1
|
Baiguera S, Di Silvio L, Del Gaudio C. Moving Toward Biomimetic Tissue-Engineered Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2028. [PMID: 39728564 DOI: 10.3390/nano14242028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Advancing experimental methodologies to accurately replicate the physiological and pathological characteristics of biological tissues is pivotal in tissue engineering [...].
Collapse
Affiliation(s)
| | - Lucy Di Silvio
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
2
|
Zuo X, Xiao Y, Yang J, He Y, He Y, Liu K, Chen X, Guo J. Engineering collagen-based biomaterials for cardiovascular medicine. COLLAGEN AND LEATHER 2024; 6:33. [DOI: 10.1186/s42825-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 01/06/2025]
Abstract
AbstractCardiovascular diseases have been the leading cause of global mortality and disability. In addition to traditional drug and surgical treatment, more and more studies investigate tissue engineering therapeutic strategies in cardiovascular medicine. Collagen interweaves in the form of trimeric chains to form the physiological network framework of the extracellular matrix of cardiac and vascular cells, possessing excellent biological properties (such as low immunogenicity and good biocompatibility) and adjustable mechanical properties, which renders it a vital tissue engineering biomaterial for the treatment of cardiovascular diseases. In recent years, promising advances have been made in the application of collagen materials in blood vessel prostheses, injectable cardiac hydrogels, cardiac patches, and hemostatic materials, although their clinical translation still faces some obstacles. Thus, we reviewed these findings and systematically summarizes the application progress as well as problems of clinical translation of collagen biomaterials in the cardiovascular field. The present review contributes to a comprehensive understanding of the application of collagen biomaterials in cardiovascular medicine.
Graphical abstract
Collapse
|
3
|
Yang C, Su C, Zou J, Zhong B, Wang L, Chen B, Li J, Wei M. Investigating the efficacy of uncrosslinked porcine collagen coated vascular grafts for neointima formation and endothelialization. Front Bioeng Biotechnol 2024; 12:1418259. [PMID: 39634103 PMCID: PMC11614618 DOI: 10.3389/fbioe.2024.1418259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction This study evaluates the efficacy of uncrosslinked porcine collagen coated vascular grafts (UPCCVG) in facilitating neointima formation and endothelialization. Methods Prior to coating, the uncrosslinked porcine collagen underwent comprehensive characterization employing SDS-PAGE, image analysis, circular dichroism and immunogenicity. The PET substrate of the vascular graft was coated with collagen solution utilizing the dip-coating method. Water permeability, blood leakage resistance, radial compliance, hemolysis, cytotoxicity and cell proliferation of UPCCVG in vitro were studied. Subsequent in vivo evaluation involved the implantation of UPCCVG as a substitute for the porcine abdominal aorta. Digital subtraction angiography (DSA) was employed to evaluate UPCCVG patency post-implantation, while histology, immunohistochemistry, and scanning electron microscopy were utilized to assess neointima formation and endothelialization. The in vivo thrombosis of UPCCVG was analyzed simultaneously to further characterize its blood compatibility. Results The uncrosslinked collagen demonstrated high purity, maintaining its triple helix structure and molecular weight akin to the type I bovine collagen standard substrate, indicative of preserved biological activity and low immunogenicity. UPCCVG exhibited water permeability, blood leakage resistance, radial compliance and blood compatibility comparable to commercial grafts. DSA revealed satisfactory patency of UPCCVG without evidence of stenosis or swelling at the 3-week post-implantation mark. Histological analysis illustrated well-developed neointima with appropriate thickness and controlled proliferation. Immunohistochemistry confirmed the presence of endothelial cells (VWF positive) and smooth muscle cells (α-SMA positive) within the neointima, indicating successful endothelialization. Moreover, the morphology of the neointima surface closely resembled that of the natural artery tunica intima, oriented along the direction of blood flow. Discussion UPCCVG, composed of uncrosslinked porcine collagen, demonstrates promising potential in fostering neointima formation and endothelialization while mitigating intimal hyperplasia. This biocompatible uncrosslinked porcine collagen merits further investigation for its clinical applications in vascular reconstruction.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development (R&D) Department, Konee Biomedical (Shenzhen) Co., Ltd., Shenzhen, Guangdong, China
| | - Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jie Zou
- Research and Development (R&D) Department, Konee Biomedical (Shenzhen) Co., Ltd., Shenzhen, Guangdong, China
| | - Binru Zhong
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lin Wang
- Research and Development (R&D) Department, Konee Biomedical (Shenzhen) Co., Ltd., Shenzhen, Guangdong, China
| | - Bailang Chen
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianmo Li
- Research and Development (R&D) Department, Konee Biomedical (Shenzhen) Co., Ltd., Shenzhen, Guangdong, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Niu Y, Galluzzi M. Correction: Niu, Y.; Galluzzi, M. Hyaluronic Acid/Collagen Nanofiber Tubular Scaffolds Support Endothelial Cell Proliferation, Phenotypic Shape and Endothelialization. Nanomaterials 2021, 11, 2334. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1203. [PMID: 39057912 PMCID: PMC11280418 DOI: 10.3390/nano14141203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
5
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
6
|
