1
|
Benčina M, Rawat N, Paul D, Kovač J, Lakota K, Žigon P, Kralj-Iglič V, Iglič A, Junkar I. Enhanced Hemocompatibility and Cytocompatibility of Stainless Steel. ACS OMEGA 2024; 9:19566-19577. [PMID: 38708281 PMCID: PMC11064193 DOI: 10.1021/acsomega.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The present study introduces an advanced surface modification approach combining electrochemical anodization and non-thermal plasma treatment, tailored for biomedical applications on stainless steel grade 316L (SS316L) surfaces. Nanopores with various diameters (100-300 nm) were synthesized with electrochemical anodization, and samples were further modified with non-thermal oxygen plasma. The surface properties of SS316L surfaces were examined by scanning electron microscopy, atomic force microscopy, X-ray photoemission spectroscopy, and Water contact angle measurements. It has been shown that a combination of electrochemical anodization and plasma treatment significantly alters the surface properties of SS316L and affects its interactions with blood platelets and human coronary cells. Optimal performance is attained on the anodized specimen featuring pores within the 150-300 nm diameter range, subjected to subsequent oxygen plasma treatment; the absence of platelet adhesion was observed. At the same time, the sample demonstrated good endothelialization and a reduction in smooth muscle cell adhesion compared to the untreated SS316L and the sample with smaller pores (100-150 nm). This novel surface modification strategy has significant implications for improving biocompatibility and performance of SS316L in biomedical applications.
Collapse
Affiliation(s)
- Metka Benčina
- Department
of Surface Engineering, Joz̆ef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- Laboratory
of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Niharika Rawat
- Laboratory
of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Domen Paul
- Department
of Surface Engineering, Joz̆ef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Janez Kovač
- Department
of Surface Engineering, Joz̆ef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Katja Lakota
- Department
of Rheumatology, University Medical Centre
Ljubljana, Vodnikova
62, SI-1000 Ljubljana, Slovenia
| | - Polona Žigon
- Department
of Rheumatology, University Medical Centre
Ljubljana, Vodnikova
62, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory
of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory
of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
- Laboratory
of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Ita Junkar
- Department
of Surface Engineering, Joz̆ef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Paul B, Kiel A, Otto M, Gemming T, Hoffmann V, Giebeler L, Kaltschmidt B, Hütten A, Gebert A, Kaltschmidt B, Kaltschmidt C, Hufenbach J. Inherent Antibacterial Properties of Biodegradable FeMnC(Cu) Alloys for Implant Application. ACS APPLIED BIO MATERIALS 2024; 7:839-852. [PMID: 38253353 PMCID: PMC10880094 DOI: 10.1021/acsabm.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Implant-related infections or inflammation are one of the main reasons for implant failure. Therefore, different concepts for prevention are needed, which strongly promote the development and validation of improved material designs. Besides modifying the implant surface by, for example, antibacterial coatings (also implying drugs) for deterring or eliminating harmful bacteria, it is a highly promising strategy to prevent such implant infections by antibacterial substrate materials. In this work, the inherent antibacterial behavior of the as-cast biodegradable Fe69Mn30C1 (FeMnC) alloy against Gram-negative Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive Staphylococcus aureus is presented for the first time in comparison to the clinically applied, corrosion-resistant AISI 316L stainless steel. In the second step, 3.5 wt % Cu was added to the FeMnC reference alloy, and the microbial corrosion as well as the proliferation of the investigated bacterial strains is further strongly influenced. This leads for instance to enhanced antibacterial activity of the Cu-modified FeMnC-based alloy against the very aggressive, wild-type bacteria P. aeruginosa. For clarification of the bacterial test results, additional analyses were applied regarding the microstructure and elemental distribution as well as the initial corrosion behavior of the alloys. This was electrochemically investigated by a potentiodynamic polarization test. The initial degraded surface after immersion were analyzed by glow discharge optical emission spectrometry and transmission electron microscopy combined with energy-dispersive X-ray analysis, revealing an increase of degradation due to Cu alloying. Due to their antibacterial behavior, both investigated FeMnC-based alloys in this study are attractive as a temporary implant material.
