1
|
Koul V, Sharma A, Kumari D, Jamwal V, Palmo T, Singh K. Breaking the resistance: integrative approaches with novel therapeutics against Klebsiella pneumoniae. Arch Microbiol 2024; 207:18. [PMID: 39724243 DOI: 10.1007/s00203-024-04205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Klebsiella pneumoniae is a leading cause of anti-microbial resistance in healthcare-associated infections that have posed a severe threat to neonatal and wider community. The escalating crises of antibiotic resistance have compelled researchers to explore an innovative arsenal beginning from natural resources to chemical modifications in order to overcome the ever-increasing resistance issues. The present review highlights the drug discovery efforts with a special focus on cutting-edge strategies in the hunt for potential drug candidates against MDR/XDR Klebsiella pneumoniae. Nature's bounty constituting plant extracts, essential oils, fungal extracts, etc. holds promising anti-bacterial potential especially when combined with existing antibiotics. Further, enhancing these natural products with synthetic moieties has improved their effectiveness, creating a bridge between the natural and synthetic world. Conversely, the synthetically modified novel scaffolds have been also designed to meticulously target specific sites. Furthermore, we have also elaborated various emerging strategies for broad-spectrum infections caused by K. pneumoniae, which include anti-microbial peptides, nanotechnology, drug repurposing, bacteriophage, photodynamic, and multidrug therapies. This review further addresses the challenges confronted by the research community and the future way forward in the field of drug discovery against multi-resistant bacterial infections.
Collapse
Affiliation(s)
- Vimarishi Koul
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani campus, Pilani, Rajasthan, 333031, India
| | - Akshi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishwani Jamwal
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Ghajari G, Naser RH, Pecho RDC, Alhili F, Piri-Gharaghie T. RETRACTED ARTICLE: Chitosan/Pectin Nanoparticles Encapsulated with Echinacea pallida: a Focus on Antibacterial and Antibiofilm Activity Against Multidrug-Resistant Staphylococcus aureus. Appl Biochem Biotechnol 2024; 196:7555. [PMID: 37656354 DOI: 10.1007/s12010-023-04709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rana Hussein Naser
- Department of Science, College of Basic Education-Science, University of Diyala, Baqubah, Diyala, Iraq
| | | | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
3
|
Cai M, Xu Q, Zhao S, Zhou X, Cai Y, He X. Antibacterial Effect of Euryale ferox Seed Shell Polyphenol Extract on Salmonella Typhimurium. Foodborne Pathog Dis 2024; 21:570-577. [PMID: 38957974 DOI: 10.1089/fpd.2023.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
This study aimed to evaluate the effects of Euryale ferox Seed Shell Polyphenol Extract (EFSSPE) on a foodborne pathogenic bacterium. EFSSPE showed antimicrobial activity toward Salmonella Typhimurium CICC 22956; the minimum inhibitory concentration of EFSSPE was 1.25 mg/mL, the inhibition curve also reflected the inhibitory effect of EFSSPE on the growth of S. Typhimurium. Detection of alkaline phosphatase outside the cell revealed that EFSSPE treatment damaged the cell wall integrity of S. Typhimurium. EFSSPE also altered the membrane integrity, thereby causing leaching of 260-nm-absorbing material (bacterial proteins and DNA). Moreover, the activities of succinate dehydrogenase and malate dehydrogenase were inhibited by EFSSPE. The hydrophobicity and clustering ability of cells were affected by EFSSPE. Scanning electron microscopy showed that EFSSPE treatment damaged the morphology of the tested bacteria. These results indicate that EFSSPE can destroy the cell wall integrity and alter the permeability of the cell membrane of S. Typhimurium.
Collapse
Affiliation(s)
- Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qiaoqiao Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shili Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianhan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuelin Cai
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China
| | - Xingle He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Jetti R, Vaca Cárdenas ML, Al-Saedi HFS, Hussein SA, Abdulridui HA, Al-Abdeen SHZ, Radi UK, Abdulkadhim AH, Hussein SB, Alawadi A, Alsalamy A. Ultrasonic synthesis of green lipid nanocarriers loaded with Scutellaria barbata extract: a sustainable approach for enhanced anticancer and antibacterial therapy. Bioprocess Biosyst Eng 2024; 47:1321-1334. [PMID: 38647679 DOI: 10.1007/s00449-024-03021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Ultrasonic manufacturing has emerged as a promising eco-friendly approach to synthesize lipid-based nanocarriers for targeted drug delivery. This study presents the novel ultrasonic preparation of lipid nanocarriers loaded with Scutellaria barbata extract, repurposed for anticancer and antibacterial use. High-frequency ultrasonic waves enabled the precise self-assembly of DSPE-PEG, Span 40, and cholesterol to form nanocarriers encapsulating the therapeutic extract without the use of toxic solvents, exemplifying green nanotechnology. Leveraging the inherent anticancer and antibacterial properties of Scutellaria barbata, the study demonstrates that lipid encapsulation enhances the bioavailability and controlled release of the extract, which is vital for its therapeutic efficacy. Dynamic light scattering and transmission electron microscopy analyses confirmed the increase in size and successful encapsulation post-loading, along with an augmented negative zeta potential indicating enhanced stability. A high encapsulation efficiency of 91.93% was achieved, and in vitro assays revealed the loaded nanocarriers' optimized release kinetics and improved antimicrobial potency against Pseudomonas aeruginosa, compared to the free extract. The combination of ultrasonic synthesis and Scutellaria barbata in an eco-friendly manufacturing process not only advances green nanotechnology but also contributes to sustainable practices in pharmaceutical manufacturing. The data suggest that this innovative nanocarrier system could provide a robust platform for the development of nanotechnology-based therapeutics, enhancing drug delivery efficacy while aligning with environmental sustainability.
Collapse
Affiliation(s)
- Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Maritza Lucia Vaca Cárdenas
- Facultad de Ciencias Pecuarias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur Km 1½, Riobamba, 060155, Ecuador
| | | | | | | | | | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Adnan Hashim Abdulkadhim
- Department of Computer Engineering, Technical Engineering College, Al-Ayen University, Dhi Qar, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq.
- College of Technical Engineering, The Islamic University of Al-Diwaniyah, Al-Diwaniyah, Iraq.
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq.
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
5
|
Rosa DS, Oliveira SADS, Souza RDFS, de França CA, Pires IC, Tavares MRS, de Oliveira HP, da Silva Júnior FAG, Moreira MAS, de Barros M, de Menezes GB, Antunes MM, Azevedo VADC, Naue CR, da Costa MM. Antimicrobial and antibiofilm activity of highly soluble polypyrrole against methicillin-resistant Staphylococcus aureus. J Appl Microbiol 2024; 135:lxae072. [PMID: 38503568 DOI: 10.1093/jambio/lxae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
AIMS The purpose was to evaluate the antimicrobial activity of highly soluble polypyrrole (Hs-PPy), alone or combined with oxacillin, as well as its antibiofilm potential against methicillin-resistant Staphylococcus aureus strains. Furthermore, the in silico inhibitory mechanism in efflux pumps was also investigated. METHODS AND RESULTS Ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two reference strains were used. Antimicrobial activity was determined by broth microdilution, and the combination effect with oxacillin was evaluated by the checkerboard assay. The biofilm formation capacity of MRSA and the interference of Hs-PPy were evaluated. The inhibitory action of Hs-PPy on the efflux pump was evaluated in silico through molecular docking. Hs-PPy showed activity against the isolates, with inhibitory action between 62.5 and 125 µg ml-1 and bactericidal action at 62.5 µg ml-1, as well as synergism in association with oxacillin. The isolates ranged from moderate to strong biofilm producers, and Hs-PPy interfered with the formation of this structure, but not with mature biofilm. There was no in silico interaction with the efflux protein EmrD, the closest homolog to NorA. CONCLUSIONS Hs-PPy interferes with biofilm formation by MRSA, has synergistic potential, and is an efflux pump inhibitor.
