1
|
Chen Y, Wang X, Liu B, Zhang Y, Zhao Y, Wang S. Directional regulation of reactive oxygen species in titanium dioxide boosting the photocatalytic degradation performance of azo dyes. J Colloid Interface Sci 2024; 673:275-283. [PMID: 38875793 DOI: 10.1016/j.jcis.2024.06.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
It has been widely accepted that the generation of reactive oxygen species such as superoxide radical, hydroxyl radical, and hydrogen peroxide during photocatalysis is responsible for the degradation of azo dyes. However, it is unclear which reactive oxygen species primarily contributes to the degradation efficiency of azo dyes. Here, we demonstrate that the directional regulation of reactive oxygen species in titanium dioxide (TiO2) to form superoxide radicals by ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) can significantly improve the degradation performance of methyl orange. The optimized addition of EDTA-2Na can completely degrade azo dyes such as methyl orange, acid orange and alkaline orange at a concentration of 10 mg/L in about 20 min, which is not only higher than that achieved by pristine TiO2 under Xe lamp light but also far superior to the reported degradation efficiency of modified TiO2. Even under natural sunlight, this strategy can also effectively decompose azo dyes, demonstrating the great potential for practical water treatment using low-cost TiO2 photocatalysts.
Collapse
Affiliation(s)
- Yangyang Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Boyan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yingjuan Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Songcan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
2
|
Rashid R, Shafiq I, Gilani MRHS, Maaz M, Akhter P, Hussain M, Jeong KE, Kwon EE, Bae S, Park YK. Advancements in TiO 2-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. CHEMOSPHERE 2024; 349:140703. [PMID: 37992908 DOI: 10.1016/j.chemosphere.2023.140703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Researchers have focused on efficient techniques for degrading hazardous organic pollutants due to their negative impacts on ecological systems, necessitating immediate remediation. Specifically, TiO2-based photocatalysts, a wide-bandgap semiconductor material, have been extensively studied for their application in environmental remediation. However, the extensive band gap energy and speedy reattachment of electron (e-) and hole (h+) pairs in bare TiO2 are considered major disadvantages for photocatalysis. This review extensively focuses on the combination of semiconducting photocatalysts for commercial outcomes to develop efficient heterojunctions with high photocatalytic activity by minimizing the e-/h+ recombination rate. The improved activity of these heterojunctions is due to their greater surface area, rich active sites, narrow band gap, and high light-harvesting tendency. In this context, strategies for increasing visible light activity, including doping with metals and non-metals, surface modifications, morphology control, composite formation, heterojunction formation, bandgap engineering, surface plasmon resonance, and optimizing reaction conditions are discussed. Furthermore, this review critically assesses the latest developments in TiO2 photocatalysts for the efficient decomposition of various organic contaminants from wastewater, such as pharmaceutical waste, dyes, pesticides, aromatic hydrocarbons, and halo compounds. This review implies that doping is an effective, economical, and simple process for TiO2 nanostructures and that a heterogeneous photocatalytic mechanism is an eco-friendly substitute for the removal of various pollutants. This review provides valuable insights for researchers involved in the development of efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Ruhma Rashid
- Institute of Chemical Science, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Kwang-Eun Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sungjun Bae
- Department of Civil & Environmental Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504, Republic of Korea.
| |
Collapse
|