1
|
Nayeem A, Mizi F, Ali MF, Shariffuddin JH. Utilization of cockle shell powder as an adsorbent to remove phosphorus-containing wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114514. [PMID: 36216117 DOI: 10.1016/j.envres.2022.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The paper demonstrates the capability of using cockle shells as an adsorbent for phosphorus removal from simulated petrochemical wastewater, focusing on the actual condition of the petrochemical facultative pond. In this study, the physicochemical properties of shell powder were determined, such as the functional groups, surface morphology, crystalline structure, and surface area using FTIR, SEM, EDX, XRD, and BET. It was observed that the optimum conditions for effective phosphorus removal are under the presence of rotational speed (125Â rpm), higher dosage (7Â g/L), and larger surface area (smaller particle size) of the shell powder. Fine powder achieved up to 52.27% of phosphorus removal after 40Â min compared to coarse powder which could only give 16.67% removal. Additionally, calcined shell powder demonstrated a higher phosphorus removal rate, i.e., up to 62.37%, compared to raw shell powders. The adsorption isotherm was studied using Langmuir and Freundlich models, but the isothermal data fit better for the Freundlich model (R2Â =Â 0.9836). Overall, this study has successfully generated a greener and low-cost adsorbent.
Collapse
Affiliation(s)
- Abdullah Nayeem
- College of Engineering, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Farahin Mizi
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Mohd Faizal Ali
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Jun Haslinda Shariffuddin
- College of Engineering, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia; Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia; Centre for Sustainability of Ecosystem & Earth Resources, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
2
|
Surendhiran D, Roy VC, Park JS, Chun BS. Fabrication of chitosan-based food packaging film impregnated with turmeric essential oil (TEO)-loaded magnetic-silica nanocomposites for surimi preservation. Int J Biol Macromol 2022; 203:650-660. [PMID: 35122800 DOI: 10.1016/j.ijbiomac.2022.01.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
Abstract
Successful modification of chitosan (CS) film using magnetic-silica nanocomposite to encapsulate turmeric essential oil (TEO) obtained by super critical CO2 extraction for enhanced preservation of surimi was performed. TEO exhibited antioxidant and antibacterial activities against Bacillus cereus. The core magnetic nanoparticles (MNPs) were capped with porous silica (Si) to form core-shell nanocomposites, into which TEO was loaded with 75.24% encapsulation efficiency. The fabricated nanocomposite was characterized, blended with CS to cast a bionanocomposite active film and characterized for efficient impregnation of bionanocomposite. The physical and mechanical properties of film were significantly improved after adding MNPs/Si/TEO nanocomposite. Uncontrolled release of TEO from CS film resulted in bacterial growth after 6Â days of storage whereas bionanocomposites exhibited a sustained release of TEO that controlled the microbial load from 4.0 log CFU/g to 2.78 log CFU/g over 14Â days. The overall study demonstrated that the CS/MNPs/Si/TEO bionanocomposite film was efficient as a packaging material for prolonged shelf-life of surimi.
Collapse
Affiliation(s)
| | - Vikash Chandra Roy
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea; Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
3
|
Selvan BK, Thiyagarajan K, Das S, Jaya N, Jabasingh SA, Saravanan P, Rajasimman M, Vasseghian Y. Synthesis and characterization of nano zerovalent iron-kaolin clay (nZVI-Kaol) composite polyethersulfone (PES) membrane for the efficacious As 2O 3 removal from potable water samples. CHEMOSPHERE 2022; 288:132405. [PMID: 34597639 DOI: 10.1016/j.chemosphere.2021.132405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In this study, Kaolin clay, a mining material, was used as an abundant and available mineral as zero-valent iron-kaolinite composites for As2O3 removal from the water samples. The composites were made by the sodium borohydrate reduction method. The existence of Fe0 in the produced composites was confirmed by X-ray diffraction (XRD) and Fourier-Transform Infrared Spectroscopy (FTIR) analysis. The membranes are prepared with zerovalent nano Iron-Kaolin and PES. The synthesized composites were then mixed with polyethersulfone to prepare the membranes S1, S2, and S3 with varying compositions. Field Emission Scanning Electron Microscopy (FESEM) analysis of the produced membranes showed the porous structure and the contact angle of membranes increased the hydrophilicity. The membranes were explored for the removal of As2O3 (AsIII) in potable water samples. The filtration studies were carried out using the syringe filtration setup. Analysis of the arsenic (III) solution was carried out, before and after the filtration process using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), which showed a maximum of 50% reduction in its original concentration. The filtered membrane is analyzed for arsenic by Energy Dispersive X-ray (EDX) technique. Thus, the synthesized membrane effectively sieves the arsenic in water samples.
