1
|
Daood U, Ilyas MS, Bashir S, Yousuf N, Rashid M, Kaur K, Bapat RA, Bijle MN, Pichika MR, Mak KK, Zhang S, Sheikh Z, Khan AS, Peters O, Matinlinna JP. Unravelling the Programmed Inflammation and Tissue Repair by a Multipotential Antimicrobial K21 Silane. Int Dent J 2024:S0020-6539(24)01502-8. [PMID: 39322516 DOI: 10.1016/j.identj.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
AIMS AND OBJECTIVES To examine if a novel antimicrobial silane K21 can alter macrophage polarisation and affect fibroblast proliferation by deciphering the molecular pathways for programmed healing using a combined in vitro and in vivo (animal) burn model. MATERIALS AND METHODS An injectable silane-based antimicrobial aimed to modulate macrophage polarisation was manufactured. Experimental analysis included colorimetric cell migration assays on gingival fibroblasts, macrophage phagocytosis characterisation, immunofluorescence staining, triacylglycerol accumulation within macrophages by LCMS, cellular metabolic/proliferation assays, macrophage exposure quantification with morphology assessment using FE-SEM, Raman spectral analysis, RNA isolation for relative gene expression and animal study model to morphometrically and microscopically analyse partial thickness burn wound healing under QAS/K21. RESULTS M1 and M2 polarisation both appeared exaggerated under QAS/K21 treatment. The wounds treated with K21 had depicted accelerated healing as compared to control (P < .05) in dorsal skin of rabbits. Relative gene expression results demonstrate reduced cytokine and anti-inflammatory response under the influence of K21. While M1 expression, TG accumulation, and associated characterisations demonstrate the programmed inflammatory potential of K21. CONCLUSION the antimicrobial and reparative efficacy of K21 silane aids in programmed inflammation for enhanced tissue healing and repair.
Collapse
Affiliation(s)
- Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia; School of Dentistry, The University of Queensland, Herston, Queensland, Australia.
| | | | - Sehar Bashir
- Histopathology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Neelofar Yousuf
- Pharmacology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Maryam Rashid
- Pharmacology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Kanwardeep Kaur
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shiming Zhang
- Interdisciplinary Institute of Life Medicine, Hunan University, Changsha, Hunan Province, China
| | - Zeeshan Sheikh
- Biomaterials & Applied Oral Sciences (BAOS), Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University; Dammam, Saudi Arabia
| | - Ove Peters
- Department of Endodontics, Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA; School of Dentistry, The University of Queensland, Herston, Queensland, Australia
| | - Jukka P Matinlinna
- Dental Materials Science, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Biomaterials Science, Division of Dentistry, School of Medical Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Polo-Montalvo A, Cicuéndez M, Casarrubios L, Barroca N, da Silva D, Feito MJ, Diez-Orejas R, Serrano MC, Marques PAAP, Portolés MT. Effects of graphene oxide and reduced graphene oxide nanomaterials on porcine endothelial progenitor cells. NANOSCALE 2023; 15:17173-17183. [PMID: 37853851 DOI: 10.1039/d3nr03145d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) have been widely used in the field of tissue regeneration and various biomedical applications. In order to use these nanomaterials in organisms, it is imperative to possess an understanding of their impact on different cell types. Due to the potential of these nanomaterials to enter the bloodstream, interact with the endothelium and accumulate within diverse tissues, it is highly relevant to probe them when in contact with the cellular components of the vascular system. Endothelial progenitor cells (EPCs), involved in blood vessel formation, have great potential for tissue engineering and offer great advantages to study the possible angiogenic effects of biomaterials. Vascular endothelial growth factor (VEGF) induces angiogenesis and regulates vascular permeability, mainly activating VEGFR2 on endothelial cells. The effects of GO and two types of reduced GO, obtained after vacuum-assisted thermal treatment for 15 min (rGO15) and 30 min (rGO30), on porcine endothelial progenitor cells (EPCs) functionality were assessed by analyzing the nanomaterial intracellular uptake, reactive oxygen species (ROS) production and VEGFR2 expression by EPCs. The results evidence that short annealing (15 and 30 minutes) at 200 °C of GO resulted in the mitigation of both the increased ROS production and decline in VEGFR2 expression of EPCs upon GO exposure. Interestingly, after 72 hours of exposure to rGO30, VEGFR2 was higher than in the control culture, suggesting an early angiogenic potential of rGO30. The present work reveals that discrete variations in the reduction of GO may significantly affect the response of porcine endothelial progenitor cells.
