1
|
Wanyonyi FS, Orata F, Ramasami P, Ngeno E, Shikuku V, Gembo RO, Mutua GK, Pembere A. Unlocking the adsorptive effectiveness of naturally occurring heulandite zeolite for the removal of PO 43- and NO 3- anions from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:78. [PMID: 39704871 DOI: 10.1007/s10661-024-13522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
The mitigation of high levels of phosphate (PO43-) and nitrate (NO3-) ions in water bodies, particularly in agricultural wastewater, holds paramount importance in curbing eutrophication within aquatic ecosystems. Herein, using experimental and computational techniques, the study explored the potential of naturally occurring South Africa heulandite (HEU) zeolite for the removal of PO43- and NO3- ions from synthetic wastewater in batch mode. The percentage removal of PO43- and NO3- was 59.15% and 51.39%, respectively, whereas the corresponding maximum adsorption capacity of the adsorbent was 0.0236 and 0.0206 mg/g. The adsorption kinetics of both anions by HEU fitted well in the pseudo-first-order (PFO) kinetic model indicating a physisorption-mediated rate-determining step. It was revealed that the adsorption process was multi-mechanistic spontaneous and exothermic. Molecular simulations using Monte Carlo (MC) and density functional theory (DFT) methods also provided insights into the adsorption mechanisms.
Collapse
Affiliation(s)
- Fred Sifuna Wanyonyi
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Francis Orata
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Moka, Mauritius
- Department of Chemical Sciences, Centre for Natural Product Research, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Emily Ngeno
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
- Department of Physical Sciences, Kaimosi Friends University, P.O BOX 385-50309, Kaimosi, Kenya
| | - Victor Shikuku
- Department of Physical Sciences, Kaimosi Friends University, P.O BOX 385-50309, Kaimosi, Kenya
| | - Robert O Gembo
- College of Science, Engineering and Technology (CSET), Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Florida Science Campus, Johannesburg, South Africa
| | - Gershom Kyalo Mutua
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Anthony Pembere
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210, Bondo, 40601, Kenya.
| |
Collapse
|
2
|
Pan J, Liu W, Wu W, Zhao R, Li X, Zhou J. Synthesis and characterization of chitosan Schiff base grafted with formaldehyde and aminoethanol: As an effective adsorbent for removal of Pb(II), Hg(II), and Cu(II) ions from aqueous media. Int J Biol Macromol 2024; 281:135601. [PMID: 39276889 DOI: 10.1016/j.ijbiomac.2024.135601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Grafted chitosan materials show the characteristics of high stability, easy separation and recovery, and good heavy metal adsorption capacity, and have received much attention in the adsorption process. Therefore, in this work, novel grafted chitosan-based adsorbent CS-EHBSB@F-AE was prepared by a one-pot reaction of chitosan (CS), 3-ethoxy-4-hydroxybenzaldehyde (EHB), formaldehyde (F) and aminoethanol (F). The microstructure and morphology of the as-prepared composite CS-EHBSB@F-AE were characterized by FT-IR, TGA, DSC, FE-SEM, and BET analyses. The adsorption performance of the as-prepared CS-EHBSB@F-AE composite on Pb(II), Hg(II), and Cu(II) ions from aqueous was investigated using batch experiment and the effects of the initial pH of the solution, contact time, and initial metal ions concentration and temperature on the adsorption efficiency were investigated and discussed. At the best conditions, CS-EHBSB@F-AE exhibited remarkable adsorption capacity of 246.7 mg/g, 203.9 mg/g, and 234.4 mg/g in absorbing Pb(II), Hg(II), and Cu(II), respectively. The adsorption equilibrium and the kinetic studies confirmed that the ions adsorption process fits well with the Langmuir isotherm and pseudo-second-order (PSO) models. Additionally, the adsorption efficiency of Pb(II), Hg(II), and Cu(II) metal ions by the composite CS-EHBSB@F-AE was reduced by increasing the temperature from 298 K to 318 K. In addition, after the sixth ads/des cycles, the as-prepared adsorbent still exhibited high removal efficiency with a decrease in adsorption efficiency of Pb(II) (5.53 %), Hg(II) (15.43 %) and Cu(II) (8.27 %). Finally, we proposed that the ions adsorption by CS-EHBSB@F-AE has happened using the coordination of active groups containing nitrogen and oxygen atoms on the surface of the adsorbent with the Pb(II), Hg(II), and Cu(II) metal ions.