Kim D, Youn J, Lee J, Kim H, Kim DS. Recent Progress in Fabrication of Electrospun Nanofiber Membranes for Developing Physiological In Vitro Organ/Tissue Models. Macromol Biosci 2023; 23:e2300244. [PMID: 37590903 DOI: 10.1002/mabi.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Nanofiber membranes (NFMs), which have an extracellular matrix-mimicking structure and unique physical properties, have garnered great attention as biomimetic materials for developing physiologically relevant in vitro organ/tissue models. Recent progress in NFM fabrication techniques immensely contributes to the development of NFM-based cell culture platforms for constructing physiological organ/tissue models. However, despite the significance of the NFM fabrication technique, an in-depth discussion of the fabrication technique and its future aspect is insufficient. This review provides an overview of the current state-of-the-art of NFM fabrication techniques from electrospinning techniques to postprocessing techniques for the fabrication of various types of NFM-based cell culture platforms. Moreover, the advantages of the NFM-based culture platforms in the construction of organ/tissue models are discussed especially for tissue barrier models, spheroids/organoids, and biomimetic organ/tissue constructs. Finally, the review concludes with perspectives on challenges and future directions for fabrication and utilization of NFMs.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jisang Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
9
|
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang R. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid. Polymers (Basel) 2023; 15:2149. [PMID: 37177293 PMCID: PMC10181120 DOI: 10.3390/polym15092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, polymeric materials have been used in a wide range of applications in a variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a possible new avenue for the development of products with better biocompatibility, biodegradability, and non-toxicity. This paper reviews the structural and physicochemical properties of alginate and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue engineering and drug delivery to achieve better eco-economic value.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.D.)
| | | | | | | | | | | |
Collapse
|
10
|
Wang H, Shao W, Lu X, Gao C, Fang L, Yang X, Zhu P. Synthesis, characterization, and in vitro anti-tumor activity studies of the hyaluronic acid-mangiferin-methotrexate nanodrug targeted delivery system. Int J Biol Macromol 2023; 239:124208. [PMID: 36972827 DOI: 10.1016/j.ijbiomac.2023.124208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
In this study, to increase the accumulation of MTX in the tumor site and reduce the toxicity to normal tissues by MA, a novel nano-drug delivery system comprised of hyaluronic acid (HA)-mangiferin (MA)-methotrexate (MTX) (HA-MA-MTX) was developed by a self-assembly strategy. The advantage of the nano-drug delivery system is that MTX can be used as a tumor-targeting ligand of the folate receptor (FA), HA can be used as another tumor-targeting ligand of the CD44 receptor, and MA serves as an anti-inflammatory agent. 1HNMR and FT-IR results confirmed that HA, MA, and MTX were well coupled together by the ester bond. DLS and AFM images revealed that the size of HA-MA-MTX nanoparticles was about ~138 nm. In vitro cell experiments proved that HA-MA-MTX nanoparticles have a positive effect on inhibiting K7 cancer cells while having relatively lower toxicity to normal MC3T3-E1 cells than MTX does. All these results indicated that the prepared HA-MA-MTX nanoparticles can be selectively ingested by K7 tumor cells through FA and CD44 receptor-mediated endocytosis, thus inhibiting the growth of tumor tissues and reducing the nonspecific uptake toxicity caused by chemotherapy. Therefore, these self-assembled HA-MA-MTX NPs could be a potential anti-tumor drug delivery system.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Wanfei Shao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Ling Fang
- Department of Dermatology, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214105, China
| | - Xiaojun Yang
- The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, Jiangsu Province, China.
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
11
|
Kong Z, Wang X. Bioprinting Technologies and Bioinks for Vascular Model Establishment. Int J Mol Sci 2023; 24:891. [PMID: 36614332 PMCID: PMC9821327 DOI: 10.3390/ijms24010891] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Clinically, large diameter artery defects (diameter larger than 6 mm) can be substituted by unbiodegradable polymers, such as polytetrafluoroethylene. There are many problems in the construction of small diameter blood vessels (diameter between 1 and 3 mm) and microvessels (diameter less than 1 mm), especially in the establishment of complex vascular models with multi-scale branched networks. Throughout history, the vascularization strategies have been divided into three major groups, including self-generated capillaries from implantation, pre-constructed vascular channels, and three-dimensional (3D) printed cell-laden hydrogels. The first group is based on the spontaneous angiogenesis behaviour of cells in the host tissues, which also lays the foundation of capillary angiogenesis in tissue engineering scaffolds. The second group is to vascularize the polymeric vessels (or scaffolds) with endothelial cells. It is hoped that the pre-constructed vessels can be connected with the vascular networks of host tissues with rapid blood perfusion. With the development of bioprinting technologies, various fabrication methods have been achieved to build hierarchical vascular networks with high-precision 3D control. In this review, the latest advances in 3D bioprinting of vascularized tissues/organs are discussed, including new printing techniques and researches on bioinks for promoting angiogenesis, especially coaxial printing, freeform reversible embedded in suspended hydrogel printing, and acoustic assisted printing technologies, and freeform reversible embedded in suspended hydrogel (flash) technology.