Collapse
Affiliation(s)
- Alberto Polo-Montalvo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain
| | - Mónica Cicuéndez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
| | - Nathalie Barroca
- Centre for Mechanical Technology & Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
- LASI-Intelligent Systems Associate Laboratory, 4804-533 Guimaräes, Portugal
| | - Daniela da Silva
- Centre for Mechanical Technology & Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
- LASI-Intelligent Systems Associate Laboratory, 4804-533 Guimaräes, Portugal
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
| | - Rosalía Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Paula A A P Marques
- Centre for Mechanical Technology & Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
- LASI-Intelligent Systems Associate Laboratory, 4804-533 Guimaräes, Portugal
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040-Madrid, Spain
| |
Collapse
|
3
|
Casarrubios L, Cicuéndez M, Vallet-Regí M, Portolés MT, Arcos D, Feito MJ. Osteoimmune Properties of Mesoporous Bioactive Nanospheres: A Study on T Helper Lymphocytes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2183. [PMID: 37570501 PMCID: PMC10421130 DOI: 10.3390/nano13152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Bioactive mesoporous glass nanospheres (nanoMBGs) charged with antiosteoporotic drugs have great potential for the treatment of osteoporosis and fracture prevention. In this scenario, cells of the immune system are essential both in the development of disease and in their potential to stimulate therapeutic effects. In the present work, we hypothesize that nanoMBGs loaded with ipriflavone can exert a positive osteoimmune effect. With this objective, we assessed the effects of non-loaded and ipriflavone-loaded nanoparticles (nanoMBGs and nanoMBG-IPs, respectively) on CD4+ Th2 lymphocytes because this kind of cell is implicated in the inhibition of osseous loss by reducing the RANKL/OPG relationship through the secretion of cytokines. The results indicate that nanoMBGs enter efficiently in CD4+ Th2 lymphocytes, mainly through phagocytosis and clathrin-dependent mechanisms, without affecting the function of these T cells or inducing inflammatory mediators or oxidative stress, thus maintaining the reparative Th2 phenotype. Furthermore, the incorporation of the anti-osteoporotic drug ipriflavone reduces the potential unwanted inflammatory response by decreasing the presence of ROS and stimulating intracellular anti-inflammatory cytokine release like IL-4. These results evidenced that nanoMBG loaded with ipriflavone exerts a positive osteoimmune effect.
Collapse
Affiliation(s)
- Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.C.); (M.T.P.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Mónica Cicuéndez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.C.); (M.T.P.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.C.); (M.T.P.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| |
Collapse
|
4
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
5
|
Song Z, Cheng Y, Chen M, Xie X. Macrophage polarization in bone implant repair: A review. Tissue Cell 2023; 82:102112. [PMID: 37257287 DOI: 10.1016/j.tice.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Macrophages (MΦ) are highly adaptable and functionally polarized cells that play a crucial role in various physiological and pathological processes. Typically, MΦ differentiate into two distinct subsets: the proinflammatory (M1) and anti-inflammatory (M2) phenotypes. Due to their potent immunomodulatory and anti-inflammatory properties, MΦ have garnered significant attention in recent decades. In the context of bone implant repair, the immunomodulatory function of MΦ is of paramount importance. Depending on their polarization phenotype, MΦ can exert varying effects on osteogenesis, angiogenesis, and the inflammatory response around the implant. This paper provides an overview of the immunomodulatory and inflammatory effects of MΦ polarization in the repair of bone implants.
