M.D.T.); (J.L.G.J.)
| | - Joseph L. Graves
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (S.H.H.); (M.D.T.); (J.L.G.J.)
| |
Collapse
|
10
|
Recent Advances in Synthesis and Applications of MFe 2O 4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles. NANOMATERIALS 2021; 11:nano11061560. [PMID: 34199310 PMCID: PMC8231784 DOI: 10.3390/nano11061560] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022]
Abstract
In the last decade, research on the synthesis and characterization of nanosized ferrites has highly increased and a wide range of new applications for these materials have been identified. The ability to tailor the structure, chemical, optical, magnetic, and electrical properties of ferrites by selecting the synthesis parameters further enhanced their widespread use. The paper reviews the synthesis methods and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles, with emphasis on the advantages and disadvantages of each synthesis route and main applications. Along with the conventional methods like sol-gel, thermal decomposition, combustion, co-precipitation, hydrothermal, and solid-state synthesis, several unconventional methods, like sonochemical, microwave assisted combustion, spray pyrolysis, spray drying, laser pyrolysis, microemulsion, reverse micelle, and biosynthesis, are also presented. MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanosized ferrites present good magnetic (high coercivity, high anisotropy, high Curie temperature, moderate saturation magnetization), electrical (high electrical resistance, low eddy current losses), mechanical (significant mechanical hardness), and chemical (chemical stability, rich redox chemistry) properties that make them suitable for potential applications in the field of magnetic and dielectric materials, photoluminescence, catalysis, photocatalysis, water decontamination, pigments, corrosion protection, sensors, antimicrobial agents, and biomedicine.
Collapse
|