Collapse
Affiliation(s)
- Danillo Sales Rosa
- Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco 56300-000, Brazil
| | | | | | | | | | | | | | | | | | - Mariana de Barros
- Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Maísa Mota Antunes
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Carine Rosa Naue
- Hospital Universitário da Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco 56304-205, Brazil
| | | |
Collapse
|
6
|
Riazi H, Goodarzi MT, Tabrizi MH, Mozaffari M, Neamati A. Preparation of the Myricetin-Loaded PEGylated Niosomes and Evaluation of their in vitro Anti-Cancer Potentials. Chem Biodivers 2024; 21:e202301767. [PMID: 38470176 DOI: 10.1002/cbdv.202301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
Several edible plants contain flavonoids, including myricetin (Myr), which perform a wide range of biological activities. Myr has antitumor properties against various tumor cells. In this study Myr-loaded PEGylated niosomes (Myr-PN) were prepared and their anti-cancer activities were evaluated in vitro. Myr-PNs were prepared as a tool for drug delivery to the tumor site. Myr-PN was characterized in terms of size, zeta potential, and functional groups using dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (SEM). The Myr-PN size was 241 nm with a polydispersity index (PDI) of 0.20, and zeta potential -32.7±6.6 mV. Apoptotic properties of Myr-PN against normal and cancer cell lines were determined by flow cytometry and real-time quantitative PCR. Cancer cells showed higher cytotoxicity when treated with Myr-PN compared with normal cells, indicating that the synthesized nanoparticles pose no adverse effects. Apoptosis was induced in cells treated with 250 μg/mL of Myr-PN, in which 45.2 % of cells were arrested in subG1, suggesting that Myr-PN can induce apoptosis. In vitro, the synthesized Myr-PN demonstrated potent anticancer properties. Furthermore, more research should be conducted in vitro and in vivo to study the more details of Myr-PN anti-cancer effects.
Collapse
Affiliation(s)
- Hanieh Riazi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | | | - Majid Mozaffari
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
7
|
Roostaee M, Derakhshani A, Mirhosseini H, Banaee Mofakham E, Fathi-Karkan S, Mirinejad S, Sargazi S, Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: a review of emerging therapies with emphasis on cancer. NANOSCALE 2024; 16:2713-2746. [PMID: 38213285 DOI: 10.1039/d3nr03495j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nanoniosome-based drug codelivery systems have become popular therapeutic instruments, demonstrating tremendous promise in cancer therapy, infection treatment, and other therapeutic domains. An emerging form of vesicular nanocarriers, niosomes are self-assembling vesicles composed of nonionic surfactants, along with cholesterol or other amphiphilic molecules. This comprehensive review focuses on how nanosystems may aid in making anticancer and antibacterial pharmaceuticals more stable and soluble. As malleable nanodelivery instruments, the composition, types, preparation procedures, and variables affecting the structure and stability of niosomes are extensively investigated. In addition, the advantages of dual niosomes for combination therapy and the administration of multiple medications simultaneously are highlighted. Along with categorizing niosomal drug delivery systems, a comprehensive analysis of various preparation techniques, including thin-layer injection, ether injection, and microfluidization, is provided. Dual niosomes for cancer treatment are discussed in detail regarding the codelivery of two medications and the codelivery of a drug with organic, plant-based bioactive compounds or gene agents. In addition, niogelosomes and metallic niosomal carriers for targeted distribution are discussed. The review also investigates the simultaneous delivery of bioactive substances and gene agents, including siRNA, microRNA, shRNA, lncRNA, and DNA. Additional sections discuss the use of dual niosomes for cutaneous drug delivery and treating leishmanial infections, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The study concludes by delineating the challenges and potential routes for nanoniosome-based pharmaceutical codelivery systems, which will be useful for nanomedicine practitioners and researchers.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Atefeh Derakhshani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadiseh Mirhosseini
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Elmira Banaee Mofakham
- Department of Nanotechnology and Advanced Materials Research, Materials & Energy Research Center, Karaj, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| |
Collapse
|
8
|
Khaleghian M, Sahrayi H, Hafezi Y, Mirshafeeyan M, Moghaddam ZS, Farasati Far B, Noorbazargan H, Mirzaie A, Ren Q. In silico design and mechanistic study of niosome-encapsulated curcumin against multidrug-resistant Staphylococcus aureus biofilms. Front Microbiol 2023; 14:1277533. [PMID: 38098658 PMCID: PMC10720333 DOI: 10.3389/fmicb.2023.1277533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Curcumin, an important natural component of turmeric, has been known for a long time for its antimicrobial properties. This study aimed to investigate the anti-biofilm action of the niosome-encapsulated curcumin and explore the involved anti-biofilm mechanism. In silico investigations of ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) were first performed to predict the suitability of curcumin for pharmaceutical application. Curcumin showed low toxicity but at the same time, low solubility and low stability, which, in turn, might reduce its antimicrobial activity. To overcome these intrinsic limitations, curcumin was encapsulated using a biocompatible niosome system, and an encapsulation efficiency of 97% was achieved. The synthesized curcumin-containing niosomes had a spherical morphology with an average diameter of 178 nm. The niosomal curcumin was capable of reducing multi-drug resistant (MDR) Staphylococcus aureus biofilm 2-4-fold compared with the free curcumin. The encapsulated curcumin also demonstrated no significant cytotoxicity on the human foreskin fibroblasts. To understand the interaction between curcumin and S. aureus biofilm, several biofilm-related genes were analyzed for their expression. N-acetylglucosaminyl transferase (IcaD), a protein involved in the production of polysaccharide intercellular adhesion and known to play a function in biofilm development, was found to be downregulated by niosomal curcumin and showed high binding affinity (-8.3 kcal/mol) with curcumin based on molecular docking analysis. Our study suggests that the niosome-encapsulated curcumin is a promising approach for the treatment of MDR S. aureus biofilm and can be extended to biofilms caused by other pathogens.
Collapse
Affiliation(s)
| | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Yousef Hafezi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahshad Mirshafeeyan
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Shahr-e Jadid-e Parand, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
9
|
Filippov SK, Khusnutdinov R, Murmiliuk A, Inam W, Zakharova LY, Zhang H, Khutoryanskiy VV. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results. MATERIALS HORIZONS 2023; 10:5354-5370. [PMID: 37814922 DOI: 10.1039/d3mh00717k] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
In this focus article, we provide a scrutinizing analysis of transmission electron microscopy (TEM) and dynamic light scattering (DLS) as the two common methods to study the sizes of nanoparticles with focus on the application in pharmaceutics and drug delivery. Control over the size and shape of nanoparticles is one of the key factors for many biomedical systems. Particle size will substantially affect their permeation through biological membranes. For example, an enhanced permeation and retention effect requires a very narrow range of sizes of nanoparticles (50-200 nm) and even a minor deviation from these values will substantially affect the delivery of drug nanocarriers to the tumour. However, amazingly a great number of research papers in pharmaceutics and drug delivery report a striking difference in nanoparticle size measured by the two most popular experimental techniques (TEM and DLS). In some cases, this difference was reported to be 200-300%, raising the question of which size measurement result is more trustworthy. In this focus article, we primarily focus on the physical aspects that are responsible for the routinely observed mismatch between TEM and DLS results. Some of these factors such as concentration and angle dependencies are commonly underestimated and misinterpreted. We convincingly show that correctly used experimental procedures and a thorough analysis of results generated using both methods can eliminate the DLS and TEM data mismatch completely or will make the results much closer to each other. Also, we provide a clear roadmap for drug delivery and pharmaceutical researchers to conduct reliable DLS measurements.
