1
|
Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8603-8631. [PMID: 38935128 DOI: 10.1007/s00210-024-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mohammad Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
2
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2024:1-21. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
3
|
Mishra S, Yadav MD. Magnetic Nanoparticles: A Comprehensive Review from Synthesis to Biomedical Frontiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17239-17269. [PMID: 39132737 DOI: 10.1021/acs.langmuir.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanotechnology has opened new doors of exploration, particularly in materials science and healthcare. Magnetic nanoparticles (MNP), the tiny magnets, because of their various properties, have the potential to bring about radical changes in the field of medicine. The distinctive surface chemistry, nontoxicity, biocompatibility, and, in particular, the inducible magnetic moment of magnetic materials has attracted a great deal of interest in morphological structures from a variety of scientific domains. This review presents a concise overview of MNPs and their crucial properties and synthesis routes. It also aims to highlight the continuous synthesis methods available for MNP production. In recent years, the use of computational methods for understanding the behavior of nanoparticles has been on the rise. Thus, we also discuss the numerical models developed to understand how magnetic nanoparticles can be used in magnetic hyperthermia and targeting the Circle of Wilis. With the increasing use of MNPs in biomedical applications, it becomes necessary to understand the mechanisms of toxicity, which are elucidated in this review. The review focuses on the biomedical applications of MNPs in drug delivery, theranostics, and MRI contrasting agents. We anticipate that this article will broaden the perspective on magnetic nanoparticles and help to understand their functionality and applicability better.
Collapse
Affiliation(s)
- Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Manishkumar D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
4
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
5
|
Grancharova T, Zagorchev P, Pilicheva B. Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment. J Funct Biomater 2024; 15:207. [PMID: 39194645 DOI: 10.3390/jfb15080207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Photothermal therapy (PTT) can overcome cancer treatment resistance by enhancing the cell membrane permeability, facilitating drug accumulation, and promoting drug release within the tumor tissue. Iron oxide nanoparticles (IONPs) have emerged as effective agents for PTT due to their unique properties and biocompatibility. Approved for the treatment of anemia, as MRI contrast agents, and as magnetic hyperthermia mediators, IONPs also offer excellent light-to-heat conversion and can be manipulated using external magnetic fields for targeted accumulation in specific tissue. Optimizing parameters such as the laser wavelength, power density, shape, size, iron oxidation state, functionalization, and concentration is crucial for IONPs' effectiveness. In addition to PTT, IONPs enhance other cancer treatment modalities. They improve tumor oxygenation, enhancing the efficacy of radiotherapy and photodynamic therapy. IONPs can also trigger ferroptosis, a programmed cell death pathway mediated by iron-dependent lipid peroxidation. Their magneto-mechanical effect allows them to exert a mechanical force on cancer cells to destroy tumors, minimizing the damage to healthy tissue. This review outlines strategies for the management of the photothermal performance and PTT efficiency with iron oxide nanoparticles, as well as synergies with other cancer therapies.
Collapse
Affiliation(s)
- Tsenka Grancharova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Hong J, Wang L, Zheng Q, Cai C, Yang X, Liao Z. The Recent Applications of Magnetic Nanoparticles in Biomedical Fields. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2870. [PMID: 38930238 PMCID: PMC11204782 DOI: 10.3390/ma17122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Magnetic nanoparticles (MNPs) have found extensive application in the biomedical domain due to their enhanced biocompatibility, minimal toxicity, and strong magnetic responsiveness. MNPs exhibit great potential as nanomaterials in various biomedical applications, including disease detection and cancer therapy. Typically, MNPs consist of a magnetic core surrounded by surface modification coatings, such as inorganic materials, organic molecules, and polymers, forming a nucleoshell structure that mitigates nanoparticle agglomeration and enhances targeting capabilities. Consequently, MNPs exhibit magnetic responsiveness in vivo for transportation and therapeutic effects, such as enhancing medical imaging resolution and localized heating at the site of injury. MNPs are utilized for specimen purification through targeted binding and magnetic separation in vitro, thereby optimizing efficiency and expediting the process. This review delves into the distinctive functional characteristics of MNPs as well as the diverse bioactive molecules employed in their surface coatings and their corresponding functionalities. Additionally, the advancement of MNPs in various applications is outlined. Additionally, we discuss the advancements of magnetic nanoparticles in medical imaging, disease treatment, and in vitro assays, and we anticipate the future development prospects and obstacles in this field. The objective is to furnish readers with a thorough comprehension of the recent practical utilization of MNPs in biomedical disciplines.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (L.W.); (Q.Z.); (C.C.); (X.Y.)
