1
|
Kostoglou N, Stock S, Solomi A, Holzapfel DM, Hinder S, Baker M, Constantinides G, Ryzhkov V, Maletaskic J, Matovic B, Schneider JM, Rebholz C, Mitterer C. The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:601. [PMID: 38607135 PMCID: PMC11013371 DOI: 10.3390/nano14070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in high-temperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 °C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermo-oxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.
Collapse
Affiliation(s)
- Nikolaos Kostoglou
- Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria; (A.S.); (C.R.); (C.M.)
| | - Sebastian Stock
- Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria;
| | - Angelos Solomi
- Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria; (A.S.); (C.R.); (C.M.)
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Damian M. Holzapfel
- Materials Chemistry, RWTH Aachen University, 52074 Aachen, Germany; (D.M.H.); (J.M.S.)
| | - Steven Hinder
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK; (S.H.); (M.B.)
| | - Mark Baker
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK; (S.H.); (M.B.)
| | - Georgios Constantinides
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos 3036, Cyprus;
| | - Vladislav Ryzhkov
- Research School of High-Energy Physics, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Jelena Maletaskic
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.M.); (B.M.)
| | - Branko Matovic
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.M.); (B.M.)
| | - Jochen M. Schneider
- Materials Chemistry, RWTH Aachen University, 52074 Aachen, Germany; (D.M.H.); (J.M.S.)
| | - Claus Rebholz
- Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria; (A.S.); (C.R.); (C.M.)
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Christian Mitterer
- Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria; (A.S.); (C.R.); (C.M.)
| |
Collapse
|
2
|
Li A, Yang J, He Y, Wen J, Jiang X. Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches. NANOSCALE HORIZONS 2024; 9:365-383. [PMID: 38230559 DOI: 10.1039/d3nh00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Precision drug delivery and multimodal synergistic therapy are crucial in treating diverse ailments, such as cancer, tissue damage, and degenerative diseases. Electrodes that emit electric pulses have proven effective in enhancing molecule release and permeability in drug delivery systems. Moreover, the physiological electrical microenvironment plays a vital role in regulating biological functions and triggering action potentials in neural and muscular tissues. Due to their unique noncentrosymmetric structures, many 2D materials exhibit outstanding piezoelectric performance, generating positive and negative charges under mechanical forces. This ability facilitates precise drug targeting and ensures high stimulus responsiveness, thereby controlling cellular destinies. Additionally, the abundant active sites within piezoelectric 2D materials facilitate efficient catalysis through piezochemical coupling, offering multimodal synergistic therapeutic strategies. However, the full potential of piezoelectric 2D nanomaterials in drug delivery system design remains underexplored due to research gaps. In this context, the current applications of piezoelectric 2D materials in disease management are summarized in this review, and the development of drug delivery systems influenced by these materials is forecast.
Collapse
Affiliation(s)
- Anshuo Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
3
|
Bertelà F, Battocchio C, Iucci G, Ceschin S, Di Lernia D, Mariani F, Di Giulio A, Muzzi M, Venditti I. Dye-Doped Polymeric Microplastics: Light Tools for Bioimaging in Test Organisms. Polymers (Basel) 2023; 15:3245. [PMID: 37571138 PMCID: PMC10422618 DOI: 10.3390/polym15153245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Ecosystems around the world are experiencing a major environmental impact from microplastic particles (MPs 0.1 µm-1 mm). Water, sediments, and aquatic biota show the widespread presence of this pollutant. However, MPs are rarely used in laboratory studies as they are scarcely available for purchase or expensive, especially if one wishes to trace the particle with a dye or fluorescent. Furthermore, existing preparation techniques have limited application in biological studies. In this work, we propose a new, easy, and cheap way to prepare fluorescent MPs. The protocol is based on the osmosis method in order to obtain spherical polymeric particles of P(S-co-MMA), with 0.7-9 micron diameter, made fluorescent because dye-doped with rhodamine B isothiocyanate (RITC) or fluorescein isothiocyanate (FITC). The dye loading was studied and optimized, and the MPs-dye conjugates were characterized by UV-vis FTIR and XPS spectrometry and scanning electron microscopy (SEM). Furthermore, preliminary tests on aquatic organisms demonstrated the possible use of these fluorescent MPs in bioimaging studies, showing their absorption/adsorption by duckweeds (Lemna minuta) and insect larvae (Cataclysta lemnata).