Collapse
Affiliation(s)
- Sergey K Filippov
- School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, UK.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Ramil Khusnutdinov
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russian Federation
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | |
Collapse
|
10
|
Truzzi E, Bertelli D, Bilia AR, Vanti G, Maretti E, Leo E. Combination of Nanodelivery Systems and Constituents Derived from Novel Foods: A Comprehensive Review. Pharmaceutics 2023; 15:2614. [PMID: 38004592 PMCID: PMC10674267 DOI: 10.3390/pharmaceutics15112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Novel Food is a new category of food, regulated by the European Union Directive No. 2015/2283. This latter norm defines a food as "Novel" if it was not used "for human consumption to a significant degree within the Union before the date of entry into force of that regulation, namely 15 May 1997". Recently, Novel Foods have received increased interest from researchers worldwide. In this sense, the key areas of interest are the discovery of new benefits for human health and the exploitation of these novel sources of materials in new fields of application. An emerging area in the pharmaceutical and medicinal fields is nanotechnology, which deals with the development of new delivery systems at a nanometric scale. In this context, this review aims to summarize the recent advances on the design and characterization of nanodelivery systems based on materials belonging to the Novel Food list, as well as on nanoceutical products formulated for delivering compounds derived from Novel Foods. Additionally, the safety hazard of using nanoparticles in food products, i.e., food supplements, has been discussed in view of the current European regulation, which considers nanomaterials as Novel Foods.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Giulia Vanti
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| |
Collapse
|
11
|
Basheer HA, Alhusban MA, Zaid Alkilani A, Alshishani A, Elsalem L, Afarinkia K. Niosomal Delivery of Celecoxib and Metformin for Targeted Breast Cancer Treatment. Cancers (Basel) 2023; 15:5004. [PMID: 37894371 PMCID: PMC10605450 DOI: 10.3390/cancers15205004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer continues to be a prominent worldwide health concern and requires continued investigation into innovative therapeutic approaches. Here, we report the first investigation into the therapeutic efficacy of combining Metformin (MET) and Celecoxib (CXB), both in free and niosomal form, for the treatment of breast cancer. Our investigation encompassed the characterization of these niosomal drug carriers, their stability assessment, and their effect on breast cancer cell models. The thin-film hydration technique was employed to prepare niosomes with spherical, uniform-size distributions and high encapsulation efficiencies. The niosomes were characterized by TEM, particle size analyzer, and ATR-FTIR. The niosomes with an average size of 110.6 ± 0.6 and 96.7 ± 0.7, respectively, for MET and CXB were stable when stored at 4 °C for three months with minimal drug leakage, minor changes in encapsulation efficiency and size, and unchanged physicochemical parameters. Evaluation in two-dimensional (2D) and three-dimensional (3D) viability assays demonstrated an increased cytotoxicity of encapsulated drugs when compared to their free-drug counterparts. Additionally, the combination of Metformin Niosomal Particles (MET NPs) and Celecoxib Niosomal Particles (CXB NPs) led to decreased cell viability in both 2D and 3D models compared to each drug administered individually. When comparing the effect of the niosomal versus the free combination of the drugs on cell migration, we found that both interventions effectively prevented cell migration. However, the efficacy of the niosomes' combination was not superior to that of the free drug combination (p < 0.05). In conclusion, the results of this study provide valuable insights into the potential application of combining MET and CXB nanoparticle delivery systems to breast cancer treatment. Exploring the in vivo application of this drug delivery system could open new avenues for more effective and targeted therapeutic approaches for breast cancer patients.
Collapse
Affiliation(s)
- Haneen A. Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Maram A. Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Anas Alshishani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Kamyar Afarinkia
- School of Biomedical Sciences, University of West London, London W5 5RF, UK;
| |
Collapse
|
12
|
Barani M, Paknia F, Roostaee M, Kavyani B, Kalantar-Neyestanaki D, Ajalli N, Amirbeigi A. Niosome as an Effective Nanoscale Solution for the Treatment of Microbial Infections. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9933283. [PMID: 37621700 PMCID: PMC10447041 DOI: 10.1155/2023/9933283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Numerous disorders go untreated owing to a lack of a suitable drug delivery technology or an appropriate therapeutic moiety, particularly when toxicities and side effects are a major concern. Treatment options for microbiological infections are not fulfilled owing to significant adverse effects or extended therapeutic options. Advanced therapy options, such as active targeting, may be preferable to traditional ways of treating infectious diseases. Niosomes can be defined as microscopic lamellar molecules formed by a mixture of cholesterol, nonionic surfactants (alkyl or dialkyl polyglycerol ethers), and sometimes charge-inducing agents. These molecules comprise both hydrophilic and hydrophobic moieties of varying solubilities. In this review, several pathogenic microbes such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Plasmodium, Leishmania, and Candida spp. have been evaluated. Also, the development of a proper niosomal formulation for the required application was discussed. This review also reviews that an optimal formulation is dependent on several aspects, including the choice of nonionic surfactant, fabrication process, and fabrication parameters. Finally, this review will give information on the effectiveness of niosomes in treating acute microbial infections, the mechanism of action of niosomes in combating microbial pathogens, and the advantages of using niosomes over other treatment modalities.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Abdihaji M, Mirzaei Chegeni M, Hadizadeh A, Farrokhzad N, Kheradmand Z, Fakhrfatemi P, Faress F, Moeinabadi-Bidgoli K, Noorbazargan H, Mostafavi E. Polyvinyl Alcohol (PVA)-Based Nanoniosome for Enhanced in vitro Delivery and Anticancer Activity of Thymol. Int J Nanomedicine 2023; 18:3459-3488. [PMID: 37396433 PMCID: PMC10314792 DOI: 10.2147/ijn.s401725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction There is an unmet need to develop potent therapeutics against cancer with minimal side effects and systemic toxicity. Thymol (TH) is an herbal medicine with anti-cancer properties that has been investigated scientifically. This study shows that TH induces apoptosis in cancerous cell lines such as MCF-7, AGS, and HepG2. Furthermore, this study reveals that TH can be encapsulated in a Polyvinyl alcohol (PVA)-coated niosome (Nio-TH/PVA) to enhance its stability and enable its controlled release as a model drug in the cancerous region. Materials and Methods TH-loaded niosome (Nio-TH) was fabricated and optimized using Box-Behnken method and the size, polydispersity index (PDI) and entrapment efficiency (EE) were characterized by employing DLS, TEM and SEM, respectively. Additionally, in vitro drug release and kinetic studies were performed. Cytotoxicity, antiproliferative activity, and the mechanism were assessed by MTT assay, quantitative real-time PCR, flow cytometry, cell cycle, caspase activity evaluation, reactive oxygen species investigation, and cell migration assays. Results This study demonstrated the exceptional stability of Nio-TH/PVA at 4 °C for two months and its pH-dependent release profile. It also showed its high toxicity on cancerous cell lines and high compatibility with HFF cells. It revealed the modulation of Caspase-3/Caspase-9, MMP-2/MMP-9 and Cyclin D/ Cyclin E genes by Nio-TH/PVA on the studied cell lines. It confirmed the induction of apoptosis by Nio-TH/PVA in flow cytometry, caspase activity, ROS level, and DAPI staining assays. It also verified the inhibition of metastasis by Nio-TH/PVA in migration assays. Conclusion Overall, the results of this study revealed that Nio-TH/PVA may effectively transport hydrophobic drugs to cancer cells with a controlled-release profile to induce apoptosis while exhibiting no detectable side effects due to their biocompatibility with normal cells.
Collapse
Affiliation(s)
- Mohammadreza Abdihaji
- Department of Biology, The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Farrokhzad
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zahra Kheradmand
- Department of Agriculture, Islamic Azad University Maragheh Branch, Maragheh, Iran
| | | | - Fardad Faress
- Department of Business, Data Analysis, The University of Texas Rio Grande Valley (UTRGV), Edinburg, TX, USA
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Moghtaderi M, Bazzazan S, Sorourian G, Sorourian M, Akhavanzanjani Y, Noorbazargan H, Ren Q. Encapsulation of Thymol in Gelatin Methacryloyl (GelMa)-Based Nanoniosome Enables Enhanced Antibiofilm Activity and Wound Healing. Pharmaceutics 2023; 15:1699. [PMID: 37376147 DOI: 10.3390/pharmaceutics15061699] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Non-healing wounds impose huge cost on patients, healthcare, and society, which are further fortified by biofilm formation and antimicrobial resistance (AMR) problems. Here, Thymol, an herbal antimicrobial agent, is utilized to combat AMR. For efficient delivery of Thymol gelatin methacryloyl (GelMa), a hydrophilic polymeric hydrogel with excellent biocompatibility combined with niosome was used to encapsulate Thymol. After optimization of the niosomal Thymol (Nio-Thymol) in the company of GelMa (Nio-Thymol@GelMa) to achieve maximum entrapment efficiency, minimum size, and low polydispersity index, the Thymol release peaked at 60% and 42% from Nio-Thymol@GelMa in medium with pH values of 6.5 and 7.4 after 72 h, respectively. Furthermore, Nio-Thymol@GelMa demonstrated higher antibacterial and anti-biofilm activity than Nio-Thymol and free Thymol against both Gram-negative and Gram-positive bacteria. Interestingly, compared with other obtained formulations, Nio-Thymol@GelMa also led to greater enhancement of migration of human dermal fibroblasts in vitro, and higher upregulation of the expression of certain growth factors such as FGF-1, and matrix metalloproteinases such as MMP-2 and MMP-13. These results suggest that Nio-Thymol@GelMa can represent a potential drug preparation for Thymol to enhance the wound healing process and antibacterial efficacy.
