1
|
Jaramillo-Fierro X, Cuenca G. Theoretical and Experimental Analysis of Hydroxyl and Epoxy Group Effects on Graphene Oxide Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:714. [PMID: 38668208 PMCID: PMC11054681 DOI: 10.3390/nano14080714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
In this study, we analyzed the impact of hydroxyl and epoxy groups on the properties of graphene oxide (GO) for the adsorption of methylene blue (MB) dye from water, addressing the urgent need for effective water purification methods due to industrial pollution. Employing a dual approach, we integrated experimental techniques with theoretical modeling via density functional theory (DFT) to examine the atomic structure of GO and its adsorption capabilities. The methodology encompasses a series of experiments to evaluate the performance of GO in MB dye adsorption under different conditions, including differences in pH, dye concentration, reaction temperature, and contact time, providing a comprehensive view of its effectiveness. Theoretical DFT calculations provide insights into how hydroxyl and epoxy modifications alter the electronic properties of GO, improving adsorption efficiency. The results demonstrate a significant improvement in the dye adsorption capacity of GO, attributed to the interaction between the functional groups and MB molecules. This study not only confirms the potential of GO as a superior adsorbent for water treatment, but also contributes to the optimization of GO-based materials for environmental remediation, highlighting the synergy between experimental observations and theoretical predictions in advances in materials science to improve sustainability.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Guisella Cuenca
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| |
Collapse
|
2
|
Jaramillo-Fierro X, Ramón J, Valarezo E. Cyanide Removal by ZnTiO 3/TiO 2/H 2O 2/UVB System: A Theoretical-Experimental Approach. Int J Mol Sci 2023; 24:16446. [PMID: 38003635 PMCID: PMC10671060 DOI: 10.3390/ijms242216446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Cyanide is a highly toxic substance present in wastewater from various industries. This study investigates the removal of cyanide species (CS) from aqueous solutions using the ZnTiO3/TiO2/H2O2/UVB system. ZnTiO3/TiO2 nanoparticles synthesized by the sol-gel method were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The adsorption capacity of nanoparticles was tested by varying the pH of the solution, adsorbent concentration, and contact time. The adsorption of CS on ZnTiO3 and TiO2 surfaces was verified by Density Functional Theory (DFT) calculations. Photocatalytic experiments were achieved under UVB irradiation (λ = 310 nm). The response surface methodology (RSM) was used to optimize the CS removal efficiency. The detoxification effect was evaluated by acute toxicity tests with brine shrimp. The theoretical results show that the adsorption of CS is energetically more favorable on the ZnTiO3 surface than on the TiO2 surface. The experimental results show that the system consisting of ZnTiO3/TiO2 (200 mg L-1), H2O2 (0.1%), and UVB light removes 99% of CS from aqueous solutions after 60 min and reduces the mortality of nauplii in 90% after 90 min. This system was reused in five consecutive cycles with a total loss of efficiency of 30%.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| | - John Ramón
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| | - Eduardo Valarezo
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| |
Collapse
|
3
|
Wei F, Huang Y, Zhang G, Dai J, Li R, Zhang H, Ge M, Zhang W. Rational Construction of MOF-Derived Porous ZnTiO 3/TiO 2 Heterostructured Photocatalysts with Remarkable Photocatalytic Performance. ACS OMEGA 2023; 8:41765-41772. [PMID: 37970027 PMCID: PMC10634009 DOI: 10.1021/acsomega.3c06307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
TiO2 has been widely used in photodegradation of pollutants, but it suffers from inferior photocatalytic performance under solar light illumination. Thus, novel porous ZnTiO3/TiO2 heterostructured photocatalysts are constructed by hydrothermal and carbonization techniques using ZIF-8 as a sacrificial template. After coating with TiO2, ZIF-8 nanocubes are selectively etched and subsequently coprecipitated with Ti ions during the hydrothermal process. Thereafter, the pores generated from carbonized ZIF-8 provide a large specific surface area and abundant active reaction sites for photocatalysis after annealing, producing stable ZnTiO3/TiO2 nanocomposites. Thus, porous ZnTiO3/TiO2 heterostructured photocatalysts exhibit excellent photocatalytic performance under solar light irradiation due to the boosted electron-hole separation/transfer. The kinetic constant of ZnTiO3/TiO2 nanocomposites (4.66 × 10-1 min-1) is almost 100 and 3.7 times higher than that of self-degradation (4.69 × 10-3 min-1) and TiO2 (1.27 × 10-1 min-1), respectively. This facile strategy provides a deep insight into synthesizing heterostructured photocatalysts with high efficiency in the field of environmental remediation.