Collapse
Affiliation(s)
- Federica Bertelà
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
| | - Simona Ceschin
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
- NBFC National Biodiversity Future Center, 90133 Palermo, Italy
| | - Dario Di Lernia
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
| | - Flaminia Mariani
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
| | - Andrea Di Giulio
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
- NBFC National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maurizio Muzzi
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
| | - Iole Venditti
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (S.C.); (D.D.L.); (F.M.); (A.D.G.); (M.M.)
| |
Collapse
|
4
|
Antipina LY, Varlamova LA, Sorokin PB. The Temperature Dependence of the Hexagonal Boron Nitride Oxidation Resistance, Insights from First-Principle Computations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1041. [PMID: 36985935 PMCID: PMC10056837 DOI: 10.3390/nano13061041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
In this work, we studied the oxidation stability of h-BN by investigating different variants of its modification by -OH, -O- and -O-O- groups using an atomistic thermodynamics approach. We showed that up to temperatures of ~1700 K, oxygen is deposited on the surface of hexagonal boron nitride without dissociation, in the form of peroxide. Only at higher temperatures, oxygen tends to be incorporated into the lattice of hexagonal boron nitride, except in the presence of defects Nv, when the embedding occurs at all temperatures. Finally, the electronic and magnetic properties of the oxidized h-BN were studied.
Collapse
|
5
|
Catalytic ozonation of ketoprofen by defective boron nitride. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
6
|
Ran H, Yin J, Li H. Editorial for the Special Issue on "Boron Nitride-Based Nanomaterials". NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:584. [PMID: 36770545 PMCID: PMC9921004 DOI: 10.3390/nano13030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Boron nitride (BN) materials, graphene-like materials, are known as one of the most promising inorganic materials of this century because of their unique structures and properties [...].
Collapse
Affiliation(s)
- Hongshun Ran
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Yin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongping Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Konopatsky AS, Leybo DV, Kalinina VV, Zilberberg IL, Antipina LY, Sorokin PB, Shtansky DV. Synergistic Catalytic Effect of Ag and MgO Nanoparticles Supported on Defective BN Surface in CO Oxidation Reaction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:470. [PMID: 36676207 PMCID: PMC9863069 DOI: 10.3390/ma16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Micron-sized supports of catalytically active nanoparticles (NPs) can become a good alternative to nanocarriers if their structure is properly tuned. Here, we show that a combination of simple and easily scalable methods, such as defect engineering and polyol synthesis, makes it possible to obtain Ag and MgO nanoparticles supported on defective hexagonal BN (h-BN) support with high catalytic activity in the CO oxidation reaction. High-temperature annealing in air of Mg-containing (<0.2 at.%) h-BN micropellets led to surface oxidation, the formation of hexagonal-shaped surface defects, and defect-related MgO NPs. The enhanced catalytic activity of Ag/MgO/h-BN materials is attributed to the synergistic effect of h-BN surface defects, ultrafine Ag and MgO NPs anchored at the defect edges, and MgO/Ag heterostructures. In addition, theoretical simulations show a shift in the electron density from metallic Ag towards MgO and the associated decrease in the negative charge of oxygen adsorbed on the Ag surface, which positively affects the catalytic activity of the Ag/MgO/h-BN material.
Collapse
Affiliation(s)
- Anton S. Konopatsky
- Research Laboratory Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Denis V. Leybo
- Research Laboratory Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Vladislava V. Kalinina
- Research Laboratory Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Igor L. Zilberberg
- Research Laboratory Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, 630128 Novosibirsk, Russia
| | - Liubov Yu. Antipina
- Research Laboratory Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Pavel B. Sorokin
- Research Laboratory Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Dmitry V. Shtansky
- Research Laboratory Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| |
Collapse
|
8
|
Permyakova ES, Tregubenko MV, Antipina LY, Kovalskii AM, Matveev AT, Konopatsky AS, Manakhov AM, Slukin PV, Ignatov SG, Shtansky DV. Antibacterial, UV-Protective, Hydrophobic, Washable, and Heat-Resistant BN-Based Nanoparticle-Coated Textile Fabrics: Experimental and Theoretical Insight. ACS APPLIED BIO MATERIALS 2022; 5:5595-5607. [PMID: 36479940 DOI: 10.1021/acsabm.2c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of nanoparticles (NPs) to modify the surface of cotton fabric is a promising approach to endowing the material with a set of desirable characteristics that can significantly expand the functionality, wear comfort, and service life of textile products. Herein, two approaches to modifying the surface of hexagonal boron nitride (h-BN) NPs with a hollow core and a smooth surface by treatment with maleic anhydride (MA) and diethylene triamine (DETA) were studied. The DETA and MA absorption on the surface of h-BN and the interaction of surface-modified h-NPs with cellulose as the main component of cotton were modeled using density functional theory with the extended Perdew-Burke-Ernzerhof functional. Theoretical modeling showed that the use of DETA as a binder agent can increase the adhesion strength of BN NPs to textile fabric due to the simultaneous hydrogen bonds with cellulose and BN. Due to the difference in zeta potentials (-38.4 vs -25.8 eV), MA-modified h-BN NPs form a stable suspension, while DETA-modified BN NPs tend to agglomerate. Cotton fabric coated with surface-modified NPs exhibits an excellent wash resistance and high hydrophobicity with a water contact angle of 135° (BN-MA) and 146° (BN-DETA). Compared to the original textile material, treatment with MA- and DETA-modified h-BN NPs increases heat resistance by 10% (BN-MA fabric) and 15% (BN-DETA fabric). Cotton fabrics coated with DETA- and MA-modified BN NPs show enhanced antibacterial activity against Escherichia coli U20 and Staphylococcus aureus strains and completely prevent the formation of an E. coli biofilm. The obtained results are important for the further development of fabrics for sports and medical clothing as well as wound dressings.