| |
Collapse
|
7
|
Kaur J, Sridharr M. Key Insights on the Classification and Theranostic Applications of Magnetic Resonance Imaging Contrast Agents. ChemMedChem 2024; 19:e202300521. [PMID: 38246874 DOI: 10.1002/cmdc.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive molecular imaging tool being extensively employed in clinical and biomedical research for the detection of a broad spectrum of diseases. This technique offers remarkable spatial resolution, good tissue penetration and a high soft tissue contrast. Contrast agents (CAs) have been regularly used in MRI tests to enhance the resolution of MR images and to visualize the diseased sites in the body. In the past years, considerable efforts have been devoted towards developing new theranostic MRI agents that can be tailored to integrate the targeting and therapeutic functions in a single agent. In this review, we have underlined the role of the MRI CAs in the developing field of 'theranostics' and their recent applications in the combined imaging and therapy of different types of tumors. In addition, this review also outlines the different categories of MRI CAs and their comprehensive classification based on different criteria such as chemical composition, relaxation mechanism and biodistribution with clinically relevant examples.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Amity University, Sector-125, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Manasvini Sridharr
- LMU Biocenter, Martinsreid, Ludwig-Maximilians-Universität München, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, München, Germany
| |
Collapse
|
8
|
Kara G, Ozpolat B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer. Biomed Microdevices 2024; 26:16. [PMID: 38324228 DOI: 10.1007/s10544-024-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Houston Methodist Neal Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Xu S, Zhang G, Zhang J, Liu W, Wang Y, Fu X. Advances in Brain Tumor Therapy Based on the Magnetic Nanoparticles. Int J Nanomedicine 2023; 18:7803-7823. [PMID: 38144513 PMCID: PMC10749175 DOI: 10.2147/ijn.s444319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023] Open
Abstract
Brain tumors, including primary gliomas and brain metastases, are one of the deadliest tumors because effective macromolecular antitumor drugs cannot easily penetrate the blood-brain barrier (BBB) and blood-brain tumor barrier (BTB). Magnetic nanoparticles (MNPs) are considered the most suitable nanocarriers for the delivery of brain tumor drugs because of their unique properties compared to other nanoparticles. Numerous preclinical and clinical studies have demonstrated the potential of these nanoparticles in magnetic targeting, nuclear magnetic resonance, magnetic thermal therapy, and ultrasonic hyperthermia. To further develop and optimize MNPs for the diagnosis and treatment of brain tumors, we attempt to outline recent advances in the use of MNPs to deliver drugs, with a particular focus on their efficacy in the delivery of anti-brain tumor drugs based on magnetic targeting and low-intensity focused ultrasound, magnetic resonance imaging for surgical real-time guidance, and magnetothermal and ultrasonic hyperthermia therapy. Furthermore, we summarize recent findings on the clinical application of MNPs and the research limitations that need to be addressed in clinical translation.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Guangxin Zhang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiaomei Zhang
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Wei Liu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yicun Wang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiying Fu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