Collapse
Affiliation(s)
- Maryam Moghtaderi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Saba Bazzazan
- Department of Community Medicine, Mashhad Branch, Islamic Azad University, Mashhad 1477893855, Iran
| | - Ghazal Sorourian
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Maral Sorourian
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Yasaman Akhavanzanjani
- Department of Molecular and Cellular Biology, Faculty of Advance Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1517964311, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| |
Collapse
|
15
|
Ashkezari S, Abtahi MS, Sattari Z, Tavakkoli Yaraki M, Hosseini F, Inanloo Salehi R, Afzali E, Hajihosseini S, Mousavi-Niri N. Antibiotic and inorganic nanoparticles co-loaded into carboxymethyl chitosan-functionalized niosome: Synergistic enhanced antibacterial and anti-biofilm activities. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
AlBalawi AN, Elmetwalli A, Baraka DM, Alnagar HA, Alamri ES, Hassan MG. Chemical Constituents, Antioxidant Potential, and Antimicrobial Efficacy of Pimpinella anisum Extracts against Multidrug-Resistant Bacteria. Microorganisms 2023; 11:microorganisms11041024. [PMID: 37110449 PMCID: PMC10144661 DOI: 10.3390/microorganisms11041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Aniseeds (Pimpinella anisum) have gained increasing attention for their nutritional and health benefits. Aniseed extracts are known to contain a range of compounds, including flavonoids, terpenes, and essential oils. These compounds have antimicrobial properties, meaning they can help inhibit the growth of nasty bacteria and other microbes. The purpose of this study was to determine if aniseed extracts have potential antioxidant, phytochemical, and antimicrobial properties against multidrug-resistant (MDR) bacteria. A disc diffusion test was conducted in vitro to test the aniseed methanolic extract's antibacterial activity. The MIC, MBC, and inhibition zone diameters measure the minimum inhibitory concentration, minimum bactericidal concentration, and size of the zone developed when the extract is placed on a bacterial culture, respectively. HPLC and GC/MS are analytical techniques used for identifying the phenolics and chemical constituents in the extract. DPPH, ABTS, and iron-reducing power assays were performed to evaluate the total antioxidant capacity of the extract. Using HPLC, oxygenated monoterpenes represented the majority of the aniseed content, mainly estragole, cis-anethole, and trans-anethole at 4422.39, 3150.11, and 2312.11 (g/g), respectively. All of the examined bacteria are very sensitive to aniseed's antibacterial effects. It is thought that aniseed's antibacterial activity could be attributed to the presence of phenolic compounds which include catechins, methyl gallates, caffeic acid, and syringic acids. According to the GC analysis, several flavonoids were detected, including catechin, isochiapin, and trans-ferulic acid, as well as quercitin rhamnose, kaempferol-O-rutinoside, gibberellic acid, and hexadecadienoic acid. Upon quantification of the most abundant estragole, we found that estragole recovery was sufficient for proving its antimicrobial activity against MDR bacteria. Utilizing three methods, the extract demonstrated strong antioxidant activity. Aniseed extract clearly inhibited MDR bacterial isolates, indicating its potential use as an anti-virulence strategy. It is assumed that polyphenolic acids and flavonoids are responsible for this activity. Trans-anethole and estragole were aniseed chemotypes. Aniseed extracts showed higher antioxidant activity than vitamin C. Future investigations into the compatibility and synergism of aniseed phenolic compounds with commercial antibacterial treatments may also show them to be promising options.
Collapse
Affiliation(s)
- Aisha Nawaf AlBalawi
- Biology Department, University College of Haqel, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura 35818, Egypt
| | - Dina M Baraka
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 33516, Egypt
| | - Hadeer A Alnagar
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 33516, Egypt
| | - Eman Saad Alamri
- Nutrition and Food Science Department, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 33516, Egypt
| |
Collapse
|
17
|
Pourseif T, Ghafelehbashi R, Abdihaji M, Radan N, Kaffash E, Heydari M, Naseroleslami M, Mousavi-Niri N, Akbarzadeh I, Ren Q. Chitosan -based nanoniosome for potential wound healing applications: Synergy of controlled drug release and antibacterial activity. Int J Biol Macromol 2023; 230:123185. [PMID: 36623618 DOI: 10.1016/j.ijbiomac.2023.123185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
This study aims to develop a niosomal platform which can delivery drugs such as tetracycline hydrochloride (TCH) to treat bacterial infections in wounds. To this end, chitosan (CS) was used to obtain a controlled drug release and at the same time antibacterial activity. By design of experiments the niosome encapsulated TCH (TCH-Nio) were optimized for their particle size and encapsulation efficiency, followed by analysis of the release profile of TCH and stability of TCH-Nio and TCH-Nio@CS. The antibacterial activity and cytotoxicity of the fabricated nanoparticles were investigated as well. The release rate of TCH from TCH-Nio@CS in all conditions is less than TCH-Nio. In addition, higher temperature increases the release rate of drug from these formulations. The size, polydispersity index, and encapsulation efficacy of TCH-Nio and TCH-Nio@CS were more stable in 4 °C compared to 25 °C. TCH, TCH-Nio, and TCH-Nio@CS had MIC values of 7.82, 3.91, and 1.95 μg/mL for Escherichia coli, 3.91, 1.95, and 0.98 μg/mL for Pseudomonas aeruginosa, and 1.96, 0.98, and 0.49 μg/mL for Staphylococcus aureus, respectively. Coating of chitosan on niosome encapsulated TCH (TCH-Nio@CS) led to a reduced burst release of TCH from niosome (TCH-Nio), and enabled 2-fold higher antibacterial and anti-biofilm activity against the tested bacterial pathogens E. coli, P. aeruginosa and S. aureus, compared to the uncoated TCH-Nio, and 4-folder higher than the TCH solution, suggesting the synergetic effect of niosome encapsulation and chitosan coating. Moreover, the formulated niosomes displayed no in vitro toxicity toward the human foreskin fibroblast cells (HFF). Both TCH-Nio and TCH-Nio@CS were found to down-regulate the expression of certain biofilm genes, i.e., csgA, ndvB, and icaA in the tested bacteria, which might partially explain the improved antibacterial activity compared to TCH. The obtained results demonstrated that TCH-Nio@CS is capable of controlled drug release, leading to high antibacterial efficacy. The established platform of TCH-Nio@CS enlighten a clinic potential toward the treatment of bacterial infections in skin wounds, dental implants and urinary catheter.
Collapse
Affiliation(s)
- Tara Pourseif
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammadreza Abdihaji
- Department of Biology, Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Niloufar Radan
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ehsan Kaffash
- Department of Pharmaceutics, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
18
|
Haddadian A, Robattorki FF, Dibah H, Soheili A, Ghanbarzadeh E, Sartipnia N, Hajrasouliha S, Pasban K, Andalibi R, Ch MH, Azari A, Chitgarzadeh A, Kashtali AB, Mastali F, Noorbazargan H, Mirzaie A. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci Rep 2022; 12:21938. [PMID: 36536030 PMCID: PMC9763330 DOI: 10.1038/s41598-022-26400-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted drug delivery and increasing the biological activity of drugs is one of the recent challenges of pharmaceutical researchers. Niosomes are one of the new targeted drug delivery systems that enhances the biological properties of drugs. In this study, for the first time, the green synthesis of selenium nanoparticles (SeNPs), and its loading into niosome was carried out to increase the anti-bacterial and anti-cancer activity of SeNPs. Different formulations of noisome-loaded SeNPs were prepared, and the physical and chemical characteristics of the prepared niosomes were investigated. The antibacterial and anti-biofilm effects of synthesized niosomes loaded SeNPs and free SeNPs against standard pathogenic bacterial strains were studied, and also its anticancer activity was investigated against breast cancer cell lines. The expression level of apoptotic genes in breast cancer cell lines treated with niosome-loaded SeNPs and free SeNPs was measured. Also, to evaluate the biocompatibility of the synthesized niosomes, their cytotoxicity effects against the human foreskin fibroblasts normal cell line (HFF) were studied using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results illustrated that the optimal formulation had an average size of 177.9 nm, a spherical shape, and an encapsulation efficiency of 37.58%. Also, the results revealed that the release rate of SeNPs from niosome-loaded SeNPs and free SeNPs was 61.26% and 100%, respectively, in 72 h. Also, our findings demonstrated that the niosome-loaded SeNPs have significant antibacterial, anti-biofilm, and anticancer effects compared to the free SeNPs. In addition, niosome-loaded SeNPs can upregulate the expression level of Bax, cas3, and cas9 apoptosis genes while the expression of the Bcl2 gene is down-regulated in all studied cell lines, significantly. Also, the results of the MTT test indicated that the free niosome has no significant cytotoxic effects against the HFF cell line which represents the biocompatibility of the synthesized niosomes. In general, based on the results of this study, it can be concluded that niosomes-loaded SeNPs have significant anti-microbial, anti-biofilm, and anti-cancer effects, which can be used as a suitable drug delivery system.
