1
|
Pinheiro CP, Tokura BK, Germano NS, de Moraes MA, Bresolin ITL. Adsorption of amoxicillin by chitosan and alginate biopolymers composite beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35293-4. [PMID: 39466532 DOI: 10.1007/s11356-024-35293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Due to its widespread use and incomplete breakdown in the human body, amoxicillin has been detected in receiving water bodies. This raises significant concerns, like the promotion of antibiotic resistance, toxicity towards aquatic life, disruption of the natural balance of microbial communities within these water bodies, and the struggle of effectively removal by the traditional wastewater treatment plants. Consequently, exploring new processes to complement the existing methods is crucial. Adsorption, a promising highly efficient, selective, and versatile technique, can effectively remove contaminants, making it useful in various industries such as water treatment, pharmaceuticals, and environmental remediation. Several adsorbents are documented in the literature for drug adsorption; however, their fabrication often involves more complex steps and substances compared to chitosan and alginate, which are natural polymers that are biocompatible, non-toxic, and biodegradable. Their tunable properties and ease of modification enhance their efficacy in environmental remediation. Therefore, the novelty of this article is to understand the interaction of amoxicillin with chitosan and alginate adsorbents easily synthetized using the dripping technique. This approach allows us to explore basic principles that can be applied to more complex systems in future studies. The optimal pH for both beads was found to be 4, with adsorption capacities of 74.2 ± 0.3 mg g-1 for alginate and 80.4 ± 0.2 mg g-1 for chitosan, using 1 g of adsorbent. Kinetics studies indicated that external diffusion governs adsorption for alginate, while internal diffusion governs adsorption for chitosan. This approach underscores the potential of chitosan and alginate beads as effective adsorbents for mitigating antibiotic contamination in water systems, offering a sustainable complement to traditional treatment methods.
Collapse
Affiliation(s)
- Cláudio Pereira Pinheiro
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Beatriz Kaori Tokura
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Natália Soares Germano
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Mariana Agostini de Moraes
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas - UNICAMP, Av. Albert Einstein, 500, Campinas, SP, 13083-852, Brazil
| | - Igor Tadeu Lazzarotto Bresolin
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil.
| |
Collapse
|
2
|
Parlayıcı Ş, Pehlivan E. Methylene blue removal using nano-TiO 2/MWCNT/Chitosan hydrogel composite beads in aqueous medium. CHEMOSPHERE 2024; 365:143244. [PMID: 39251160 DOI: 10.1016/j.chemosphere.2024.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Dyestuff, one of the most hazardous compounds in terms of threats to people and the environment, is found in wastewater from industrial usage. The removal of Methylene Blue (MB) from a water-based medium has been studied by numerous researchers using a variety of adsorbents. To remove MB from aqueous solution, nano-TiO2/MWCNT/Chitosan hydrogel composite beads (n-TiO2/MWCNT/Cht) were developed in this study using a sol-gel method. This research discusses the characterisation of a new adsorbent substance using Infrared Spectroscopy (FT-IR) analysis and scanning electron microscopy (SEM). The optimal pH, adsorbent dosage, duration, and starting concentration were ascertained by analyzing the removal efficiencies of MB using the batch adsorption method. Adsorption behaviour at the equilibrium state has been investigated using a variety of adsorption isotherms, including Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir adsorption isotherm has been useful to clarify adsorption behaviors. nTiO2-Cht/MWCNT had an adsorption capacity of 80.65 mg/g for MB. The pseudo-second-order kinetic model offered the best agreement to the experimental data for the adsorption of MB. Kinetic models of pseudo-first-order and pseudo-second-order were employed to explore the adsorption processes of MB on the n-TiO2/MWCNT/Cht. This study demonstrated the efficiency of n-TiO2/MWCNT/Cht for the removal of MB from a water-based solution.