10
|
Leal AF, Celik B, Fnu N, Khan S, Tomatsu S, Alméciga-Díaz CJ. Iron oxide-coupled CRISPR-nCas9-based genome editing assessment in mucopolysaccharidosis IVA mice. Mol Ther Methods Clin Dev 2023; 31:101153. [PMID: 38107675 PMCID: PMC10724691 DOI: 10.1016/j.omtm.2023.101153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Mucopolysaccharidosis (MPS) IVA is a lysosomal storage disorder caused by mutations in the GALNS gene that leads to the lysosomal accumulation of keratan sulfate (KS) and chondroitin 6-sulfate, causing skeletal dysplasia and cardiopulmonary complications. Current enzyme replacement therapy does not impact the bone manifestation of the disease, supporting that new therapeutic alternatives are required. We previously demonstrated the suitability of the CRISPR-nCas9 system to rescue the phenotype of human MPS IVA fibroblasts using iron oxide nanoparticles (IONPs) as non-viral vectors. Here, we have extended this strategy to an MPS IVA mouse model by inserting the human GALNS cDNA into the ROSA26 locus. The results showed increased GALNS activity, mono-KS reduction, partial recovery of the bone pathology, and non-IONPs-related toxicity or antibody-mediated immune response activation. This study provides, for the first time, in vivo evidence of the potential of a CRISPR-nCas9-based gene therapy strategy for treating MPS IVA using non-viral vectors as carriers.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá DC 110231, Colombia
- Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Betul Celik
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nidhi Fnu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá DC 110231, Colombia
| |
Collapse
|
11
|
Le MT, Nguyen HT, Nguyen XH, Do XH, Mai BT, Ngoc Nguyen HT, Trang Than UT, Nguyen TH. Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer. Heliyon 2023; 9:e22080. [PMID: 38058618 PMCID: PMC10696070 DOI: 10.1016/j.heliyon.2023.e22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80%-85% of total cases and leading to millions of deaths worldwide. Drug resistance is the primary cause of treatment failure in NSCLC, which urges scientists to develop advanced approaches for NSCLC treatment. Among novel approaches, the miRNA-based method has emerged as a potential approach as it allows researchers to modulate target gene expression. Subsequently, cell behaviors are altered, which leads to the death and the depletion of cancer cells. It has been reported that miRNAs possess the capacity to regulate multiple genes that are involved in various signaling pathways, including the phosphoinositide 3-kinase, receptor tyrosine kinase/rat sarcoma virus/mitogen-activated protein kinase, wingless/integrated, retinoblastoma, p53, transforming growth factor β, and nuclear factor-kappa B pathways. Dysregulation of these signaling pathways in NSCLC results in abnormal cell proliferation, tissue invasion, and drug resistance while inhibiting apoptosis. Thus, understanding the roles of miRNAs in regulating these signaling pathways may enable the development of novel NSCLC treatment therapies. However, a comprehensive review of potential miRNAs in NSCLC treatment has been lacking. Therefore, this review aims to fill the gap by summarizing the up-to-date information on miRNAs regarding their targets, impact on cancer-associated pathways, and prospective outcomes in treating NSCLC. We also discuss current technologies for delivering miRNAs to the target cells, including virus-based, non-viral, and emerging extracellular vesicle-based delivery systems. This knowledge will support future studies to develop an innovative miRNA-based therapy and select a suitable carrier to treat NSCLC effectively.