Collapse
Affiliation(s)
- Zhengzheng Song
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Yuxi Cheng
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Minmin Chen
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China.
| | - Xiaoli Xie
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Hunan Key Laboratory of Oral Health Research, Changsha 410008, Hunan, China.
| |
Collapse
|
6
|
Arcos D, Portolés MT. Mesoporous Bioactive Nanoparticles for Bone Tissue Applications. Int J Mol Sci 2023; 24:3249. [PMID: 36834659 PMCID: PMC9964985 DOI: 10.3390/ijms24043249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Research in nanomaterials with applications in bone regeneration therapies has experienced a very significant advance with the development of bioactive mesoporous nanoparticles (MBNPs). These nanomaterials consist of small spherical particles that exhibit chemical properties and porous structures that stimulate bone tissue regeneration, since they have a composition similar to that of conventional sol-gel bioactive glasses and high specific surface area and porosity values. The rational design of mesoporosity and their ability to incorporate drugs make MBNPs an excellent tool for the treatment of bone defects, as well as the pathologies that cause them, such as osteoporosis, bone cancer, and infection, among others. Moreover, the small size of MBNPs allows them to penetrate inside the cells, provoking specific cellular responses that conventional bone grafts cannot perform. In this review, different aspects of MBNPs are comprehensively collected and discussed, including synthesis strategies, behavior as drug delivery systems, incorporation of therapeutic ions, formation of composites, specific cellular response and, finally, in vivo studies that have been performed to date.
Collapse
Affiliation(s)
- Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - María Teresa Portolés
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
7
|
Achievements in Mesoporous Bioactive Glasses for Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14122636. [PMID: 36559130 PMCID: PMC9782017 DOI: 10.3390/pharmaceutics14122636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Nowadays, mesoporous bioactive glasses (MBGs) are envisaged as promising candidates in the field of bioceramics for bone tissue regeneration. This is ascribed to their singular chemical composition, structural and textural properties and easy-to-functionalize surface, giving rise to accelerated bioactive responses and capacity for local drug delivery. Since their discovery at the beginning of the 21st century, pioneering research efforts focused on the design and fabrication of MBGs with optimal compositional, textural and structural properties to elicit superior bioactive behavior. The current trends conceive MBGs as multitherapy systems for the treatment of bone-related pathologies, emphasizing the need of fine-tuning surface functionalization. Herein, we focus on the recent developments in MBGs for biomedical applications. First, the role of MBGs in the design and fabrication of three-dimensional scaffolds that fulfil the highly demanding requirements for bone tissue engineering is outlined. The different approaches for developing multifunctional MBGs are overviewed, including the incorporation of therapeutic ions in the glass composition and the surface functionalization with zwitterionic moieties to prevent bacterial adhesion. The bourgeoning scientific literature on MBGs as local delivery systems of diverse therapeutic cargoes (osteogenic/antiosteoporotic, angiogenic, antibacterial, anti-inflammatory and antitumor agents) is addressed. Finally, the current challenges and future directions for the clinical translation of MBGs are discussed.
Collapse
|
8
|
Arcos D, Gómez-Cerezo N, Saiz-Pardo M, de Pablo D, Ortega L, Enciso S, Fernández-Tomé B, Díaz-Güemes I, Sánchez-Margallo FM, Casarrubios L, Feito MJ, Portolés MT, Vallet-Regí M. Injectable Mesoporous Bioactive Nanoparticles Regenerate Bone Tissue under Osteoporosis Conditions. Acta Biomater 2022; 151:501-511. [PMID: 35933104 DOI: 10.1016/j.actbio.2022.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The osteogenic capability of mesoporous bioactive nanoparticles (MBNPs) in the SiO2-CaO system has been assessed in vivo using an osteoporotic rabbit model. MBNPs have been prepared using a double template method, resulting in spherical nanoparticles with a porous core-shell structure that has a high surface area and the ability to incorporate the anti-osteoporotic drug ipriflavone. In vitro expression of the pro-inflammatory genes NF-κB1, IL-6, TNF-α, P38 and NOS2 in RAW-264.7 macrophages, indicates that these nanoparticles do not show adverse inflammatory effects. An injectable system has been prepared by suspending MBNPs in a hyaluronic acid-based hydrogel, which has been injected intraosseously into cavitary bone defects in osteoporotic rabbits. The histological analyses evidenced that MBNPs promote bone regeneration with a moderate inflammatory response. The incorporation of ipriflavone into these nanoparticles resulted in a higher presence of osteoblasts and enhanced angiogenesis at the defect site, but without showing significant differences in terms of new bone formation. STATEMENT OF SIGNIFICANCE: Mesoporous bioactive glass nanoparticles have emerged as one of the most interesting materials in the field of bone regeneration therapies. For the first time, injectable mesoporous bioactive nanoparticles have been tested in vivo using an osteoporotic animal model. Our findings evidence that MBG nanoparticles can be loaded with an antiosteoporotic drug, ipriflavone, and incorporated in hyaluronic acid to make up an injectable hydrogel. The incorporation of MBG nanoparticles promotes bone regeneration even under osteoporotic conditions, whereas the presence of IP enhances angiogenesis as well as the presence of osteoblast cells lining in the newly formed bone. The injectable device presented in this work opens new possibilities for the intraosseous treatment of osteoporotic bone using minimally invasive surgery.