Collapse
Affiliation(s)
- Jiadi Pan
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Weihua Liu
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Wenhong Wu
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Renbang Zhao
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China.
| | - Xiaoyi Li
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Jingjing Zhou
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| |
Collapse
|
3
|
Nseke JM, Baloyi NP. Ecofriendly synthesized Zeolite 4A for the treatment of a multi-cationic contaminant-based effluent: Central composite design (CCD) statistical approach. Heliyon 2024; 10:e35176. [PMID: 39170319 PMCID: PMC11336470 DOI: 10.1016/j.heliyon.2024.e35176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
One of the key aspects of futureproofing the sustainability of life on earth lies in the protection of the hydrosphere, particularly from soluble heavy metal ion pollutants. In the current study, the central composite design and optimization of the ion-exchange process have been carried out for the simultaneous removal of selected cations; Cd2+, Cu2+, and Zn2+ cations using synthesized zeolite 4A. X-ray diffraction analysis confirmed the formation of zeolite 4A. The Brunauer-Emmett-Teller (BET) surface area of the synthesized zeolite was 32 m2/g. Results mainly indicate that there is a strong relationship between the experimental data and central composite design-based models of ion removal efficiency with R2 > 0.9 and the lack of fit less than 0.1 %. All the selected ion exchange parameters (time, dosage, pH, and temperature) were found to be statistically significant, with a p-value less than 0.05. For the complete simultaneous removal of selected cations, the optimal zeolite dosage, pH, and contact time are 1.2 g/100 cm3, 6, and 3 h. The optimal temperature ranges from 25 to 27 °C. The initial concentration of each selected cation is 450 mg/L. The ion exchange is in good agreement with the Freundlich and Langmuir isotherm models. Based on the Langmuir isotherm model, the maximum Cd2+, Cu2+, and Zn2+ uptake capacity values of zeolite are 103, 99.89, and 82.08 mg/g, respectively. In this study, it has been mainly inferred that CCD can be considered a useful tool for the modeling and optimization of zeolite ion exchange applications.
Collapse
Affiliation(s)
- Joseph M. Nseke
- Mineral Processing and Technology Research Centre, Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Nomsa P. Baloyi
- Mineral Processing and Technology Research Centre, Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
4
|
Mirsalami SM, Mirsalami M. Investigation of oil biodegradation using expanded zeolite infused with oil-consuming microorganisms. ENVIRONMENTAL ADVANCES 2024; 16:100551. [DOI: 10.1016/j.envadv.2024.100551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
|
5
|
Liaquat I, Munir R, Abbasi NA, Sadia B, Muneer A, Younas F, Sardar MF, Zahid M, Noreen S. Exploring zeolite-based composites in adsorption and photocatalysis for toxic wastewater treatment: Preparation, mechanisms, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123922. [PMID: 38580064 DOI: 10.1016/j.envpol.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Water scarcity has become a critical global concern exacerbated by population growth, globalization, and industrial expansion, resulting in the production of wastewater containing a wide array of contaminants. Tackling this challenge necessitates the adoption of innovative materials and technologies for effective wastewater treatment. This review article provides a comprehensive exploration of the preparation, applications, mechanisms, and economic environmental analysis of zeolite-based composites in wastewater treatment. Zeolite, renowned for its versatility and porous nature, is of paramount importance due to its exceptional properties, including high surface area, ion exchange capability, and adsorption capacity. Various synthetic methods for zeolite-based composites are discussed. The utilization of zeolites in wastewater treatment, particularly in adsorption and photocatalysis, is thoroughly investigated. The significance of zeolite in adsorption and its role in the photocatalytic degradation of pollutants are examined, along with its applications in treating volatile organic compounds (VOCs), dye wastewater, oil-field wastewater, and radioactive waste. Mechanisms underlying zeolite-based adsorption and photocatalysis, including physical and chemical adsorption, ion exchange, and surface modification, are elucidated. Additionally, the role of micropores in the adsorption process is explored. Furthermore, the review delves into regeneration and desorption studies of zeolite-based composites, crucial for sustainable wastewater treatment practices. Economic and environmental analyses are conducted to assess the feasibility and sustainability of employing zeolite-based composites in wastewater treatment applications. Future recommendations are provided to guide further research and development in the field of zeolite-based composites, aiming to enhance wastewater treatment efficiency and environmental sustainability. By exploring the latest advancements and insights into zeolite-based nanocomposites, this paper aims to contribute to the development of more efficient and sustainable wastewater treatment strategies. The integration of zeolite-based materials in wastewater treatment processes shows promise for mitigating water pollution and addressing water scarcity challenges, ultimately contributing to environmental preservation and public health protection.