Collapse
Affiliation(s)
- Şerife Parlayıcı
- Department of Chemical Engineering, Konya Technical University, Campus, 42250, Konya, Turkey.
| | - Erol Pehlivan
- Department of Chemical Engineering, Konya Technical University, Campus, 42250, Konya, Turkey.
| |
Collapse
|
3
|
Darwesh OM, Matter IA, Abdel-Maksoud MA, Al-Qahtani WH, El-Tayeb MA, Kodous AS, Aufy M. Development of nanocomposite-selenium filter for water disinfection and bioremediation of wastewater from Hg and AgNPs. Sci Rep 2024; 14:21443. [PMID: 39271750 PMCID: PMC11399127 DOI: 10.1038/s41598-024-70120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Selenium nanoparticles (SeNPs) are used in several sectors as antitumor, antimicrobial, and environmental adsorbents. Thus, the present research objective was the production of bacterial-SeNPs as an active and environmentally-friendly antibacterial and adsorbent agents and application into novel nanocomposite filter. From a total of 25 samples (soil, wastewater, and water) obtained from different locations in Egypt, 60 selenium-resistant bacterial isolates were obtained (on a mineral salt medium supplemented with selenium ions). After screening (based on the conversion of selenium from ionic form to nanoform), a superior bacterial isolate for SeNPs formation was obtained and molecular identified as Bacillus pumilus isolate OR431753. The high yield of SeNPs was noted after optimization (glucose as carbon source, pH 9 at 30 °C). The produced SeNPs were characterized as approximately 15 nm-diameter spherical nanoparticles, in addition to the presence of organic substances around these particles like polysaccharides and aromatic amines (protein residues). Also, they have antibacterial activity increased after formation of nanocomposite with nano-chitosan (SeNPs/NCh) against several pathogens. The antibacterial activity (expressed as a diameter of the inhibitory zone) averaged between 2.1 and 4.3, 2.7 and 4.8 cm for SeNPs and SeNPs/NCh, respectively compared with 1.1 to 1.8 cm for Amoxicillin. The produced nanoselenium/chitosan was used as a biofilter to remove mercury (Hg) and AgNPs as model chemicals with serious toxicity and potential pollutant for water bodies in many industries. The new SeNPs/NCh biofilter has proven highly effective in individually removing mercury and AgNPs from their synthetic wastewaters, with an efficiency of up to 99%. Moreover, the removal efficiency of AgNPs stabilized at 99% after treating them with the syringe filter-Se nanocomposite for 4 cycles of treatment (5 min each).
Collapse
Affiliation(s)
- Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, 11352, Riyadh, Saudi Arabia
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Edo GI, Yousif E, Al-Mashhadani MH. Modified chitosan: Insight on biomedical and industrial applications. Int J Biol Macromol 2024; 275:133526. [PMID: 38960250 DOI: 10.1016/j.ijbiomac.2024.133526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chitosan (CS), a by -product of chitin deacetylation can be useful in a broad range of purposes, to mention agriculture, pharmaceuticals, material science, food and nutrition, biotechnology and of recent, in gene therapy. Chitosan is a highly desired biomolecule due to the existence of many sensitive functional groups inside the molecule and also because of its net cationicity. The latter provides flexibility for creating a wide range of derivatives for particular end users across various industries. This overview aims to compile some of the most recent research on the bio-related applications that chitosan and its derivatives can be used for. However, chitosan's reactive functional groups are amendable to chemical reaction. Modifying the material to show enhanced solubility, a greater range of application options and pH-sensitive targeting and others have been a major focus of chitosan research. This review describes the modifications of chitosan that have been made to improve its water solubility, pH sensitivity, and capacity to target chitosan derivatives. Applying the by-products of chitosan as antibacterial, in targeting, extended release and as delivery systems is also covered. The by-products of chitosan will be important and potentially useful in developing new biomedical drugs in time to come.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
5
|