Collapse
Affiliation(s)
- Abbas Haddadian
- grid.411463.50000 0001 0706 2472Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoush Falahi Robattorki
- grid.412266.50000 0001 1781 3962Biomedical Engineering Group, Chemical Engineering Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hedieh Dibah
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Ali Soheili
- grid.412112.50000 0001 2012 5829Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Ghanbarzadeh
- grid.411874.f0000 0004 0571 1549Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasrin Sartipnia
- grid.411463.50000 0001 0706 2472Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Shadi Hajrasouliha
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Kamal Pasban
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Romina Andalibi
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Mojtaba Hedayati Ch
- grid.411874.f0000 0004 0571 1549Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arezou Azari
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arman Chitgarzadeh
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Aliasghar Bagheri Kashtali
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Fatemeh Mastali
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Hassan Noorbazargan
- grid.411600.2Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mirzaie
- grid.460834.d0000 0004 0417 6855Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
19
|
Ahmadi S, Seraj M, Chiani M, Hosseini S, Bazzazan S, Akbarzadeh I, Saffar S, Mostafavi E. In vitro Development of Controlled-Release Nanoniosomes for Improved Delivery and Anticancer Activity of Letrozole for Breast Cancer Treatment. Int J Nanomedicine 2022; 17:6233-6255. [PMID: 36531115 PMCID: PMC9753765 DOI: 10.2147/ijn.s384085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/21/2022] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Breast cancer is among the most prevalent mortal cancers in women worldwide. In the present study, an optimum formulation of letrozole, letrozole-loaded niosome, and empty niosome was developed, and the anticancer effect was assessed in in vitro MCF-7, MCF10A and MDA-MB-231 breast cancer cell lines. MATERIALS AND METHODS Various niosomal formulations of letrozole were fabricated through thin-film hydration method and characterized in terms of size, polydispersity index (PDI), morphology, entrapment efficiency (EE%), release kinetics, and stability. Optimized niosomal formulation of letrozole was achieved by response surface methodology (RSM). Antiproliferative activity and the mechanism were assessed by MTT assay, quantitative real-time PCR, and flow cytometry. Furthermore, cellular uptake of optimum formulation was evaluated by confocal electron microscopy. RESULTS The formulated letrozole had a spherical shape and showed a slow-release profile of the drug after 72 h. The size, PDI, and eEE% of nanoparticles showed higher stability at 4°C compared with 25°C. The drug release from niosomes was in accordance with Korsmeyer-Peppa's kinetic model. Confocal microscopy revealed the localization of drug-loaded niosomes in the cancer cells. MTT assay revealed that all samples exhibited dose-dependent cytotoxicity against breast cancer cells. The IC50 of mixed formulation of letrozole with letrozole-loaded niosome (L + L3) is the lowest value among all prepared formulations. L+L3 influenced the gene expression in the tested breast cancer cell lines by down-regulating the expression of Bcl 2 gene while up-regulating the expression of p53 and Bax genes. The flow cytometry results revealed that L + L3 enhanced the apoptosis rate in both MCF-7 and MDA-MB-231 cell lines compared with the letrozole (L), letrozole-loaded niosome (L3), and control sample. CONCLUSION Results indicated that niosomes could be a promising drug carrier for the delivery of letrozole to breast cancer cells.
Collapse
Affiliation(s)
- Saeedeh Ahmadi
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmoud Seraj
- Integrative Research Laboratory, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mohsen Chiani
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedayin Hosseini
- School of Medicine, Sh Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Bazzazan
- Core Facility Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Saffar
- Core Facility Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Mansoori-Kermani A, Khalighi S, Akbarzadeh I, Niavol FR, Motasadizadeh H, Mahdieh A, Jahed V, Abdinezhad M, Rahbariasr N, Hosseini M, Ahmadkhani N, Panahi B, Fatahi Y, Mozafari M, Kumar AP, Mostafavi E. Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer. Mater Today Bio 2022; 16:100349. [PMID: 35875198 PMCID: PMC9304880 DOI: 10.1016/j.mtbio.2022.100349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted drug delivery systems using nanocarriers offer a versatile platform for breast cancer treatment; however, a robust, CD44-targeted niosomal formulation has not been developed and deeply studied (both in vitro and in vivo) yet. Here, an optimized system of epirubicin (Epi)-loaded niosomal nanoparticles (Nio) coated with hyaluronic acid (HA) has been engineered for targeting breast cancer cells. The nanoformulation was first optimized (based on size, polydispersity index, and entrapment efficiency); then, we characterized the morphology, stability, and release behavior of the nanoparticles. Epirubicin release from the HA-coated system (Epi-Nio-HA) showed a 21% (acidic buffer) and 20% (neutral buffer) reduction in comparison with the non-coated group (Epi-Nio). The cytotoxicity and apoptosis results of 4T1 and SkBr3 cells showed an approximately 2-fold increase in the Epi-Nio-HA system over Epi-Nio and free epirubicin, which confirms the superiority of the engineered nanocarriers. Moreover, real-time PCR data demonstrated the down-regulation of the MMP-2, MMP-9, cyclin D, and cyclin E genes expression while caspase-3 and caspase-9 gene expression were up-regulated. Confocal microscopy and flow cytometry studies uncovered the cellular uptake mechanism of the Epi-Nio-HA system, which was CD44-mediated. Furthermore, in vivo studies indicated Epi-Nio-HA decreased mice breast tumor volume by 28% (compared to epirubicin) without side effects on the liver and kidney. Conclusively, our results indicated that the HA-functionalized niosomes provide a promising nanoplatform for efficient and targeted delivery of epirubicin to potentially treat breast cancer.
Collapse
Affiliation(s)
| | - Sadaf Khalighi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Fazeleh Ranjbar Niavol
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Athar Mahdieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga, LV, 1007, Latvia
| | - Masoud Abdinezhad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Nikoo Rahbariasr
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mahshid Hosseini
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Nima Ahmadkhani
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Behnam Panahi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Bazzazan S, Moeinabadi-Bidgoli K, Lalami ZA, Bazzazan S, Mehrarya M, Yeganeh FE, Hejabi F, Akbarzadeh I, Noorbazargan H, Jahanbakhshi M, Hossein-khannazer N, Mostafavi E. Engineered UIO-66 metal-organic framework for delivery of curcumin against breast cancer cells: An in vitro evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Niosomes: a novel targeted drug delivery system for cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:240. [PMID: 36175809 DOI: 10.1007/s12032-022-01836-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 10/25/2022]
Abstract
Recently, nanotechnology is involved in various fields of science, of which medicine is one of the most obvious. The use of nanoparticles in the process of treating and diagnosing diseases has created a novel way of therapeutic strategies with effective mechanisms of action. Also, due to the remarkable progress of personalized medicine, the effort is to reduce the side effects of treatment paths as much as possible and to provide targeted treatments. Therefore, the targeted delivery of drugs is important in different diseases, especially in patients who receive combined drugs, because the delivery of different drug structures requires different systems so that there is no change in the drug and its effectiveness. Niosomes are polymeric nanoparticles that show favorable characteristics in drug delivery. In addition to biocompatibility and high absorption, these nanoparticles also provide the possibility of reducing the drug dosage and targeting the release of drugs, as well as the delivery of both hydrophilic and lipophilic drugs by Niosome vesicles. Since various factors such as components, preparation, and optimization methods are effective in the size and formation of niosomal structures, in this review, the characteristics related to niosome vesicles were first examined and then the in silico tools for designing, prediction, and optimization were explained. Finally, anticancer drugs delivered by niosomes were compared and discussed to be a suitable model for designing therapeutic strategies. In this research, it has been tried to examine all the aspects required for drug delivery engineering using niosomes and finally, by presenting clinical examples of the use of these nanocarriers in cancer, its clinical characteristics were also expressed.