Collapse
Affiliation(s)
- Iqra Liaquat
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Naseer Ahmed Abbasi
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University Tandojam, 70060, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad 38000, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Muhammad Fahad Sardar
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Ahmad N, Rasheed S, Mohyuddin A, Fatima B, Nabeel MI, Riaz MT, Najam-Ul-Haq M, Hussain D. 2D MXenes and their composites; design, synthesis, and environmental sensing applications. CHEMOSPHERE 2024; 352:141280. [PMID: 38278447 DOI: 10.1016/j.chemosphere.2024.141280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Novel 2D layered MXene materials were first reported in 2011 at Drexel University. MXenes are widely used in multidisciplinary applications due to their anomalous electrical conductivity, high surface area, and chemical, mechanical, and physical properties. This review summarises MXene synthesis and applications in environmental sensing. The first section describes different methods for MXene synthesis, including fluorinated and non-fluorinated methods. MXene's layered structure, surface terminal groups, and the space between layers significantly impact its properties. Different methods to separate different MXene layers are also discussed using various intercalation reagents and commercially synthesized MXene without compromising the environment. This review also explains the effect of MXene's surface functionalization on its characteristics. The second section of the review describes gas and pesticide sensing applications of Mxenes and its composites. Its good conductivity, surface functionalization with negatively charged groups, intrinsic chemical nature, and good mechanical stability make it a prominent material for room temperature sensing of environmental samples, such as polar and nonpolar gases, volatile organic compounds, and pesticides. This review will enhance the young scientists' knowledge of MXene-based materials and stimulate their diversity and hybrid conformation in environmental sensing applications.
Collapse
Affiliation(s)
- Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, 60000, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Tariq Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
7
|
Munir N, Javaid A, Abideen Z, Duarte B, Jarar H, El-Keblawy A, Sheteiwy MS. The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1695-1718. [PMID: 38051490 DOI: 10.1007/s11356-023-31185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Nanocomposites are emerging as a new generation of materials that can be used to combat water pollution. Zeolite-based nanocomposites consisting of combinations of metals, metal oxides, carbon materials, and polymers are particularly effective for separating and adsorbing multiple contaminants from water. This review presents the potential of zeolite-based nanocomposites for eliminating a range of toxic organic and inorganic substances, dyes, heavy metals, microplastics, and ammonia from water. The review emphasizes that nanocomposites offer enhanced mechanical, catalytic, adsorptive, and porosity properties necessary for sustainable water purification techniques compared to individual composite materials. The adsorption potential of several zeolite-metal/metal oxide/polymer-based composites for heavy metals, anionic/cationic dyes, microplastics, ammonia, and other organic contaminants ranges between approximately 81 and over 99%. However, zeolite substrates or zeolite-amended soil have limited benefits for hyperaccumulators, which have been utilized for phytoremediation. Further research is needed to evaluate the potential of zeolite-based composites for phytoremediation. Additionally, the development of nanocomposites with enhanced adsorption capacity would be necessary for more effective removal of pollutants.