Javed M, Akbar N, Khan AA, Masood A, Ahmed N, Khan MJ, Ahmed N, Khisro SN, Hameed MASA. Tailoring structural and optical properties of Cu(II)-induced MgAl 2O 4 nanoparticles and their response to toxic dyes under solar illumination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53532-53551. [PMID: 39192152 DOI: 10.1007/s11356-024-34753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Worldwide environmental challenges pose critical problems with the growth of the global economy. Addressing these issues requires the development of an eco-friendly and sustainable catalyst for degrading organic dye pollutants. In this study, copper-doped magnesium aluminates (CuxMg1-xAl2O4) with x = 0.0-0.8 were synthesized using a citrate-based combustion route. The inclusion of Cu(II) significantly impacted the structural, microstructural, optical, and photocatalytic activity of the catalyst. Rietveld analysis of X-ray diffraction powder profiles revealed single-phase spinels crystallized in the face-centered cubic unit cell with Fd 3 ¯ m space group. Chemical states of the ions, surface morphology, and elemental investigation were analyzed by X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. UV-visible and diffuse reflectance spectroscopies confirmed the reduction of the band gap due to Cu(II) doping, validated by first-principle investigations using the WIEN2k code. The catalyst with x = 0.8 showed higher photocatalytic efficacy (90% and 93%) for removing two azo organic dye pollutants, rhodamine B and methyl orange, respectively, within 120 min. Degradation kinetics followed a pseudo-first-order mechanism. The doped (0.8) sample was structurally and morphologically stable and reusable under visible irradiation, retaining performance after three runs. Scavenger studies confirmed hydroxyl and superoxide radicals' involvement in the degradation. This work presents an effective approach to enhancing CuxMg1-xAl2O4 catalysts' photodegradation performance, with potential applications in pharmaceuticals and wastewater remediation.
Collapse
Affiliation(s)
- Muhammad Javed
- Department of Physics, University of Kotli Azad Jammu and Kashmir, Kotli, 11100, Pakistan
| | - Naeem Akbar
- Department of Physics, University of Kotli Azad Jammu and Kashmir, Kotli, 11100, Pakistan
| | - Ayaz Arif Khan
- Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Asad Masood
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Naeem Ahmed
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Muhammad Junaid Khan
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Nisar Ahmed
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Said Nasir Khisro
- Department of Physics, University of Kotli Azad Jammu and Kashmir, Kotli, 11100, Pakistan
| | | |
Collapse
|
6
|
Cagnetta G, Yin Z, Qiu W, Vakili M. Mechanochemical Synthesis of Cross-Linked Chitosan and Its Application as Adsorbent for Removal of Per- and Polyfluoroalkyl Substances from Simulated Electroplating Wastewater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3006. [PMID: 38930375 PMCID: PMC11205816 DOI: 10.3390/ma17123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Chitosan is a promising adsorbent for removing a wide range of pollutants from wastewater. However, its practical application is hindered by instability in acidic environments, which significantly impairs its adsorption capacity and limits its utilization in water purification. While cross-linking can enhance the acid stability of chitosan, current solvent-based methods are often costly and environmentally unfriendly. In this study, a solvent-free mechanochemical process was developed using high-energy ball milling to cross-link chitosan with various polyanionic linkers, including dextran sulfate (DS), poly[4-styrenesulfonic acid-co-maleic acid] (PSSM), and tripolyphosphate (TPP). The mechanochemically cross-linked (MCCL) chitosan products exhibited superior adsorption capacity and stability in acidic solutions compared to pristine chitosan. Chitosan cross-linked with DS (Cht-DS) showed the highest Reactive Red 2 (RR2) adsorption capacity, reaching 1559 mg·g-1 at pH 3, followed by Cht-PSSM (1352 mg·g-1) and Cht-TPP (1074 mg·g-1). The stability of MCCL chitosan was visually confirmed by the negligible mass loss of Cht-DS and Cht-PSSM tablets in pH 3 solution, unlike the complete dissolution of the pristine chitosan tablet. The MCCL significantly increased the microhardness of chitosan, with the order Cht-DS > Cht-PSSM > Cht-TPP, consistent with the RR2 adsorption capacity. When tested on simulated rinsing wastewater from chromium electroplating, Cht-DS effectively removed Cr(VI) (98.75% removal) and three per- and polyfluoroalkyl substances (87.40-95.87% removal), following pseudo-second-order adsorption kinetics. This study demonstrates the potential of the cost-effective and scalable MCCL approach to produce chitosan-based adsorbents with enhanced stability, mechanical strength, and adsorption performance for treating highly acidic industrial wastewater containing a mixture of toxic pollutants.