Collapse
Affiliation(s)
- Zhiyuan Kong
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Obed D, Dastagir N, Liebsch C, Bingoel AS, Strauss S, Vogt PM, Dastagir K. In Vitro Differentiation of Myoblast Cell Lines on Spider Silk Scaffolds in a Rotating Bioreactor for Vascular Tissue Engineering. J Pers Med 2022; 12:jpm12121986. [PMID: 36556206 PMCID: PMC9783533 DOI: 10.3390/jpm12121986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Functional construction of tissue-engineered vessels as an alternative to autologous vascular grafts has been shown to be feasible, however the proliferation of seeded smooth-muscle cells remains a limiting factor. We employed a rotating bioreactor system to improve myoblast cell differentiation on a spider silk scaffold for tissue-engineered vessel construction. C2C12 myofibroblast cells were seeded on the surface of spider silk scaffold constructs and cultivated in a rotating bioreactor system with a continuous rotation speed (1 rpm). Cell function, cell growth and morphological structure and expression of biomarkers were analyzed using scanning electron microscopy, the LIVE/DEAD® assay, Western blot and quantitative real-time PCR analyses. A dense myofibroblast cell sheet could be developed which resembled native blood vessel muscular tissue in morphological structure and in function. Bioreactor perfusion positively affected cell morphology, and increased cell viability and cell differentiation. The expression of desmin, MYF5 and MEF2D surged as an indication of myoblast differentiation. Cell-seeded scaffolds showed a tear-down at 18 N when strained at a set speed (20 mm min-1). Spider silk scaffolds appear to offer a reliable basis for engineered vascular constructs and rotating bioreactor cultivation may be considered an effective alternative to complex bioreactor setups to improve cell viability and biology.
Collapse
Affiliation(s)
- Doha Obed
- Correspondence: ; Tel.: +49-511-532-8894; Fax: +49-511-532-8864
| | | | | | | | | | | | | |
Collapse
|
13
|
Lu X, Zou H, Liao X, Xiong Y, Hu X, Cao J, Pan J, Li C, Zheng Y. Construction of PCL-collagen@PCL@PCL-gelatin three-layer small diameter artificial vascular grafts by electrospinning. Biomed Mater 2022; 18. [PMID: 36374009 DOI: 10.1088/1748-605x/aca269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
The demand for artificial vascular grafts in clinical applications is increasing, and it is urgent to design a tissue-engineered vascular graft with good biocompatibility and sufficient mechanical strength. In this study, three-layer small diameter artificial vascular grafts were constructed by electrospinning. Polycaprolactone (PCL) and collagen (COL) were used as the inner layer to provide good biocompatibility and cell adhesion, the middle layer was PCL to improve the mechanical properties, and gelatin (GEL) and PCL were used to construct the outer layer for further improving the mechanical properties and biocompatibility of the vascular grafts in the human body environment. The electrospun artificial vascular graft had good biocompatibility and mechanical properties. Its longitudinal maximum stress reached 2.63 ± 0.12 MPa, which exceeded the maximum stress that many natural blood vessels could withstand. The fiber diameter of the vascular grafts was related to the proportion of components that made up the vascular grafts. In the inner structure of the vascular grafts, the hydrophilicity of the vascular grafts was enhanced by the addition of COL to the PCL, and human umbilical vein endothelial cells (HUVECs) adhered more easily to the vascular grafts. In particular, the cytocompatibility and proliferation of HUVECs on the scaffold with an inner structure PCL:COL = 2:1 was superior to other ratios of vascular grafts. The vascular grafts did not cause hemolysis of red blood cells. Thus, the bionic PCL-COL@PCL@PCL-GEL composite graft is a promising material for vascular tissue engineering.