Collapse
Affiliation(s)
- Mai Thi Le
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 100000, Viet Nam
| | - Huyen-Thu Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hung Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- College of Health Sciences, Vin University, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hai Do
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Viet Nam
| | - Binh Thanh Mai
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Viet Nam
| | - Ha Thi Ngoc Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Uyen Thi Trang Than
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Thanh-Hong Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| |
Collapse
|
12
|
Shestovskaya MV, Luss AL, Bezborodova OA, Makarov VV, Keskinov AA. Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity. Pharmaceutics 2023; 15:2406. [PMID: 37896166 PMCID: PMC10610190 DOI: 10.3390/pharmaceutics15102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The main concept of radiosensitization is making the tumor tissue more responsive to ionizing radiation, which leads to an increase in the potency of radiation therapy and allows for decreasing radiation dose and the concomitant side effects. Radiosensitization by metal oxide nanoparticles is widely discussed, but the range of mechanisms studied is not sufficiently codified and often does not reflect the ability of nanocarriers to have a specific impact on cells. This review is focused on the magnetic iron oxide nanoparticles while they occupied a special niche among the prospective radiosensitizers due to unique physicochemical characteristics and reactivity. We collected data about the possible molecular mechanisms underlying the radiosensitizing effects of iron oxide nanoparticles (IONPs) and the main approaches to increase their therapeutic efficacy by variable modifications.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anna L. Luss
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
- The Department of Technology of Chemical, Pharmaceutical and Cosmetic Products Mendeleev of University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Olga A. Bezborodova
- P. Hertsen Moscow Oncology Research Institute of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinskiy p. 3, Moscow 125284, Russia;
| | - Valentin V. Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| |
Collapse
|
13
|
Zheng J, Jiang X, Li Y, Gao J. Inorganic nanoparticle-integrated mesenchymal stem cells: A potential biological agent for multifaceted applications. MedComm (Beijing) 2023; 4:e313. [PMID: 37533768 PMCID: PMC10390757 DOI: 10.1002/mco2.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies are flourishing. MSCs could be used as potential therapeutic agents for regenerative medicine due to their own repair function. Meanwhile, the natural predisposition toward inflammation or injury sites makes them promising carriers for targeted drug delivery. Inorganic nanoparticles (INPs) are greatly favored for their unique properties and potential applications in biomedical fields. Current research has integrated INPs with MSCs to enhance their regenerative or antitumor functions. This model also allows the in vivo fate tracking of MSCs in multiple imaging modalities, as many INPs are also excellent contrast agents. Thus, INP-integrated MSCs would be a multifunctional biologic agent with great potential. In this review, the current roles performed by the integration of INPs with MSCs, including (i) enhancing their repair and regeneration capacity via the improvement of migration, survival, paracrine, or differentiation properties, (ii) empowering tumor-killing ability through agent loaded or hyperthermia, and (iii) conferring traceability are summarized. An introduction of INP-integrated MSCs for simultaneous treatment and tracking is also included. The promising applications of INP-integrated MSCs in future treatments are emphasized and the challenges to their clinical translation are discussed.
Collapse
Affiliation(s)
- Juan‐Juan Zheng
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Xin‐Chi Jiang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yao‐Sheng Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Jian‐Qing Gao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Hangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
14
|
Huang J, Lin G, Juenke T, Chung S, Lai N, Zhang T, Zhang T, Zhang M. Iron Oxide Nanoparticle-Mediated mRNA Delivery to Hard-to-Transfect Cancer Cells. Pharmaceutics 2023; 15:1946. [PMID: 37514132 PMCID: PMC10384052 DOI: 10.3390/pharmaceutics15071946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
mRNA-based therapeutics have emerged as a promising strategy for cancer treatment. However, the effective delivery of mRNA into hard-to-transfect cancer cells remains a significant challenge. This study introduces a novel approach that utilizes iron oxide nanoparticles (NPs) synthesized through a layer-by-layer (LbL) method for safe and efficient mRNA delivery. The developed NPs consist of an iron oxide core modified with a thin charge-bearing layer, an mRNA middle layer, and an outer layer composed of perfluorinated polyethyleneimine with heparin (PPH), which facilitates efficient mRNA delivery. Through a comparative analysis of four nanoparticle delivery formulations, we investigated the effects of the iron oxide core's surface chemistry and surface charge on mRNA complexation, cellular uptake, and mRNA release. We identified an optimal and effective mRNA delivery platform, namely, (IOCCP)-mRNA-PPH, capable of transporting mRNA into various hard-to-transfect cancer cell lines in vitro. The (IOCCP)-mRNA-PPH formulation demonstrated significant enhancements in cellular internalization of mRNA, facilitated endosomal escape, enabled easy mRNA release, and exhibited minimal cytotoxicity. These findings suggest that (IOCCP)-mRNA-PPH holds great promise as a solution for mRNA therapy against hard-to-transfect cancers.