Collapse
Affiliation(s)
| | - Marya V Tregubenko
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Liubov Yu Antipina
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Andrey M Kovalskii
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Andrei T Matveev
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Anton S Konopatsky
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Anton M Manakhov
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk142279, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk142279, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow119049, Russia
| |
Collapse
|
9
|
Gritsienko AV, Duleba A, Pugachev MV, Kurochkin NS, Vlasov II, Vitukhnovsky AG, Kuntsevich AY. Photodynamics of Bright Subnanosecond Emission from Pure Single-Photon Sources in Hexagonal Boron Nitride. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4495. [PMID: 36558349 PMCID: PMC9782090 DOI: 10.3390/nano12244495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Bright and stable emitters of single indistinguishable photons are crucial for quantum technologies. The origin of the promising bright emitters recently observed in hexagonal boron nitride (hBN) still remains unclear. This study reports pure single-photon sources in multi-layered hBN at room temperature that demonstrate high emission rates. The quantum emitters are introduced with argon beam treatment and air annealing of mechanically exfoliated hBN flakes with thicknesses of 5-100 nm. Spectral and time-resolved measurements reveal the emitters have more than 1 GHz of excited-to-ground state transition rate. The observed photoswitching between dark and bright states indicates the strong sensitivity of the emitter to the electrostatic environment and the importance of the indirect excitation for the photodynamics.
Collapse
Affiliation(s)
- Alexander V. Gritsienko
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskií Per., 141700 Dolgoprudnyí, Russia
| | - Aliaksandr Duleba
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
| | - Mikhail V. Pugachev
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
| | - Nikita S. Kurochkin
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskií Per., 141700 Dolgoprudnyí, Russia
| | - Igor I. Vlasov
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskií Per., 141700 Dolgoprudnyí, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, 119991 Moscow, Russia
| | - Alexei G. Vitukhnovsky
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskií Per., 141700 Dolgoprudnyí, Russia
| | - Alexandr Yu. Kuntsevich
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
| |
Collapse
|
10
|
High-Temperature Interactions of Silicon-Aluminum Oxynitrides (Sialons) with Sodium Fluoride. INORGANICS 2022. [DOI: 10.3390/inorganics10090140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The high-temperature interactions of β-SiAlONs with sodium fluoride NaF at 1650 °C under a nitrogen atmosphere are described in this paper. It was found that in case of Si5AlON7 the formation of phases enriched with aluminum occurred, including Si4Al2O2N6 at an NaF loading of 0.5 wt.% and Si4Al2O2N6 and Si3.1Al2.9O2.9N5.1 at an NaF loading of 2.0 wt.%, although Si5AlON7 still was a major phase. For Si4Al2O2N6, a kind of disproportionation was observed, and Si5AlON7 formed together with Si3Al3O3N5 and Si3.1Al2.9O2.9N5.1. Moreover, the initial phase Si4Al2O2N6 was not identified at all, while Si5AlON7 was found to be a major phase at an NaF loading of 0.5 wt.% and Si3.1Al2.9O2.9N5.1 prevailed at an NaF loading of 2.0 wt.%. All the samples showed a high degree of densification when studied with scanning electronic microscopy.
Collapse
|