Collapse
Affiliation(s)
- Giovanni Cagnetta
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | - Zhou Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | - Wen Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | | |
Collapse
|
7
|
Agha HM, Abdulhameed AS, Wu R, Jawad AH, ALOthman ZA, Algburi S. Chitosan-grafted salicylaldehyde/algae composite for methyl violet dye removal: adsorption modeling and optimization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1348-1358. [PMID: 38456236 DOI: 10.1080/15226514.2024.2318777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In this study, a hydrothermal approach was employed to graft chitosan (Chit)/algae (ALG) with salicylaldehyde (SA), resulting in the synthesis of a biocomposite named salicylaldehyde-based chitosan Schiff base/algae (Chit-SA/ALG). The main objective of this biocomposite was to effectively remove methyl violet (MV), an organic dye, from aqueous solutions. The adsorption performance of Chit-SA/ALG toward MV was investigated in detail, considering the effects of three factors: (A) Chit-SA/ALG dose (ranging from 0.02 to 0.1 g/100 mL), (B) pH (ranging from 4 to 10), and (C) time (ranging from 10 to 120 min). The Box-Behnken design (BBD) was utilized for experimental design and analysis. The experimental results exhibited a good fit with both the pseudo-second-order kinetic model and the Freundlich isotherm, suggesting their suitability for describing the MV adsorption process on Chit-SA/ALG. The maximum adsorption capacity of Chit-SA/ALG, as calculated by the Langmuir model, was found to be 115.6 mg/g. The remarkable adsorption of MV onto Chit-SA/ALG can be primarily attributed to the electrostatic forces between Chit-SA/ALG and MV as well as the involvement of various interactions such as n-π, π-π, and H-bond interactions. This research demonstrates that Chit-SA/ALG exhibits promising potential as a highly efficient adsorbent for the removal of organic dyes from water systems.
Collapse
Affiliation(s)
- Hasan M Agha
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Ruihong Wu
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Department of Chemistry, Heng Shui University, Heng Shui, China
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
8
|
Malbenia John M, Benettayeb A, Belkacem M, Ruvimbo Mitchel C, Hadj Brahim M, Benettayeb I, Haddou B, Al-Farraj S, Alkahtane AA, Ghosh S, Chia CH, Sillanpaa M, Baigenzhenov O, Hosseini-Bandegharaei A. An overview on the key advantages and limitations of batch and dynamic modes of biosorption of metal ions. CHEMOSPHERE 2024; 357:142051. [PMID: 38648988 DOI: 10.1016/j.chemosphere.2024.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Water purification using adsorption is a crucial process for maintaining human life and preserving the environment. Batch and dynamic adsorption modes are two types of water purification processes that are commonly used in various countries due to their simplicity and feasibility on an industrial scale. However, it is important to understand the advantages and limitations of these two adsorption modes in industrial applications. Also, the possibility of using batch mode in industrial scale was scrutinized, along with the necessity of using dynamic mode in such applications. In addition, the reasons for the necessity of performing batch adsorption studies before starting the treatment on an industrial scale were mentioned and discussed. In fact, this review article attempts to throw light on these subjects by comparing the biosorption efficiency of some metals on utilized biosorbents, using both batch and fixed-bed (column) adsorption modes. The comparison is based on the effectiveness of the two processes and the mechanisms involved in the treatment. Parameters such as biosorption capacity, percentage removal, and isotherm models for both batch and column (fixed bed) studies are compared. The article also explains thermodynamic and kinetic models for batch adsorption and discusses breakthrough evaluations in adsorptive column systems. The review highlights the benefits of using convenient batch-wise biosorption in lab-scale studies and the key advantages of column biosorption in industrial applications.