Collapse
Affiliation(s)
- Jianxi Huang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Taylor Juenke
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Lai
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Tianxin Zhang
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Tianyi Zhang
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Shabatina TI, Vernaya OI, Shimanovskiy NL, Melnikov MY. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023; 15:pharmaceutics15041181. [PMID: 37111666 PMCID: PMC10141702 DOI: 10.3390/pharmaceutics15041181] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The development of antiviral treatment and anticancer theragnostic agents in recent decades has been associated with nanotechnologies, and primarily with inorganic nanoparticles (INPs) of metal and metal oxides. The large specific surface area and its high activity make it easy to functionalize INPs with various coatings (to increase their stability and reduce toxicity), specific agents (allowing retention of INPs in the affected organ or tissue), and drug molecules (for antitumor and antiviral therapy). The ability of magnetic nanoparticles (MNPs) of iron oxides and ferrites to enhance proton relaxation in specific tissues and serve as magnetic resonance imaging contrast agents is one of the most promising applications of nanomedicine. Activation of MNPs during hyperthermia by an external alternating magnetic field is a promising method for targeted cancer therapy. As therapeutic tools, INPs are promising carriers for targeted delivery of pharmaceuticals (either anticancer or antiviral) via magnetic drug targeting (in case of MNPs), passive or active (by attaching high affinity ligands) targeting. The plasmonic properties of Au nanoparticles (NPs) and their application for plasmonic photothermal and photodynamic therapies have been extensively explored recently in tumor treatment. The Ag NPs alone and in combination with antiviral medicines reveal new possibilities in antiviral therapy. The prospects and possibilities of INPs in relation to magnetic hyperthermia, plasmonic photothermal and photodynamic therapies, magnetic resonance imaging, targeted delivery in the framework of antitumor theragnostic and antiviral therapy are presented in this review.
Collapse
Affiliation(s)
- Tatyana I Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Olga I Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Nikolay L Shimanovskiy
- Department of Molecular Pharmacology and Radiobiology, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mikhail Ya Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
| |
Collapse
|
16
|
Li M, Sun X, Yin M, Shen J, Yan S. Recent Advances in Nanoparticle-Mediated Co-Delivery System: A Promising Strategy in Medical and Agricultural Field. Int J Mol Sci 2023; 24:5121. [PMID: 36982200 PMCID: PMC10048901 DOI: 10.3390/ijms24065121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Drug and gene delivery systems mediated by nanoparticles have been widely studied for life science in the past decade. The application of nano-delivery systems can dramatically improve the stability and delivery efficiency of carried ingredients, overcoming the defects of administration routes in cancer therapy, and possibly maintaining the sustainability of agricultural systems. However, delivery of a drug or gene alone sometimes cannot achieve a satisfactory effect. The nanoparticle-mediated co-delivery system can load multiple drugs and genes simultaneously, and improve the effectiveness of each component, thus amplifying efficacy and exhibiting synergistic effects in cancer therapy and pest management. The co-delivery system has been widely reported in the medical field, and studies on its application in the agricultural field have recently begun to emerge. In this progress report, we summarize recent progress in the preparation and application of drug and gene co-delivery systems and discuss the remaining challenges and future perspectives in the design and fabrication.