Collapse
Affiliation(s)
- B Karpanai Selvan
- Dravida Petroleum DMCC, ONGC BVG EPS, B-Athivaraganatham, Cuddalore, 608601, Tamil Nadu, India
| | - K Thiyagarajan
- Department of Nanoscience and Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Soni Das
- Department of Biotechnology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - N Jaya
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - S Anuradha Jabasingh
- Process Engineering Division, School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Ethiopia
| | - P Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 60002, Tamil Nadu, India
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
4
|
Synthesis, Characterization and Application of Polypyrrole Functionalized Nanocellulose for the Removal of Cr(VI) from Aqueous Solution. Polymers (Basel) 2021; 13:polym13213691. [PMID: 34771248 PMCID: PMC8587301 DOI: 10.3390/polym13213691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/24/2023] Open
Abstract
Heavy metals are toxic substances that pose a real danger to humans and organisms, even at low concentration. Therefore, there is an urgent need to remove heavy metals. Herein, the nanocellulose (NC) was synthesized by the hydrolysis of cellulose using sulfuric acid, and then functionalized using polypyrrole (ppy) through a polymerization reaction to produce polypyrrole/nanocellulose (ppy/NC) nanocomposite. The synthesized nanocomposite was characterized using familiar techniques including XRD, FT-IR, SEM, TEM, and TGA. The obtained results showed a well-constructed nanocomposite with excellent thermal stability in the nano-sized scale. The adsorption experiments showed that the ppy/NC nanocomposite was able to adsorb hexavalent chromium (Cr(VI)). The optimum pH for the removal of the heavy metal was pH 2. The interfering ions showed minor effect on the adsorption of Cr(VI) resulted from the competition between ions for the adsorption sites. The adsorption kinetics were studied using pseudo 1st order and pseudo 2nd order models indicating that the pseudo second order model showed the best fit to the experimental data, signifying that the adsorption process is controlled by the chemisorption mechanism. Additionally, the nanocomposite showed a maximum adsorption capacity of 560 mg/g according to Langmuir isotherm. The study of the removal mechanism showed that Cr(VI) ions were removed via the reduction of high toxic Cr(VI) to lower toxic Cr(III) and the electrostatic attraction between protonated ppy and Cr(VI). Interestingly, the ppy/NC nanocomposite was reused for Cr(VI) uptake up to six cycles showing excellent regeneration results. Subsequently, Cr(VI) ions can be effectively removed from aqueous solution using the synthesized nanocomposite as reusable and cost-effective adsorbent.
Collapse
|
5
|
Zaidi R, Khan SU, Farooqi IH, Azam A. Investigation of kinetics and adsorption isotherm for fluoride removal from aqueous solutions using mesoporous cerium-aluminum binary oxide nanomaterials. RSC Adv 2021; 11:28744-28760. [PMID: 35478586 PMCID: PMC9038127 DOI: 10.1039/d1ra00598g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023] Open
Abstract
Herein, we report the synthesis of Ce–Al (1 : 1, 1 : 3, 1 : 6, and 1 : 9) binary oxide nanoparticles by a simple co-precipitation method at room temperature to be applied for defluoridation of an aqueous solution. The characterization of the synthesized nanomaterial was performed by XRD (X-ray diffraction), FTIR (Fourier transform infrared) spectroscopy, TGA/DTA (thermogravimetric analysis/differential thermal analysis), BET (Brunauer–Emmett–Teller) surface analysis, and SEM (scanning electron microscopy). Ce–Al binary oxides in 1 : 6 molar concentration were found to have the highest surface area of 110.32 m2 g−1 with an average crystallite size of 4.7 nm, which showed excellent defluoridation capacity. The adsorptive capacity of the prepared material towards fluoride removal was investigated under a range of experimental conditions such as dosage of adsorbents, pH, and initial fluoride concentration along with adsorption isotherms and adsorption kinetics. The results indicated that fluoride adsorption on cerium–aluminum binary metal oxide nanoparticles occurred within one hour, with maximum adsorption occurring at pH 2.4. The experimental data obtained were studied using Langmuir, Freundlich, and Temkin adsorption isotherm models. The nanomaterial showed an exceptionally high adsorbent capacity of 384.6 mg g−1. Time-dependent kinetic studies were carried out to establish the mechanism of the adsorption process by pseudo-first-order kinetics, pseudo-second-order kinetics, and Weber–Morris intraparticle diffusion kinetic models. The results indicated that adsorption processes followed pseudo-second-order kinetics. This study suggests that cerium–aluminum binary oxide nanoparticles have good potential for fluoride removal from highly contaminated aqueous solutions. Mesoporous Ce–Al binary oxide nanomaterials prepared with a surface area of 110.32 m2 g−1 showed defluoridation capacity at pH 2.4, exhibited maximum adsorption capacity of 384.6 mg g−1 and a removal efficiency of 91.5% at a small dose of nanoadsorbent.![]()