Collapse
Affiliation(s)
- Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ayesha Javaid
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Heba Jarar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
Waheed A, Sajid M, Asif M. Green synthesis of a mesoporous hyper-cross-linked polyamide/polyamine 3D network through Michael addition for the treatment of heavy metals and organic dyes contaminated wastewater. CHEMOSPHERE 2023; 340:139805. [PMID: 37586500 DOI: 10.1016/j.chemosphere.2023.139805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Environmental pollution is the greatest challenge of the modern age due to unprecedented industrialization and urbanization that has led to the contamination of water resources with a wide range of pollutants. The release of untreated industrial and municipal wastewater to water bodies further intensifies the problem. The presence of heavy metals and organic contaminants in water poses significant threats to humans, aquatic life, and the environment. Adsorption is one of the famous water treatment technologies due to its simplicity, low cost, efficiency, and minimal secondary pollution. The selection or synthesis of an effective adsorbent is key to the success of the adsorptive removal of pollutants. In this work, we synthesized an adsorbent consisting of a mesoporous hyper-cross-linked polyamide/polyamine 3D network through a single-step Michael addition reaction. The adsorbent was characterized by FTIR, PXRD, TGA, SEM, and TEM to investigate its functional moieties, material nature, thermal, morphological, and internal structural features, respectively. Due to its mesoporous structure, presence of functional groups, and 3D hyper-cross-linked network, it efficiently removed heavy metals (Cd, Cr, and Pb) from aqueous media. The effect of various parameters such as sample pH, adsorbent dosage, contact time, and adsorbate concentrations was thoroughly investigated. The experimental data were analyzed by a variety of isotherm models wherein Langmuir was found to be the best fit for explaining the adsorption of all the metals. The adsorption kinetics was best explained by the pseudo-second-order model. The maximum adsorption capacities for Cd, Cr, and Pb were 60.98 mg g-1, 119 mg g-1, and 9.302 mg g-1, respectively. The synthesized adsorbent was also tested for removal of organic dyes, and it showed selective and fast removal of Eriochrome Black T. Polymeric resins can be promising materials for adsorptive remediation of pollutants in aqueous media.
Collapse
Affiliation(s)
- Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohammad Asif
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
9
|
Wang JH, Gaber TA, Kuo SW, EL-Mahdy AFM. π-Electron-Extended Triazine-Based Covalent Organic Framework as Photocatalyst for Organic Pollution Degradation and H2 Production from Water. Polymers (Basel) 2023; 15:polym15071685. [PMID: 37050297 PMCID: PMC10096642 DOI: 10.3390/polym15071685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Herein, we report the efficient preparation of π-electron-extended triazine-based covalent organic framework (TFP-TPTPh COF) for photocatalysis and adsorption of the rhodamine B (RhB) dye molecule, as well as for photocatalytic hydrogen generation from water. The resultant TFP-TPTPh COF exhibited remarkable porosity, excellent crystallinity, high surface area of 724 m2 g−1, and massive thermal stability with a char yield of 63.41%. The TFP-TPTPh COF demonstrated an excellent removal efficiency of RhB from water in 60 min when used as an adsorbent, and its maximum adsorption capacity (Qm) of 480 mg g−1 is among the highest Qm values for porous polymers ever to be recorded. In addition, the TFP-TPTPh COF showed a remarkable photocatalytic degradation of RhB dye molecules with a reaction rate constant of 4.1 × 10−2 min−1 and an efficiency of 97.02% under ultraviolet–visible light irradiation. Furthermore, without additional co-catalysts, the TFP-TPTPh COF displayed an excellent photocatalytic capacity for reducing water to generate H2 with a hydrogen evolution rate (HER) of 2712 μmol g−1 h−1. This highly active COF-based photocatalyst appears to be a useful material for dye removal from water, as well as solar energy processing and conversion.
Collapse
Affiliation(s)
- Jing Han Wang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (J.H.W.); (T.A.G.); (S.-W.K.)
| | - Taher A. Gaber
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (J.H.W.); (T.A.G.); (S.-W.K.)
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (J.H.W.); (T.A.G.); (S.-W.K.)
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (J.H.W.); (T.A.G.); (S.-W.K.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Correspondence: ; Tel.: +886-7-5252-000 (ext. 4002)
| |
Collapse
|
10
|
Selective Styrene Oxidation Catalyzed by Phosphate Modified Mesoporous Titanium Silicate. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Selective oxidation of organics over an efficient heterogeneous catalyst under mild liquid phase conditions is a very demanding chemical reaction. Herein, we first report the modification of the surface of mesoporous silica MCM-41 material by phosphate for the efficient incorporation of Ti(IV) in the silica framework to obtain highly ordered 2D hexagonal mesoporous material STP-1. STP-1 has been synthesized by using tetraethyl orthosilicate, triethyl phosphate, and titanium isopropoxide as Si, P, and Ti precursors, respectively, in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) under hydrothermal conditions. The observed specific surface area and pore volume of STP-1 were 878 m2g−1 and 0.75 ccg−1, respectively. Mesoporous STP-1 has been thoroughly characterized by XRD, FT-IR, Raman spectroscopy, SEM, and TEM analyses. Titanium incorporation (Ti/Si = 0.006) was confirmed from the EDX analysis. This mesoporous STP-1 was used as a heterogeneous catalyst for the selective oxidation of styrene into benzaldehye in the presence of dilute aqueous H2O2 as an oxidizing agent. Various reaction parameters such as the reaction time, the reaction temperature, and the styrene/H2O2 molar ratio were systematically studied in this article. Under optimized reaction conditions, the selectivity of benzaldehyde could reach up to 93.8% from styrene over STP-1. Further, the importance of both titanium and phosphate in the synthesis of STP-1 for selective styrene oxidation was examined by comparing the catalytic result with only a phosphate-modified mesoporous silica material, and it suggests that both titanium and phosphate synergistically play an important role in the high selectivity of benzaldehyde in the liquid phase oxidation of styrene.