Collapse
Affiliation(s)
- D Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain.
| | - N Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - M Saiz-Pardo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - D de Pablo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - L Ortega
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - S Enciso
- Centro de Cirugía de Mínima Invasión Jesus Usón, NANBIOSIS, Cáceres, Spain
| | - B Fernández-Tomé
- Centro de Cirugía de Mínima Invasión Jesus Usón, NANBIOSIS, Cáceres, Spain
| | - I Díaz-Güemes
- Centro de Cirugía de Mínima Invasión Jesus Usón, NANBIOSIS, Cáceres, Spain
| | | | - L Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M J Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M T Portolés
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Cheng P, Cao T, Zhao X, Lu W, Miao S, Ning F, Wang D, Gao Y, Wang L, Pei G, Yang L. Nidogen1-enriched extracellular vesicles accelerate angiogenesis and bone regeneration by targeting Myosin-10 to regulate endothelial cell adhesion. Bioact Mater 2022; 12:185-197. [PMID: 35310379 PMCID: PMC8897190 DOI: 10.1016/j.bioactmat.2021.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
The technique bottleneck of repairing large bone defects with tissue engineered bone is the vascularization of tissue engineered grafts. Although some studies have shown that extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (BMSCs) promote bone healing and repair by accelerating angiogenesis, the effector molecules and the mechanism remain unclear, which fail to provide ideas for the future research and development of cell-free interventions. Here, we found that Nidogen1-enriched EV (EV-NID1) derived from BMSCs interferes with the formation and assembly of focal adhesions (FAs) by targeting myosin-10, thereby reducing the adhesion strength of rat arterial endothelial cells (RAECs) to the extracellular matrix (ECM), and enhancing the migration and angiogenesis potential of RAECs. Moreover, by delivery with composite hydrogel, EV-NID1 is demonstrated to promote angiogenesis and bone regeneration in rat femoral defects. This study identifies the intracellular binding target of EV-NID1 and further elucidates a novel approach and mechanism, thereby providing a cell-free construction strategy with precise targets for the development of vascularized tissue engineering products. Nidogen1 is enriched in extracellular vesicles (EV-NID1) derived from BMSCs. EV-NID1 interferes with the formation and assembly of focal adhesions (FAs). Myosin-10 was identified as the intracellular binding target of EV-NID1. The composite hydrogel loaded with EV-NID1 promotes the repair of bone defects by accelerating angiogenesis.
Collapse
Affiliation(s)
- Pengzhen Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tianqing Cao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xueyi Zhao
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Weiguang Lu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fenru Ning
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dong Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Gao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Long Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Corresponding author.
| | - Liu Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Corresponding author.
| |
Collapse
|
10
|
Gisbert-Garzarán M, Vallet-Regí M. Nanoparticles for Bio-Medical Applications. NANOMATERIALS 2022; 12:nano12071189. [PMID: 35407307 PMCID: PMC9002538 DOI: 10.3390/nano12071189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022]
Abstract
The Special Issue of Nanomaterials "Nanoparticles for Biomedical Applications" highlights the use of different types of nanoparticles for biomedical applications, including magnetic nanoparticles, mesoporous carbon nanoparticles, mesoporous bioactive glass nanoparticles, and mesoporous silica nanoparticles [...].