Collapse
|
23
|
Folate-Targeted Curcumin-Loaded Niosomes for Site-Specific Delivery in Breast Cancer Treatment: In Silico and In Vitro Study. Molecules 2022; 27:molecules27144634. [PMID: 35889513 PMCID: PMC9322601 DOI: 10.3390/molecules27144634] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
As the most common cancer in women, efforts have been made to develop novel nanomedicine-based therapeutics for breast cancer. In the present study, the in silico curcumin (Cur) properties were investigated, and we found some important drawbacks of Cur. To enhance cancer therapeutics of Cur, three different nonionic surfactants (span 20, 60, and 80) were used to prepare various Cur-loaded niosomes (Nio-Cur). Then, fabricated Nio-Cur were decorated with folic acid (FA) and polyethylene glycol (PEG) for breast cancer suppression. For PEG-FA@Nio-Cur, the gene expression levels of Bax and p53 were higher compared to free drug and Nio-Cur. With PEG-FA-decorated Nio-Cur, levels of Bcl2 were lower than the free drug and Nio-Cur. When MCF7 and 4T1 cell uptake tests of PEG-FA@Nio-Cur and Nio-Cur were investigated, the results showed that the PEG-FA-modified niosomes exhibited the most preponderant endocytosis. In vitro experiments demonstrate that PEG-FA@Nio-Cur is a promising strategy for the delivery of Cur in breast cancer therapy. Breast cancer cells absorbed the prepared nanoformulations and exhibited sustained drug release characteristics.
Collapse
|
24
|
Yasamineh S, Yasamineh P, Ghafouri Kalajahi H, Gholizadeh O, Yekanipour Z, Afkhami H, Eslami M, Hossein Kheirkhah A, Taghizadeh M, Yazdani Y, Dadashpour M. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm 2022; 624:121878. [PMID: 35636629 DOI: 10.1016/j.ijpharm.2022.121878] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The buildup of nonionic surfactants in the aqueous environment produces niosomes. The usage of niosomes is becoming increasingly frequent due to their sustainability, low cost of components and assembly, large-scale manufacture, and, finally, easy maintenance of the niosomes to the other. Because of their nonionic characteristics, niosomes play a critical role in medication delivery systems. Controlled release and targeted distribution of niosomes to treat cancer, infectious illnesses, and other disorders are one of their most important properties. Niosomes can also be injected by ocular and transdermal routes, which are less common than oral and parenteral administration. Using niosomes to manufacture biotechnology goods and novel vaccines is one of the most exciting research fields today. The molecular structure of niosomes, the physicochemical characteristics of nonionic surfactants in their formulation, the influence of external stimuli on niosomes, the many methods of niosomes administration, and their diverse therapeutic qualities are all explored in this study.
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Omid Gholizadeh
- Department of Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Yekanipour
- Department of Microbiology, Marand Branch, Islamic Azad University, Marand, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Hossein Kheirkhah
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Milad Taghizadeh
- Department of Laboratory Sciences, Faculty of Paramedical, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
25
|
Rezaei T, Rezaei M, Karimifard S, Mahmoudi Beram F, Dakkali MS, Heydari M, Afshari-Behbahanizadeh S, Mostafavi E, Bokov DO, Ansari MJ, Farasati Far B, Akbarzadeh I, Chaiyasut C. Folic Acid-Decorated pH-Responsive Nanoniosomes With Enhanced Endocytosis for Breast Cancer Therapy: In Vitro Studies. Front Pharmacol 2022; 13:851242. [PMID: 35517801 PMCID: PMC9065559 DOI: 10.3389/fphar.2022.851242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women and the second leading cause of cancer death in women after lung cancer. The purpose of this study is a targeted delivery toward in vitro (on MCF7 and 4T1 breast cancer cell lines) through niosomes-based nanocarriers. To this end, different bioactive molecules, including hyaluronic acid (HA), folic acid (FA), and polyethylene glycol (PEG), were used and compared for surface modification of niosomes to enhance endocytosis. FA-functionalized niosomes (Nio/5-FU/FA) were able to increase cell cytotoxicity and reduce cell migration and invasion compared to PEG-functionalized niosomes (Nio/5-FU/PEG), and HA-functionalized niosomes (Nio/5-FU/HA) groups in MCF-7 and 4T1 cell lines. Although the Nio/5-FU/PEG and Nio/5-FU/HA demonstrated MCF7 cell uptake, the Nio/5-FU/FA exhibited the most preponderant endocytosis in pH 5.4. Remarkably, in this study 5-FU loaded niosomes (nonionic surfactant-based vesicles) were decorated with various bioactive molecules (FA, PEG, or HA) to compare their ability for breast cancer therapy. The fabricated nanoformulations were readily taken up by breast cancer cells (in vitro) and demonstrated sustained drug release characteristics, inducing cell apoptosis. Overall, the comprehensive comparison between different bioactive molecules-decorated nanoniosomes exhibited promising results in finding the best nano formulated candidates for targeted delivery of drugs for breast cancer therapy.
Collapse
Affiliation(s)
- Tahereh Rezaei
- General Physician, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rezaei
- Department of Cardiology, Fars-Iranian Heart Association, Fars Society of Internal Medicine, Shiraz, Iran
| | - Sara Karimifard
- Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Farzaneh Mahmoudi Beram
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran, Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
26
|
Niosomes as cutting edge nanocarrier for controlled and targeted delivery of essential oils and biomolecules. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Joaquim AR, Boff RT, Adam FC, Lima-Morales D, Cesare MA, Kaminski TF, Teixeira ML, Fuentefria AM, Andrade SF, Martins AF. Antibacterial and synergistic activity of a new 8-hydroxyquinoline derivative against methicillin-resistant Staphylococcus aureus. Future Microbiol 2022; 17:425-436. [PMID: 35289685 DOI: 10.2217/fmb-2021-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To evaluate the antibacterial and synergistic effect of a new 8-hydroxyquinoline derivative (PH176) against MRSA. Materials & methods: PH176 activity was determined by broth microdilution against 38 Staphylococcus aureus clinical isolates. The antibacterial and synergistic effects with oxacillin and nitroxoline were evaluated by time-kill assays to five MRSA isolates. Toxicity was evaluated by in vitro and ex vivo models. Results: The MIC50 and MIC90 of PH176 were 16 and 32 μg/ml, respectively. The PH176 and nitroxoline led to a reduction in colony count for four isolates and the combination of PH176 and oxacillin acted synergically for three isolates. Furthermore, PH176 was determined to be noncytotoxic/nonirritant. Conclusion: These results demonstrate that PH176 has revealed promising results to be a potential candidate to treat MRSA infections.
Collapse
Affiliation(s)
- Angélica R Joaquim
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Roberta T Boff
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Franciele C Adam
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Daiana Lima-Morales
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Porto Alegre, 90035-903, Brazil
| | - Maycon A Cesare
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Taís Fa Kaminski
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Mário L Teixeira
- Laboratório de Farmacologia, Instituto Federal Catarinense, Campus Concórdia, Concórdia, 89703-720, Brazil
| | - Alexandre M Fuentefria
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Saulo F Andrade
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Andreza F Martins
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil.,Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Porto Alegre, 90035-903, Brazil
| |
Collapse
|
28
|
Nanosized paclitaxel-loaded niosomes: formulation, in vitro cytotoxicity, and apoptosis gene expression in breast cancer cell lines. Mol Biol Rep 2022; 49:3597-3608. [PMID: 35235156 DOI: 10.1007/s11033-022-07199-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND In this study, the optimized niosomal formulation containing paclitaxel using non-ionic surfactants and cholesterol was designed and its cytotoxic effects against different breast cancer cell lines and apoptosis gene expression analysis were also investigated. METHODS AND RESULTS Due to enhancing equation variables, the Box-Behnken method has been applied. Lipid/drug molar ratio, the amounts of Span 60, and cholesterol were selected as the target for optimization. The particle size of niosome loaded paclitaxel and entrapment efficiency proportion have been considered in the role of dependent variables. Then the cytotoxic activity of the optimized formulation was evaluated using an MTT assay against different breast cancer cell lines including MCF-7, T-47D, SkBr3, and MDA-MB-231. The expression level of Bax and Bcl-2 apoptosis genes was determined by Real-Time PCR. In this study, the optimized niosomal formulation revealed that the synthesized niosomes had a spherical appearance and had an average size of 192.73 ± 5.50 nm so that the percentage of drug loading was 94.71 ± 1.56%. Moreover, this formulation showed a controlled and slowed release of paclitaxel at different pH (7.4, 6.5, and 5.4). The cytotoxicity results demonstrated that cell viability in all concentrations of niosome loaded paclitaxel had profound cytotoxic effects on all studied breast cancer cell lines compared to the free paclitaxel (p < 0.05). In addition, the expression of apoptosis genes was much higher than that of free paclitaxel indicating the susceptibility of cells to apoptosis. CONCLUSIONS As a result, niosomal formulations containing paclitaxel can be used as a new drug delivery system to increase cytotoxicity and treatment of breast cancer in the upcoming future.