Collapse
Affiliation(s)
- Xingjian Lu
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hao Zou
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaokun Liao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yue Xiong
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaoyan Hu
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jun Cao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiaqi Pan
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Chaorong Li
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yingying Zheng
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
14
|
Yao T, van Nunen T, Rivero R, Powell C, Carrazzone R, Kessels L, Wieringa PA, Hafeez S, Wolfs TG, Moroni L, Matson JB, Baker MB. Electrospun Scaffolds Functionalized with a Hydrogen Sulfide Donor Stimulate Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28628-28638. [PMID: 35715217 PMCID: PMC9247975 DOI: 10.1021/acsami.2c06686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Tissue-engineered constructs are currently limited by the lack of vascularization necessary for the survival and integration of implanted tissues. Hydrogen sulfide (H2S), an endogenous signaling gas (gasotransmitter), has been recently reported as a promising alternative to growth factors to mediate and promote angiogenesis in low concentrations. Yet, sustained delivery of H2S remains a challenge. Herein, we have developed angiogenic scaffolds by covalent attachment of an H2S donor to a polycaprolactone (PCL) electrospun scaffold. These scaffolds were engineered to include azide functional groups (on 1, 5, or 10% of the PCL end groups) and were modified using a straightforward click reaction with an alkyne-functionalized N-thiocarboxyanhydride (alkynyl-NTA). This created H2S-releasing scaffolds that rely on NTA ring-opening in water followed by conversion of released carbonyl sulfide into H2S. These functionalized scaffolds showed dose-dependent release of H2S based on the amount of NTA functionality within the scaffold. The NTA-functionalized fibrous scaffolds supported human umbilical vein endothelial cell (HUVEC) proliferation, formed more confluent endothelial monolayers, and facilitated the formation of tight cell-cell junctions to a greater extent than unfunctionalized scaffolds. Covalent conjugation of H2S donors to scaffolds not only promotes HUVEC proliferation in vitro, but also increases neovascularization in ovo, as observed in the chick chorioallantoic membrane assay. NTA-functionalized scaffolds provide localized control over vascularization through the sustained delivery of a powerful endogenous angiogenic agent, which should be further explored to promote angiogenesis in tissue engineering.
Collapse
Affiliation(s)
- Tianyu Yao
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
- Shaanxi
Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D
Center of Biomaterials and Fermentation Engineering, School of Chemical
Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi, 710069, China
| | - Teun van Nunen
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - Rebeca Rivero
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - Chadwick Powell
- Chemistry
Department, Macromolecules Innovation Institute, Virginia Tech, 1075
Life Science Circle, Blacksburg, Virginia 24061, United
States
| | - Ryan Carrazzone
- Chemistry
Department, Macromolecules Innovation Institute, Virginia Tech, 1075
Life Science Circle, Blacksburg, Virginia 24061, United
States
| | - Lilian Kessels
- Department
of Pediatrics, Universiteitssingel 50, Maastricht
University, Maastricht 6229 ER, The Netherlands
| | - Paul Andrew Wieringa
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - Shahzad Hafeez
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - Tim G.A.M. Wolfs
- Department
of Pediatrics, Universiteitssingel 50, Maastricht
University, Maastricht 6229 ER, The Netherlands
| | - Lorenzo Moroni
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| | - John B. Matson
- Chemistry
Department, Macromolecules Innovation Institute, Virginia Tech, 1075
Life Science Circle, Blacksburg, Virginia 24061, United
States
| | - Matthew B. Baker
- Complex
Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
15
|
Wu X, Chen K, Chai Q, Liu S, Feng C, Xu L, Zhang D. Freestanding vascular scaffolds engineered by direct 3D printing with Gt-Alg-MMT bioinks. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112658. [DOI: 10.1016/j.msec.2022.112658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
16
|
Niu Y, Galluzzi M, Fu M, Hu J, Xia H. In vivo performance of electrospun tubular hyaluronic acid/collagen nanofibrous scaffolds for vascular reconstruction in the rabbit model. J Nanobiotechnology 2021; 19:349. [PMID: 34717634 PMCID: PMC8557601 DOI: 10.1186/s12951-021-01091-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/17/2021] [Indexed: 01/08/2023] Open
Abstract
One of the main challenges of tissue-engineered vascular prostheses is restenosis due to intimal hyperplasia. The aim of this study is to develop a material for scaffolds able to support cell growth while tolerating physiological conditions and maintaining the patency of carotid artery model. Tubular hyaluronic acid (HA)-functionalized collagen nanofibrous composite scaffolds were prepared by sequential electrospinning method. The tubular composite scaffold has well-controlled biophysical and biochemical signals, providing a good matrix for the adhesion and proliferation of vascular endothelial cells (ECs), but resisting to platelets adhesion when exposed to blood. Carotid artery replacement experiment from 6-week rabbits showed that the HA/collagen nanofibrous composite scaffold grafts with endothelialization on the luminal surface could maintain vascular patency. At retrieval, the composite scaffold maintained good structural integrity and had comparable mechanical strength as the native artery. This study indicating that electrospun scaffolds combined with cells may become an alternative to prosthetic grafts for vascular reconstruction.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Ming Fu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Jinhua Hu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China.
| |
Collapse
|