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Faculté de Pharmacie, Université Paris-Saclay, CEDEX, F-92296 Châtenay-Malabry, France
- Correspondence: (M.G.-G.); (M.V.-R.)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.G.-G.); (M.V.-R.)
| |
Collapse
|
11
|
Mesoporous Bioglasses Enriched with Bioactive Agents for Bone Repair, with a Special Highlight of María Vallet-Regí’s Contribution. Pharmaceutics 2022; 14:pharmaceutics14010202. [PMID: 35057097 PMCID: PMC8778065 DOI: 10.3390/pharmaceutics14010202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout her impressive scientific career, Prof. María Vallet-Regí opened various research lines aimed at designing new bioceramics, including mesoporous bioactive glasses for bone tissue engineering applications. These bioactive glasses can be considered a spin-off of silica mesoporous materials because they are designed with a similar technical approach. Mesoporous glasses in addition to SiO2 contain significant amounts of other oxides, particularly CaO and P2O5 and therefore, they exhibit quite different properties and clinical applications than mesoporous silica compounds. Both materials exhibit ordered mesoporous structures with a very narrow pore size distribution that are achieved by using surfactants during their synthesis. The characteristics of mesoporous glasses made them suitable to be enriched with various osteogenic agents, namely inorganic ions and biopeptides as well as mesenchymal cells. In the present review, we summarize the evolution of mesoporous bioactive glasses research for bone repair, with a special highlight on the impact of Prof. María Vallet-Regí´s contribution to the field.
Collapse
|
12
|
Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H, Chen T. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomater Sci 2021; 9:5437-5471. [PMID: 34296233 DOI: 10.1039/d1bm00526j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, there has been rapid progress in MXene research due to its distinctive two-dimensional structure and outstanding properties. Especially in biomedical applications, MXenes have attracted widespread favor with numerous studies on biosafety, bioimaging, therapy, and biosensing, although their development is still in the experimental stage. A comprehensive understanding of the current status of MXenes in biomedicine will promote their use in clinical applications. Here, we review advances in MXene research. First, we introduce the methods of synthesis, surface modification and functionalization of MXenes. Then, we summarize the biosafety and biocompatibility, paving the way for specific biomedical applications. On this basis, MXene nanostructures are described with respect to their use in antibacterial, bioimaging, cancer therapy, tissue regeneration and biosensor applications. Finally, we discuss MXene as a promising candidate material for further applications in biomedicine.
Collapse
Affiliation(s)
- Xiangping Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhongjun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jianxin Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China. and Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
13
|
Vallet-Regi M, Salinas A. Mesoporous bioactive glasses for regenerative medicine. Mater Today Bio 2021; 11:100121. [PMID: 34377972 PMCID: PMC8327654 DOI: 10.1016/j.mtbio.2021.100121] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cells are the central element of regenerative medicine (RM). However, in many clinical applications, the use of scaffolds fabricated with biomaterials is required. In this sense, mesoporous bioactive glasses (MBGs) are going to play an important role in bone regeneration because of their striking textural properties, quick bioactive response, and biocompatibility. As other bioactive glasses, MBGs are mainly formed by silicon, calcium, and phosphorus oxides whose ions play an important role in cell proliferation as well as in homeostasis and bone remodeling process. A common improvement of bioactive glasses for RM is by adding small amounts of oxides of elements that confer them additional biological capacities, including osteogenic, angiogenic, antibacterial, anti-inflammatory, hemostatic, or anticancer properties. Moreover, MBGs are versatile in terms of the different ways in which they can be processed, such as scaffolds, fibers, coatings, or nanoparticles. MBGs are unique because their textural properties are so high that they still exhibit outstanding bioactive responses even after adding extra inorganic ions or being processed as scaffolds or nanoparticles. Moreover, they can be further improved by loading with biomolecules, drugs, and stem cells. This article reviews the state of the art and future perspectives of MBGs in the field of RM of hard tissues.
Collapse
Affiliation(s)
- M. Vallet-Regi
- Department Chemistry in Pharmaceutical Sciences, Universidad Complutense (UCM) Madrid, Spain
- IIS, Hospital 12 de Octubre (imas12), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - A.J. Salinas
- Department Chemistry in Pharmaceutical Sciences, Universidad Complutense (UCM) Madrid, Spain
- IIS, Hospital 12 de Octubre (imas12), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|