Collapse
Affiliation(s)
- Mingshan Li
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaowei Sun
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Bracamonte AG. Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS). BIOSENSORS 2023; 13:260. [PMID: 36832027 PMCID: PMC9954403 DOI: 10.3390/bios13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This communication aims at discussing strategies based on developments from nanotechnology focused on the next generation of sequencing (NGS). In this regard, it should be noted that even in the advanced current situation of many techniques and methods accompanied with developments of technology, there are still existing challenges and needs focused on real samples and low concentrations of genomic materials. The approaches discussed/described adopt spectroscopical techniques and new optical setups. PCR bases are introduced to understand the role of non-covalent interactions by discussing about Nobel prizes related to genomic material detection. The review also discusses colorimetric methods, polymeric transducers, fluorescence detection methods, enhanced plasmonic techniques such as metal-enhanced fluorescence (MEF), semiconductors, and developments in metamaterials. In addition, nano-optics, challenges linked to signal transductions, and how the limitations reported in each technique could be overcome are considered in real samples. Accordingly, this study shows developments where optical active nanoplatforms generate signal detection and transduction with enhanced performances and, in many cases, enhanced signaling from single double-stranded deoxyribonucleic acid (DNA) interactions. Future perspectives on miniaturized instrumentation, chips, and devices aimed at detecting genomic material are analyzed. However, the main concept in this report derives from gained insights into nanochemistry and nano-optics. Such concepts could be incorporated into other higher-sized substrates and experimental and optical setups.
Collapse
Affiliation(s)
- Angel Guillermo Bracamonte
- Instituto de Investigaciones en Físicoquímica de Córdoba (INFIQC), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; or
- Departement de Chimie et Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
18
|
Doxorubicin-Loaded Iron Oxide Nanoparticles Induce Oxidative Stress and Cell Cycle Arrest in Breast Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12020237. [PMID: 36829796 PMCID: PMC9952039 DOI: 10.3390/antiox12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Cancer is one of the most common diseases nowadays and derives from the uncontrollable growth of a single cell. Magnetic nanoparticles (NpMag) offer various possibilities for use in the biomedical area, including drug delivery mediated by magnetic fields. In the current study, we evaluated the in vitro effects of iron-oxide magnetic nanoparticles conjugated with the antitumor drug doxorubicin (Dox) on human breast cancer cells. Our results revealed that magnetic nanoparticles with Dox (NpMag+Dox) induce cellular redox imbalance in MCF-7 cells. We also demonstrate that iron-oxide nanoparticles functionalized with Dox induce oxidative stress evidenced by DNA damage, lipid peroxidation, cell membrane disruption, and loss of mitochondria potential. As a result, NpMag+Dox drives MCF-7 cells to stop the cell cycle and decrease cell migration. The association of NpMg+Dox induced a better delivery of Dox to MCF cells, mainly in the presence of a magnetic field, increasing the death of MCF cells which might reduce the toxicity for healthy cells providing a better efficacy for the treatment. Thus, iron-oxide nanoparticles and doxorubicin conjugated may be candidate for anticancer therapy.
Collapse
|
19
|
Kosri E, Ibrahim F, Thiha A, Madou M. Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234171. [PMID: 36500794 PMCID: PMC9741053 DOI: 10.3390/nano12234171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/28/2023]
Abstract
Micro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height. Several distinctive methods used to expand the surface area of 3D IDEAs, such as a unique 3D IDEA design, integration of mesh, microchannel, vertically aligned carbon nanotubes (VACNT), and nanoparticles, are demonstrated and discussed. More notably, the conventional four-electrode system, consisting of reference and counter electrodes will be compared to the highly novel two-electrode system that adopts IDEA's shape. Compared to the 2D planar IDEA, the expansion of the surface area in 3D IDEAs demonstrated significant changes in the performance of electrochemical sensors. Furthermore, the challenges faced by current IDEAs-based electrochemical biosensors and their potential solutions for future directions are presented herein.
Collapse
Affiliation(s)
- Elyana Kosri
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre of Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marc Madou
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
- Academia Mexicana de Ciencias, Ciudad de México 14400, CDMX, Mexico
| |
Collapse
|