Collapse
Affiliation(s)
- Masamvu Malbenia John
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Asmaa Benettayeb
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria.
| | - Mohamed Belkacem
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria; Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Chitepo Ruvimbo Mitchel
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Mustapha Hadj Brahim
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria; Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Imene Benettayeb
- Département d'automatique et Informatique Industrielle, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Boumediene Haddou
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Saleh Al-Farraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Soumya Ghosh
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman; Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa.
| | - C H Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mika Sillanpaa
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India; Division of Research & Development, Lovely Professional University, Phagwara, 144411, Punjab, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Omirserik Baigenzhenov
- Department of Metallurgical Engineering, Satbayev University, Almaty, 050013, Kazakhstan
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| |
Collapse
|
9
|
Rahman A, Kafi MA, Beak G, Saha SK, Roy KJ, Habib A, Faruqe T, Siddique MP, Islam MS, Hossain KS, Choi JW. Green Synthesized Chitosan Nanoparticles for Controlling Multidrug-Resistant mecA- and blaZ-Positive Staphylococcus aureus and aadA1-Positive Escherichia coli. Int J Mol Sci 2024; 25:4746. [PMID: 38731965 PMCID: PMC11083359 DOI: 10.3390/ijms25094746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial resistance has recently been considered an emerging catastrophe globally. The public health and environmental threats were aggravated by the injudicious use of antibiotics in animal farming, aquaculture, and croup fields, etc. Consequently, failure of antibiotic therapies is common because of the emergence of multidrug-resistant (MDR) bacteria in the environment. Thus, the reduction in antibiotic spillage in the environment could be an important step for overcoming this situation. Bear in mind, this research was focused on the green synthesis of chitosan nanoparticles (ChiNPs) using Citrus lemon (Assam lemon) extract as a cross-linker and application in controlling MDR bacteria to reduce the antibiotic spillage in that sector. For evaluating antibacterial activity, Staphylococcus aureus and Escherichia coli were isolated from environmental specimens, and their multidrug-resistant pattern were identified both phenotypically by disk diffusion and genotypically by detecting methicillin- (mecA), penicillin- (blaZ), and streptomycin (aadA1)-resistance encoding genes. The inhibitory zone's diameter was employed as a parameter for determining the antibacterial effect against MDR bacteria revealing 30 ± 0.4 mm, 34 ± 0.2 mm, and 36 ± 0.8 mm zones of inhibition against methicillin- (mecA) and penicillin (blaZ)-resistant S. aureus, and streptomycin (aadA1)-resistant E. coli, respectively. The minimum inhibitory concentration at 0.31 mg/mL and minimum bactericidal concentration at 0.62 mg/mL of yielded ChiNPs were used as the broad-spectrum application against MDR bacteria. Finally, the biocompatibility of ChiNPs was confirmed by showing a negligible decrease in BHK-21 cell viability at doses less than 2 MIC, suggesting their potential for future application in antibiotic-free farming practices.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Md Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Geunyoung Beak
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea;
| | - Sanjay Kumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Ahsan Habib
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Tania Faruqe
- Experimental Physics Division, Atomic Energy Centre, Dhaka 1000, Bangladesh;
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Md. Shafiqul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | | | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea;
| |
Collapse
|
10
|
Hussain M, Hussaini SS, Shariq M, AlMasoud N, AlZaidy GA, Hassan KF, Ali SK, Azooz RE, Siddiqui MA, Seku K. Frankincense-Based Functionalized Multiwalled Carbon Nanotubes with Iron Oxide Composites for Efficient Removal of Crystal Violet: Kinetic and Equilibrium Analysis. ACS OMEGA 2024; 9:11459-11470. [PMID: 38497024 PMCID: PMC10938398 DOI: 10.1021/acsomega.3c08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