Collapse
|
29
|
Moammeri A, Abbaspour K, Zafarian A, Jamshidifar E, Motasadizadeh H, Dabbagh Moghaddam F, Salehi Z, Makvandi P, Dinarvand R. pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2022; 5:675-690. [PMID: 35129960 PMCID: PMC8864616 DOI: 10.1021/acsabm.1c01107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/23/2022] [Indexed: 02/09/2023]
Abstract
Combination chemotherapy has become a treatment modality for breast cancer. However, serious side effects and high cytotoxicity associated with this combination therapy make it a high-risk method for breast cancer treatment. This study evaluated the anticancer effect of decorated niosomal nanocarriers loaded with cisplatin (CIS) and epirubicin (EPI) in vitro (on SKBR3 and 4T1 breast cancer cells) and in vivo on BALB/c mice. For this purpose, polyethylene glycol (PEG) and folic acid (FA) were employed to prepare a functionalized niosomal system to improve endocytosis. FA-PEGylated niosomes exhibited desired encapsulation efficiencies of ∼91.2 and 71.9% for CIS and EPI, respectively. Moreover, cellular assays disclosed that a CIS and EPI-loaded niosome (NCE) and FA-PEGylated niosomal CIS and EPI (FPNCE) enhanced the apoptosis rate and cell migration in SKBR3 and 4T1 cells compared to CIS, EPI, and their combination (CIS+EPI). For FPNCE and NCE groups, the expression levels of Bax, Caspase3, Caspase9, and Mfn1 genes increased, whereas the expression of Bcl2, Drp1, MMP-2, and MMP-9 genes was downregulated. Histopathology results showed a reduction in the mitosis index, invasion, and pleomorphism in BALB/c inbred mice with NCE and FPNCE treatment. In this paper, for the first time, we report a niosomal nanocarrier functionalized with PEG and FA for codelivery of CIS and EPI to treat breast cancer. The results demonstrated that the codelivery of CIS and EPI through FA-PEGylated niosomes holds great potential for breast cancer treatment.
Collapse
Affiliation(s)
- Ali Moammeri
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Koorosh Abbaspour
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Alireza Zafarian
- Faculty
of Medicine, Isfahan University of Medical
Sciences, Isfahan 8174673461, Iran
| | - Elham Jamshidifar
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
| | - Hamidreza Motasadizadeh
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| | - Farnaz Dabbagh Moghaddam
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Zeinab Salehi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Center for Materials Interfaces, Pontedera, Pisa 56025, Italy
| | - Rassoul Dinarvand
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| |
Collapse
|
30
|
Akbarzadeh I, Farid M, Javidfar M, Zabet N, Shokoohian B, Arki MK, Shpichka A, Noorbazargan H, Aghdaei HA, Hossein-khannazer N, Timashev P, Makvandi P, Vosough M. The Optimized Formulation of Tamoxifen-Loaded Niosomes Efficiently Induced Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. AAPS PharmSciTech 2022; 23:57. [PMID: 35048234 DOI: 10.1208/s12249-022-02212-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
The aim, as proof of concept, was to optimize niosomal formulations of tamoxifen in terms of size, morphology, encapsulation efficiency, and release kinetics for further treatment of the breast cancer (BC). Different assays were carried out to evaluate the pro-apoptotic and cytotoxicity impact of tamoxifen-loaded niosomes in two BC cells, MDA-MB-231 and SKBR3. In this study, tamoxifen was loaded in niosomes after optimization in the formulation. The formulation of niosomes supported maximized drug entrapment and minimized their size. The novel formulation showed improvement in storage stability, and after 60 days only, small changes in size, polydispersity index, and drug entrapment were observed. Besides, a pH-dependent release pattern of formulated niosomes displayed slow release at physiological pH (7.4) and a considerable increase of release at acidic pH (5.4), making them a promising candidate for drug delivery in the BC treatment. The cytotoxicity study exhibited high biocompatibility with MCF10A healthy cells, while remarkable inhibitory effects were observed after treatment of cancerous lines, MDA-MB-231, and SKBR3 cells. The IC50 values for the tamoxifen-loaded niosomes were significantly less than other groups. Moreover, treatment with drug-loaded niosomes significantly changed the gene expression pattern of BC cells. Statistically significant down-regulation of cyclin D, cyclin E, VEGFR-1, MMP-2, and MMP-9 genes and up-regulation of caspase-3 and caspase-9 were observed. These results were in correlation with cell cycle arrest, lessoned migration capacity, and increased caspase activity and apoptosis induction in cancerous cells. Optimization in the formulation of tamoxifen-loaded niosomes can make them a novel candidate for drug delivery in BC treatment.
Collapse
|
31
|
Shadvar P, Mirzaie A, Yazdani S. Fabrication and optimization of amoxicillin-loaded niosomes: An appropriate strategy to increase antimicrobial and anti-biofilm effects against multidrug-resistant strains of Staphylococcus aureus. Drug Dev Ind Pharm 2022; 47:1568-1577. [PMID: 35007176 DOI: 10.1080/03639045.2022.2027958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, different formulations of amoxicillin-loaded niosomes were fabricated using the thin-film hydration method and their physicochemical properties were determined using scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). The optimum prepared niosomes had a spherical morphology with an average size of 170.6 ± 6.8 nm and encapsulation efficiency of 65.78 ± 1.45%. The drug release study showed that the release rate of amoxicillin from niosome containing amoxicillin was slow and 47 ± 1% of the drug was released within 8 hours, while 97 ± 0.5% of the free drug was released. In addition, amoxicillin-loaded niosome increased the antimicrobial activity by 2-4 folds against multidrug-resistant (MDR) Staphylococcus aureus strains using broth microdilution assay. Moreover, at ½ minimum inhibitory concentrations, amoxicillin-loaded niosome significantly enhanced the anti-biofilm activity compared to free amoxicillin. Amoxicillin-loaded niosome had negligible cytotoxicity against HEK-293 normal cell line compared to free amoxicillin. The free niosomes exhibited no toxicity against HEK-293 cells and presented a biocompatible nanoscale delivery system. Based on the results, it can be concluded that amoxicillin-loaded niosome can be used as a promising candidate for enhancing antimicrobial and anti-biofilm effects against MDR strains of S. aureus.
Collapse
Affiliation(s)
- Pardis Shadvar
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Shaghayegh Yazdani
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Tehran, Iran
| |
Collapse
|
32
|
Gharaghie TP, Beiranvand S, Riahi A, Badmasti F, Shirin NJ, Mirzaie A, Elahianfar Y, Ghahari S, Ghahari S, Pasban K, Hajrasoliha S. Fabrication and characterization of thymol-loaded chitosan nanogels: improved antibacterial and anti-biofilm activities with negligible cytotoxicity. Chem Biodivers 2022; 19:e202100426. [PMID: 34989129 DOI: 10.1002/cbdv.202100426] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
Thymol is a monoterpene phenolic derivative extracted from the Thymus vulgaris which has antimicrobial effects. In the present study, thymol-loaded chitosan nanogels were prepared and their physicochemical properties were characterized. The encapsulation efficiency of thymol into chitosan and its stability were determined. The in-vitro antimicrobial and anti-biofilm activities of thymol-loaded chitosan nanogel (Ty-CsNG), free thymol (Ty), and free chitosan nanogel (CsNG) were evaluated against both Gram-negative and Gram-positive multidrug-resistant (MDR) bacteria including Staphylococcus aureus , Acinetobacter baumanii , and Pseudomonas aeruginosa strains using the broth microdilution and crystal violet assay, respectively. After treatment of MDR strains with sub-minimum inhibitory concentration (Sub-MIC) of Ty-CsNG, free Ty and CsNG, biofilm gene expression analysis was studied. Moreover, cytotoxicity of Ty-CsNG, free Ty, and CsNG against HEK-293 normal cell line was determined using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) method. The average size of Ty-CsNG was 82.71±9.6 nm, encapsulation efficiency was 76.54 ± 0.62% with stability up to 60 days at 4 o C. Antibacterial activity test revealed that Ty-CsNG reduced the MIC by 4-6 times in comparison to free thymol. In addition, the expression of biofilm-related genes including ompA , and pgaB were significantly down-regulated after treatment of strains with Ty-CsNG ( p <0.05). In addition, free CsNG displayed negligible cytotoxicity against HEK-293 normal cell line and presented a biocompatible nanoscale delivery system. Based on the results, it can be concluded that Ty-CsNG can be considered a promising candidate for enhancing antimicrobial and anti-biofilm activities.