Collapse
|
11
|
Cao M. Development of Functional Nanomaterials for Applications in Chemical Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:609. [PMID: 36770571 PMCID: PMC9921274 DOI: 10.3390/nano13030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials are materials with particle sizes of less than 100 nm in at least one of their dimensions [...].
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
12
|
Jha S, Gaur R, Shahabuddin S, Tyagi I. Biochar as Sustainable Alternative and Green Adsorbent for the Remediation of Noxious Pollutants: A Comprehensive Review. TOXICS 2023; 11:toxics11020117. [PMID: 36850992 PMCID: PMC9960059 DOI: 10.3390/toxics11020117] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 05/24/2023]
Abstract
The current water crisis necessitates the development of new materials for wastewater treatment. A variety of nanomaterials are continuously being investigated for their potential as adsorbents for environmental remediation. Researchers intend to develop a low-cost, simple, and sustainable material that can cater to removal of pollutants. Biochar derived from biowaste is a potential candidate for the existing problem of water pollution. The review focuses on the various aspects of biochar, such as its sources, preparation methods, mechanism, applications for wastewater treatment, and its regeneration. Compared with other adsorbents, biochar is considered as an environmentally friendly, sustainable, and cost-effective substitute for waste management, climate protection, soil improvement, wastewater treatment, etc. The special properties of biochar such as porosity, surface area, surface charge, and functional groups can be easily modified by various chemical methods, resulting in improved adsorption properties. Therefore, in view of the increasing environmental pollution and the problems encountered by researchers in treating pollutants, biochar is of great importance. This review also highlights the challenges and prospective areas that can be explored and studied in more detail in the future.
Collapse
Affiliation(s)
- Stuti Jha
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan, Gandhinagar 382426, Gujarat, India
| | - Rama Gaur
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan, Gandhinagar 382426, Gujarat, India
| | - Syed Shahabuddin
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan, Gandhinagar 382426, Gujarat, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Ministry of Environment, Forests and Climate Change, Kolkata 700053, West Bengal, India
| |
Collapse
|
13
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
14
|
Adsorption of Methylene Blue and Tetracycline by Zeolites Immobilized on a PBAT Electrospun Membrane. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010081. [PMID: 36615274 PMCID: PMC9822180 DOI: 10.3390/molecules28010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The detection of emerging contaminants in bodies of water has steadily increased in recent years, becoming a severe problem threatening human and ecosystem health. Developing new materials with adsorption properties to remove these pollutants represents an important step toward a potential solution. In this paper, a polybutylene adipate terephthalate (PBAT) nanofibrous membrane incorporating clinoptilolite zeolite was developed and its excellent performance in removing tetracycline (TC) and methylene blue (MB) from water was demonstrated. The composite membrane was prepared in two steps: firstly, a homogeneous dispersion of clinoptilolite (1 wt% respect to polymer) in a PBAT solution (12.6 wt%) was electrospun; secondly, the electrospun membrane was subjected to an acid treatment that improved its wettability through the protonation of the surface silanol groups of clinoptilolite. The resulting membrane was hydrophilic and showed higher adsorption for TC (800 mg/g) and MB (100 mg/g), using a low dose (90 mg/L) powdered zeolite. The maximum removal capacity was obtained at neutral pH, being the cation exchange reaction the main adsorption mechanism. Pseudo-second-order kinetics and Henry's law agree well with the proposed chemisorption and the high affinity of TC and MB for the adsorbent. The material can be reused after the removal process without generating additional contamination, although losing some effectivity.
Collapse
|