Collapse
Affiliation(s)
- Rumman Zaidi
- Department of Applied Physics, Z. H. College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 India
| | - Saif Ullah Khan
- Environmental Engineering Section, Department of Civil Engineering, Z. H. College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 India
| | - I H Farooqi
- Environmental Engineering Section, Department of Civil Engineering, Z. H. College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 India
| | - Ameer Azam
- Department of Applied Physics, Z. H. College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 India
| |
Collapse
|
6
|
Mousazadeh M, Niaragh EK, Usman M, Khan SU, Sandoval MA, Al-Qodah Z, Khalid ZB, Gilhotra V, Emamjomeh MM. A critical review of state-of-the-art electrocoagulation technique applied to COD-rich industrial wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43143-43172. [PMID: 34164789 DOI: 10.1007/s11356-021-14631-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation, sedimentation, flotation, and electrochemical oxidation processes. Extensive research efforts implementing EC technology have been executed over the last decade to treat chemical oxygen demand (COD)-rich industrial wastewaters with the aim to protect freshwater streams (e.g., rivers, lakes) from pollution. A comprehensive review of the available recent literature utilizing EC to treat wastewater with high COD levels is presented. In addition, recommendations are provided for future studies to improve the EC technology and broaden its range of application. This review paper introduces some technologies which are often adopted for industrial wastewater treatment. Then, the EC process is compared with those techniques as a treatment for COD-rich wastewater. The EC process is considered as the most privileged technology by different research groups owing to its ability to deal with abundant volumes of wastewater. After, the application of EC as a single and combined treatment for COD-rich wastewaters is thoroughly reviewed. Finally, this review attempts to highlight the potentials and limitations of EC. Related to the EC process in batch operation mode, the best operational conditions are found at 10 V and 60 min of voltage and reaction time, respectively. These last values guarantee high COD removal efficiencies of > 90%. This review also concludes that considerably large operation costs of the EC process appears to be the serious drawback and renders it as an unfeasible approach for handling of COD rich wastewaters. In the end, this review has attempted to highlights the potential and limitation of EC and suggests that vast notably research in the field of continuous flow EC system is essential to introduce this technology as a convincing wastewater technology.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elnaz Karamati Niaragh
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Muhammad Usman
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany
| | - Saif Ullah Khan
- Department of Civil Engineering, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, U.P., 202001, India
| | - Miguel Angel Sandoval
- Departamento de QuÃmica de los Materiales, Laboratorio de ElectroquÃmica Medio Ambiental, LEQMA, Universidad de Santiago de Chile USACH, Casilla 40, Correo 33, Santiago, Chile
- División de Ciencias Naturales y Exactas, Departamento de IngenierÃa QuÃmica, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, México
| | - Zakaria Al-Qodah
- Department of Chemical Engineering, Al-Balqa Applied University, Amman, Jordan
| | - Zaied Bin Khalid
- Universiti Malaysia Pahang (UMP), 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mohammad Mahdi Emamjomeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
7
|
Nanomaterials and Nanotechnology in Wastewater Treatment. NANOMATERIALS 2021; 11:nano11061539. [PMID: 34200903 PMCID: PMC8230473 DOI: 10.3390/nano11061539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
|