Collapse
Affiliation(s)
- Tohid Piri Gharaghie
- Islamic Azad University Shahrekord Branch, Biology, Vakil, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Sheida Beiranvand
- Islamic Azad University Shahrekord Branch, Biology, Entezam, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Anali Riahi
- Shahrekord University, Biology, Heravi, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Farzad Badmasti
- Pasteur Institute of Iran, Microbiology, 12 Farvardin, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Neda Jegargoshe Shirin
- Islamic Azad University Damghan Branch, Biology, Entezam, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Amir Mirzaie
- Islamic Azad University Parand Branch, Biology, Heravi, 009821, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Yalda Elahianfar
- Iran University of Medical Sciences, Biology, Milad, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Somayeh Ghahari
- Sari Agricultural Sciences and Natural Resources University, Agriculture, Yaghin, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| | - Sajjad Ghahari
- Shahid Chamran University of Ahvaz, Biology, Alikhani, Ahvaz, IRAN (ISLAMIC REPUBLIC OF)
| | - Kamal Pasban
- Islamic Azad University Zanjan, Genetic, 92, Zanjan, IRAN (ISLAMIC REPUBLIC OF)
| | - Shadi Hajrasoliha
- Islamic Azad University Tehran Medical Sciences, Biology, 26, Tehran, IRAN (ISLAMIC REPUBLIC OF)
| |
Collapse
|
33
|
Wal A, Vig H, Mishra M, Singh R, Rathore S, Tyagi S, Kalita J, Wal P. Phytoniosomes: A Phytoplankton-Derived System for Targeted Drug Delivery. PHARMACOPHORE 2022. [DOI: 10.51847/da4mxlsbjr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Fatemizadeh M, Tafvizi F, Shamsi F, Amiri S, Farajzadeh A, Akbarzadeh I. Apoptosis Induction, Cell Cycle Arrest and Anti-Cancer Potential of Tamoxifen-Curcumin Loaded Niosomes Against MCF-7 Cancer Cells. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:183-190. [PMID: 35463725 PMCID: PMC9013861 DOI: 10.30699/ijp.2022.124340.2356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Background & Objective Breast cancer is the most common cancer among women. One of the most effective treatments for breast cancer is chemotherapy, in which specific drugs destroy the mass and its proliferation is inhibited. Chemotherapy is the most effective adjunctive therapy when multiple medications are used concurrently. Also, combining the drugs with nanocarrier has become an important strategy in targeted therapy. This study is designed to assess the apoptosis induction, cell cycle arrest, and anti-cancer potential of Tamoxifen-Curcumin-loaded niosomes against MCF-7 Cancer Cells. Methods A novel niosomal formulation of tamoxifen-curcumin with Span 80 and lipid to drug ratio of 20 was employed. The MCF-7 cells were cultured and then treated with IC50 value of tamoxifen-curcumin-loaded niosomes, the combination of tamoxifen and curcumin, tamoxifen, and curcumin alone. Flow cytometry, Real-Time PCR, and cell cycle analysis tests were conducted to evaluate the induction of apoptosis. Results Drug-loaded niosomes caused up-regulation of bax and p53 genes and down-regulation of bcl2 gene. Flow cytometry studies showed that niosomes containing tamoxifen-curcumin increased apoptosis rate in MCF-7 cells compared to the combination of tamoxifen and curcumin owing to the synergistic effect between the two drugs along with higher cell uptake by formulation niosomal. These results were also confirmed by cell cycle analysis. Conclusion Co-delivery of curcumin and tamoxifen using optimized niosomal formulation revealed that at acidic pH of MCF-7 cancer cells, released drugs from niosomal carriers would be more effective than physiological pH. This feature of niosomal nanoparticles can reduce the side effects of drugs in normal cells. Niosomal nanoparticles might be used as a biological anti-cancer factor in treatment of breast cancer.
Collapse
Affiliation(s)
- Mahdi Fatemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran,Corresponding Information: Farzaneh Tafvizi, Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Shamsi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Amiri
- Department of Genetics, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Afsaneh Farajzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
35
|
Sahrayi H, Hosseini E, Karimifard S, Khayam N, Meybodi SM, Amiri S, Bourbour M, Farasati Far B, Akbarzadeh I, Bhia M, Hoskins C, Chaiyasut C. Co-Delivery of Letrozole and Cyclophosphamide via Folic Acid-Decorated Nanoniosomes for Breast Cancer Therapy: Synergic Effect, Augmentation of Cytotoxicity, and Apoptosis Gene Expression. Pharmaceuticals (Basel) 2021; 15:6. [PMID: 35056063 PMCID: PMC8780158 DOI: 10.3390/ph15010006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent causes of cancer mortality in women. In order to increase patient prognosis and survival rates, new technologies are urgently required to deliver therapeutics in a more effective and efficient manner. Niosome nanoparticles have been recently employed as therapeutic platforms capable of loading and carrying drugs within their core for both mono and combination therapy. Here, niosome-based nanoscale carriers were investigated as a targeted delivery system for breast cancer therapy. The platform developed consists of niosomes loaded with letrozole and cyclophosphamide (NLC) and surface-functionalized with a folic-acid-targeting moiety (NLCPFA). Drug release from the formulated particles exhibited pH-sensitive properties in which the niosome showed low and high release in physiological and cancerous conditions, respectively. The results revealed a synergic effect in cytotoxicity by co-loading letrozole and cyclophosphamide with an efficacy increment in NLCPFA use in comparison with NLC. The NLCPFA resulted in the greatest drug internalization compared to the non-targeted formulation and the free drug. Additionally, downregulation of cyclin-D, cyclin-E, MMP-2, and MMP-9 and upregulating the expression of caspase-3 and caspase-9 genes were observed more prominently in the nanoformulation (particularly for NLCPFA) compared to the free drug. This exciting data indicated that niosome-based nanocarriers containing letrozole and cyclophosphamide with controlled release could be a promising platform for drug delivery with potential in breast cancer therapy.
Collapse
Affiliation(s)
- Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Elham Hosseini
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Sara Karimifard
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Nazanin Khayam
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | | | - Sahar Amiri
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mohammed Bhia
- Student Research Committee, Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
36
|
Rezaie Amale F, Ferdowsian S, Hajrasouliha S, Kazempoor R, Mirzaie A, Sedigh Dakkali M, Akbarzadeh I, Mohammadmahdi Meybodi S, Mirghafouri M. Gold nanoparticles loaded into niosomes: A novel approach for enhanced antitumor activity against human ovarian cancer. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Mansouri M, Khayam N, Jamshidifar E, Pourseif T, Kianian S, Mirzaie A, Akbarzadeh I, Ren Q. Streptomycin Sulfate-Loaded Niosomes Enables Increased Antimicrobial and Anti-Biofilm Activities. Front Bioeng Biotechnol 2021; 9:745099. [PMID: 34778226 PMCID: PMC8578904 DOI: 10.3389/fbioe.2021.745099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
One of the antibiotics used to treat infections is streptomycin sulfate that inhibits both Gram-negative and -positive bacteria. Nanoparticles are suitable carriers for the direct delivery and release of drug agents to infected locations. Niosomes are one of the new drug delivery systems that have received much attention today due to their excellent biofilm penetration property and controlled release. In this study, niosomes containing streptomycin sulfate were prepared by using the thin layer hydration method and optimized based on the size, polydispersity index (PDI), and encapsulation efficiency (EE%) characteristics. It was found that the Span 60-to-Tween 60 ratio of 1.5 and the surfactant-to-cholesterol ratio of 1.02 led to an optimum formulation with a minimum of size, low PDI, and maximum of EE of 97.8 nm, 0.27, and 86.7%, respectively. The drug release investigation showed that 50.0 ± 1.2% of streptomycin sulfate was released from the niosome in 24 h and reached 66.4 ± 1.3% by the end of 72 h. Two-month stability studies at 25° and 4°C showed more acceptable stability of samples kept at 4°C. Consequently, antimicrobial and anti-biofilm activities of streptomycin sulfate-loaded niosomes against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were found significantly higher than those of free drug, and the minimum inhibitory concentration values decreased 4- to 8-fold. Furthermore, niosome-encapsulated streptomycin up to 1,500 μg/ml exhibited negligible cytotoxicity against the human foreskin fibroblasts cell line, whereas the free drug exhibited slight cytotoxicity at this concentration. Desired physical characteristics and low toxicity of niosomal nano-carriers containing streptomycin sulfate made them a demanded candidate for the treatment of current bacterial infections and biofilms.
Collapse
Affiliation(s)
- Maryam Mansouri
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Khayam
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Elham Jamshidifar
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tara Pourseif
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Kianian
- Master of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|