Collapse
Affiliation(s)
- Birgit Paul
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Annika Kiel
- Department
of Cell Biology, Faculty of Biology, Universität
Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Martin Otto
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
- Institute
of Materials Science, Technische Universität
Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany
| | - Thomas Gemming
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Volker Hoffmann
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Lars Giebeler
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Bernhard Kaltschmidt
- Department
of Thin Films and Physics of Nanostructures, Center of Spinelectronic
Materials and Devices, Faculty of Physics, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Andreas Hütten
- Department
of Thin Films and Physics of Nanostructures, Center of Spinelectronic
Materials and Devices, Faculty of Physics, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Annett Gebert
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Barbara Kaltschmidt
- Department
of Cell Biology, Faculty of Biology, Universität
Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department
of Cell Biology, Faculty of Biology, Universität
Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Julia Hufenbach
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
- Institute
of Materials Science, Technische Universität
Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany
| |
Collapse
|
3
|
Osada Y, Yanagishita T. Effects of anodization conditions of stainless steel on the formation of ordered nanoporous structures with high aspect ratios. NANOTECHNOLOGY 2023; 34:465601. [PMID: 37567165 DOI: 10.1088/1361-6528/acef2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
The nanoporous structures obtained by the anodization of stainless steel are functional materials with various potential applications. It has been reported that nanoporous structures can be prepared by the anodization of stainless steel in an electrolyte containing fluoride ions. However, under the reported anodization conditions, the control range of the interpore distance of resulting nanoporous structures was narrow. To expand the application fields of the nanoporous structures obtained by the anodization of stainless steel, it is an important challenge to determine the anodization conditions that can control the interpore distance of nanoporous structures over a wide range. In this study, we investigated the effects of the electrolyte composition on the anodization behavior of stainless steel and the interpore distance of the resulting nanoporous structure. As a result, we found that the maximum voltage for the stable anodization of stainless steel increases when a mixture of ethylene glycol and glycerol containing NH4F is used as the electrolyte. Since the interpore distance of nanoporous structures obtained by the anodization of stainless steel is proportional to the anodization voltage, as the voltage range over which stainless steel can be anodized increased, the range of interpore distances of the nanoporous structures obtained also increased. On the basis of these results, ordered nanoporous structures with a large interpore distance (100 nm), which could not be obtained under the previously reported anodization conditions, were fabricated by the anodization of a stainless steel substrate with a depression pattern formed by Ar ion milling using an alumina mask under optimized anodization conditions. The resulting ordered nanoporous structures with controlled interpore distances are expected to be used in various devices such as capacitors and photocatalysts.
Collapse
Affiliation(s)
- Yuga Osada
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| | - Takashi Yanagishita
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
4
|
Sun XD, Liu TT, Wang QQ, Zhang J, Cao MS. Surface Modification and Functionalities for Titanium Dental Implants. ACS Biomater Sci Eng 2023; 9:4442-4461. [PMID: 37523241 DOI: 10.1021/acsbiomaterials.3c00183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dental implants have become the mainstream strategy for oral restoration, and implant materials are the most important research hot spot in this field. So far, Ti implants dominate all kinds of implants. The surface properties of the Ti implant play decisive roles in osseointegration and antibacterial performance. Surface modifications can significantly change the surface micro/nanotopography and composition of Ti implants, which will effectively improve their hydrophilicity, mechanical properties, osseointegration performance, antibacterial performance, etc. These optimizations will thus improve implant success and service life. In this paper, the latest surface modification techniques of Ti dental implants are systematically and comprehensively reviewed. The various biomedical functionalities of surface modifications are discussed in-depth. Finally, a profound comment on the challenges and opportunities of this frontier is proposed, and the most promising directions for the future were explored.
Collapse
Affiliation(s)
- Xiao-Di Sun
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Ting-Ting Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang-Qiang Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Zhang
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Erdogan Y, Ercan B. Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties. ACS Biomater Sci Eng 2023; 9:693-704. [PMID: 36692948 PMCID: PMC9930089 DOI: 10.1021/acsbiomaterials.2c01072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization). Results demonstrated that the fabrication of NDs increased the surface area and, at the same time, altered the surface chemistry of 316L SS to provide chromium oxide- and hydroxide-rich surface oxide layers. In vitro experiments showed that ND surfaces promoted up to a 68% higher osteoblast viability on the fifth day of culture. Immunofluorescence images confirmed a well-spread cytoskeleton organization on the ND surfaces. In addition, higher alkaline phosphate activity and calcium mineral synthesis were observed on the ND surfaces compared to non-anodized 316L SS. Furthermore, a 71% reduction in Staphylococcus aureus (S. aureus) and a 58% reduction in Pseudomonas aeruginosa (P. aeruginosa) colonies were observed on the ND surfaces having a 200 nm feature size compared to non-anodized surfaces at 24 h of culture. Cumulatively, the results showed that a ND surface topography fabricated on 316L SS via anodization upregulated the osteoblast viability and functions while preventing S. aureus and P. aeruginosa biofilm synthesis.
Collapse
Affiliation(s)
- Yasar
Kemal Erdogan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Biomedical Engineering, Isparta University
of Applied Science, Isparta 32260, Turkey
| | - Batur Ercan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey,BIOMATEN,
METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey,. Phone: +90 (312) 210-2513
| |
Collapse
|