Collapse
Affiliation(s)
- Fayun Wei
- School
of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
- College
of Textile Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yiwen Huang
- School
of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Guangyu Zhang
- School
of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Jiamu Dai
- School
of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Ruiqing Li
- School
of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Haifeng Zhang
- School
of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Mingzheng Ge
- School
of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
- Key
Laboratory of Jiangsu Province for Silk Engineering, Soochow University, Suzhou 215123, P. R. China
- Institute
of Applied Physics and Materials Engineering, University of Macau, Macau 999078, P. R. China
| | - Wei Zhang
- School
of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
4
|
Zhang J, Chen Y, Hou J. Advanced Photocatalytic Nanomaterials for Energy Conversion and Environmental Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2246. [PMID: 37570563 PMCID: PMC10421240 DOI: 10.3390/nano13152246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
With the rapid development of the economy and society, the problem of energy shortage and environmental pollution is receiving more and more attention [...].
Collapse
Affiliation(s)
- Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| | - Yong Chen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Jungang Hou
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|
5
|
Jaramillo-Fierro X, Gaona S, Ramón J, Valarezo E. Porous Geopolymer/ZnTiO 3/TiO 2 Composite for Adsorption and Photocatalytic Degradation of Methylene Blue Dye. Polymers (Basel) 2023; 15:2697. [PMID: 37376343 DOI: 10.3390/polym15122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, GP (geopolymer) and GTA (geopolymer/ZnTiO3/TiO2) geopolymeric materials were prepared from metakaolin (MK) and characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive X-rays (EDX), specific surface area (SSA), and point of zero charge (PZC). The adsorption capacity and photocatalytic activity of the compounds prepared in the form of pellets was determined by degradation of the methylene blue (MB) dye in batch reactors, at pH = 7.0 ± 0.2 and room temperature (20 °C). The results indicate that both compounds are highly efficient at adsorbing MB, with an average efficiency value of 98.5%. The Langmuir isotherm model and the pseudo second order kinetic model provided the best fits to the experimental data for both compounds. In the MB photodegradation experiments under UVB irradiation, GTA reached an efficiency of 93%, being higher than that achieved by GP (4%). Therefore, the incorporation of ZnTiO3/TiO2 in the geopolymeric matrix allowed GTA to achieve higher overall efficiency, by combining adsorption and photocatalysis, compared to the GP compound. The results indicate that the synthesized compounds could be used for up to five consecutive cycles for the removal of MB from wastewater through adsorption and/or photocatalysis processes.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Sneyder Gaona
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - John Ramón
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Eduardo Valarezo
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| |
Collapse
|
6
|
La3+’s Effect on the Surface (101) of Anatase for Methylene Blue Dye Removal, a DFT Study. Molecules 2022; 27:molecules27196370. [PMID: 36234906 PMCID: PMC9571724 DOI: 10.3390/molecules27196370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Density functional theory (DFT) is a widely used method for studying matter at the quantum level. In this study, the surface (101) of TiO2 (anatase phase) was considered to develop DFT calculations and explain the effect of lanthanum ion (La3+) on the electronic properties, adsorption capacity, and photocatalytic activity of this semiconductor. Due to the presence of the La3+ ion, the bandgap energy value of La/TiO2 (2.98 eV) was lower than that obtained for TiO2 (3.21 eV). TDOS analysis demonstrated the presence of hybrid levels in La/TiO2 composed mainly of O2p and La5d orbitals. The chemical nature of the La-O bond was estimated from PDOS analysis, Bader charge analysis, and ELF function, resulting in a polar covalent type, due to the combination of covalent and ionic bonds. In general, the adsorption of the methylene blue (MB) molecule on the surface (101) of La/TiO2 was energetically more favorable than on the surface (101) of TiO2. The thermodynamic stability of doping TiO2 with lanthanum was deduced from the negative heat-segmentation values obtained. The evidence from this theoretical study supports the experimental results reported in the literature and suggests that the semiconductor La/TiO2 is a potential catalyst for applications that require sunlight.
Collapse
|