1
|
Rana S, Kumar A, Lai CW, Sharma G, Dhiman P. Recent progress in ZnCr and NiCr layered double hydroxides and based photocatalysts for water treatment and clean energy production. CHEMOSPHERE 2024; 356:141800. [PMID: 38554860 DOI: 10.1016/j.chemosphere.2024.141800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/29/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
In pursuit of advancing photocatalysts for superior performance in water treatment and clean energy generation, researchers are increasingly focusing on layered double hydroxides (LDHs) which have garnered significant attention due to their customizable properties, morphologies, distinctive 2D layered structure and flexible options for modifying anions and cations. No review has previously delved specifically into ZnCr and NiCr LDH-based photocatalysts and therefore, this review highlights the recent surge in ZnCr and NiCr-based LDHs as potential photocatalysts for their applications in water purification and renewable energy generation. The structural and fundamental characteristics of layered double hydroxides and especially ZnCr-LDHs and NiCr-LDHs are outlined. Further, the various synthesis techniques for the preparation of ZnCr-LDHs, NiCr-LDHs and their composite and heterostructure materials have been briefly discussed. The applicability of ZnCr-LDH and NiCr-LDH based photocatalysts in tackling significant issues in water treatment and sustainable energy generation is the main emphasis of this review. It focuses on photocatalytic degradation of organic pollutants in wastewater, elucidating the principles and advancements for enhancing the efficiency of these materials. It also explores their role in H2 production through water splitting, conversion of CO2 into valuable fuels and NH3 synthesis from N2, shedding light on their potential for clean energy solutions. The insights presented herein offer valuable guidance for researchers working towards sustainable solutions for environmental remediation and renewable energy generation.
Collapse
Affiliation(s)
- Sahil Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229.
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229
| |
Collapse
|
2
|
Wijitwongwan RP, Ogawa M. NiFe Layered Double Hydroxides with Controlled Composition and Morphology for the Efficient Removal of Cr(VI) from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1408-1417. [PMID: 38163296 DOI: 10.1021/acs.langmuir.3c03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A layered double hydroxide (LDH) composed of Ni2+ and Fe3+ with a Fe3+/(Ni2+ + Fe3+) ratio of 0.05, which is not commonly available, was successfully prepared by coprecipitation from an aqueous solution of glycerol containing nickel nitrate and iron nitrate. Precipitation using NaOH as a precipitating agent at room temperature or 120 °C under hydrothermal conditions gave products with micrometer-sized aggregates of nanometer-sized unshaped particles, while that using urea yielded LDHs with a foam-like porous architecture composed of platy particles with a size of 100-300 nm. The products were examined to remove Cr(VI) from an acidic (pH = 3) aqueous solution of K2Cr2O7 by adsorption and photocatalytic reduction. The foam-like porous NiFe-LDH exhibited the highest adsorbed amount (122 mg g-1) and rate (0.017 g mg-1 min-1) in the dark and the highest rate (0.012 min-1) of photocatalytic Cr(VI) reduction among the NiFe-LDHs prepared in the present study, which can be explained as a positive effect of the foam-like porous architecture. These performances were superior to those of other reported LDHs, showing the importance of the composition and the particle morphology to boost the removal of Cr(VI).
Collapse
Affiliation(s)
- Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
3
|
Wang F, Zhang W, Liu H, Cao R, Chen M. Roles of CeO 2 in preparing Ce-doped CdIn 2S 4 with boosted photocatalytic degradation performance for methyl orange and tetracycline hydrochloride. CHEMOSPHERE 2023; 338:139574. [PMID: 37479000 DOI: 10.1016/j.chemosphere.2023.139574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Element doping is considered as a feasible strategy to develop efficient photocatalysts. In this study, a Ce-doped CdIn2S4 photocatalyst was prepared through a modified coprecipitation method. During the synthesis of Ce-doped CdIn2S4, the CeO2 nanorods were gradually reduced by the decomposition products of thioacetamide (TAA), and mainly existed as Ce(III) in the supernatant. This resulted in a large increase in the specific surface area of the as-obtained products, providing more exposed active sites for the reactant. Additionally, a trace amount of Ce was doped into the lattice of the CdIn2S4, resulting in a significant effect on the band structure. By tracing the roles of CeO2 during the synthesis process, a possible reaction mechanism was proposed. Benefiting from the synergistic advantages of the structural and compositional features, the optimal sample showed enhanced photocatalytic activities for the degradation of methyl orange (94.6% within 25 min) and tetracycline hydrochloride (85.6% within 120 min). The degradation rates were 13.3 times and 2.7 times higher than that of pristine CdIn2S4. This work may provide a strategy for designing metal element doped photocatalysts with good activity for pollutant removal.
Collapse
Affiliation(s)
- Fengjue Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, PR China
| | - Wenjun Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, PR China
| | - Han Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, PR China
| | - Ronggen Cao
- Department of Materials Science, Fudan University, Shanghai, 200433, PR China
| | - Meng Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
4
|
Xu J, Li Q, Sui D, Jiang W, Liu F, Gu X, Zhao Y, Ying P, Mao L, Cai X, Zhang J. In Situ Photodeposition of Cobalt Phosphate (CoH xPO y) on CdIn 2S 4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:420. [PMID: 36770380 PMCID: PMC9921930 DOI: 10.3390/nano13030420] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The ternary metal sulfide CdIn2S4 (CIS) has great application potential in solar-to-hydrogen conversion due to its suitable band gap, good stability and low cost. However, the photocatalytic hydrogen (H2) evolution performance of CIS is severely limited by the rapid electron-hole recombination originating from the slow photogenerated hole transfer kinetics. Herein, by simply depositing cobalt phosphate (CoHxPOy, noted as Co-Pi), a non-precious co-catalyst, an efficient pathway for accelerating the hole transfer process and subsequently promoting the H2 evolution reaction (HER) activity of CIS nanosheets is developed. X-ray photoelectron spectroscopy (XPS) reveals that the Co atoms of Co-Pi preferentially combine with the unsaturated S atoms of CIS to form Co-S bonds, which act as channels for fast hole extraction from CIS to Co-Pi. Electron paramagnetic resonance (EPR) and time-resolved photoluminescence (TRPL) showed that the introduction of Co-Pi on ultrathin CIS surface not only increases the probability of photogenerated holes arriving the catalyst surface, but also prolongs the charge carrier's lifetime by reducing the recombination of electrons and holes. Therefore, Co-Pi/CIS exhibits a satisfactory photocatalytic H2 evolution rate of 7.28 mmol g-1 h-1 under visible light, which is superior to the pristine CIS (2.62 mmol g-1 h-1) and Pt modified CIS (3.73 mmol g-1 h-1).
Collapse
Affiliation(s)
- Jiachen Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qinran Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Dejian Sui
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wei Jiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Fengqi Liu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiuquan Gu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yulong Zhao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Pengzhan Ying
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Yang J, Hou Y, Sun J, Liang J, Yu Z, Zhu H, Wang S. In-situ generation of oxygen vacancies and Bi0 clusters on MoSe2/Bi@BiOBr-OV via Fermi inter-level electron transfer for efficient elimination of chlorotetracycline and Cr (VI). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Preparation of Cotton Linters' Aerogel-Based C/NiFe 2O 4 Photocatalyst for Efficient Degradation of Methylene Blue. NANOMATERIALS 2022; 12:nano12122021. [PMID: 35745360 PMCID: PMC9230095 DOI: 10.3390/nano12122021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
At present, the research focus has been aimed at the pursuit of the design and synthesis of catalysts for effective photocatalytic degradation of organic pollutants in wastewater, and further exploration of novel materials of the photodegradation catalyst. In this paper, the Sol-gel route after thermal treatment was used to produce NiFe2O4 carbon aerogel (NiFe2O4-CA) nanocomposites with cotton linter cellulose as the precursor of aerogel, by co-precipitating iron and nickel salts onto its substrate. The structure and composition of these materials were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Raman spectra, high-resolution scanning electron microscopy (HR-SEM), high-resolution scanning electron microscope mapping (SEM-mapping), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET)'s surface area. The magnetic properties of the material were analyzed by a vibrating-sample magnetometer (VSM). Moreover, diffuse reflectance spectra (DRS), electrochemical impedance spectroscopy (EIS) and photo-luminescence spectroscopy (PL) characterized the photoelectric properties of this cellulose-aerogels-based NiFe2O4-CA. Methylene blue (MB) acted as the simulated pollutant, and the photocatalytic activity of NiFe2O4-CA nanocomposites under visible light was evaluated by adjusting H2O2 content and the pH value. The results showed that the optical absorption range of nickel ferrite was broadened by doping cellulose-aerogels-based carbon, which exerted more positive effects on photocatalytic reactions. This is because the doping of this aerogel carbon promoted a more uniform distribution of NiFe2O4 particles. Given the Methylene blue (MB) degradation reaction conformed to the first-order kinetic equation, the NiFe2O4-CA nanocomposites conducted excellent catalytic activity by maintaining almost 99% of the removal of MB (60 mg/L) within 180 min and upheld excellent stability over four consecutive cycles. This study indicated that NiFe2O4-CA nanocomposites reserved the potential as a future effective treatment of dye wastewater.
Collapse
|