In this study, novel adsorbents were developed by functionalizing multiwalled carbon nanotubes with frankincense (Fr-fMWCNT) and adding iron oxide (Fe3O4) to the adsorbent (Fr-fMWCNT-Fe3O4). The morphology, surface characteristics, and chemical nature of the synthesized samples were analyzed by using various characterization techniques. The prepared adsorbents were then applied for the elimination of the toxic dye, crystal violet (CV), from water-based solutions by employing a batch adsorption method. The effectiveness of materials for the adsorption of CV was investigated by tuning various effective experimental parameters (adsorbent dosage, dye quantity, pH, and contact time). In order to derive adsorption isotherms, the Langmuir and Freundlich adsorption models were investigated and compared. The Fr-fMWCNT and Fr-fMWCNT-Fe3O4 were found to remove 85 and 95% of the CV dye within 30 min of the adsorption experiment at pH 6, respectively. It was found that a pseudo-second-order reaction rate was consistent with the experimental adsorption kinetics. The equilibrium data demonstrated that the Langmuir model adequately explained the adsorption behavior of the CV dye on the Fr-fMWCNT and Fr-fMWCNT-Fe3O4 surfaces, respectively. According to the Langmuir study, the highest adsorption capacities of the dye are 434 mg/g for Fr-fMWCNT and 500 mg/g for Fr-fMWCNT-Fe3O4. Remediation of the CV dye using our novel composite materials has not been reported previously in the literature. The synthesized Fr-fMWCNT and Fr-fMWCNT-Fe3O4 adsorbents can be economical and green materials for the adsorptive elimination of CV dye from wastewater.
Collapse
Affiliation(s)
- Mushtaq Hussain
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Syed Sulaiman Hussaini
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Mohammad Shariq
- Department
of Physics, Faculty of Science, Integral
University, Lucknow 226026, India
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghadah Abdulrahman AlZaidy
- Department
of Physics, Faculty of Applied Science, Umm Al-Qura University, AlZahir Branch, Makkah 24383, Saudi Arabia
| | - Khaled F. Hassan
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Syed Kashif Ali
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Rehab E. Azooz
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Mohd Asim Siddiqui
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Kondaiah Seku
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| |
Collapse
|
11
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Varma RS. A review of chitosan nanoparticles: Nature's gift for transforming agriculture through smart and effective delivery mechanisms. Int J Biol Macromol 2024; 260:129522. [PMID: 38246470 DOI: 10.1016/j.ijbiomac.2024.129522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Chitosan nanoparticles (CNPs) have emerged as a promising tool in agricultural advancements due to their unique properties including, biocompatability, biodegradability, non-toxicity and remarkable versatility. These inherent properties along with their antimicrobial, antioxidant and eliciting activities enable CNPs to play an important role in increasing agricultural productivity, enhancing nutrient absorption and improving pest management strategies. Furthermore, the nano-formulation of chitosan have the ability to encapsulate various agricultural amendments, enabling the controlled release of pesticides, fertilizers, plant growth promoters and biocontrol agents, thus offering precise and targeted delivery mechanisms for enhanced efficiency. This review provides a comprehensive analysis of the latest research and developments in the use of CNPs for enhancing agricultural practices through smart and effective delivery mechanisms. It discusses the synthesis methods, physicochemical properties, and their role in enhancing seed germination and plant growth, crop protection against biotic and abiotic stresses, improving soil quality and reducing the environmental pollution and delivery of agricultural amendments. Furthermore, the potential environmental benefits and future directions for integrating CNPs into sustainable agricultural systems are explored. This review aims to shed light on the transformative potential of chitosan nanoparticles as nature's gift for revolutionizing agriculture and fostering eco-friendly farming practices.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 771751735, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
12
|
Jafari AM, Morsali A, Bozorgmehr MR, Beyramabadi SA, Mohseni S. Modeling and characterization of lenalidomide-loaded tripolyphosphate-crosslinked chitosan nanoparticles for anticancer drug delivery. Int J Biol Macromol 2024; 260:129360. [PMID: 38218265 DOI: 10.1016/j.ijbiomac.2024.129360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Tripolyphosphate-crosslinked chitosan (TPPCS) nanoparticles were employed in the encapsulation of lenalidomide (LND) using a straightforward ionic cross-linking approach. The primary objectives of this technique were to enhance the bioavailability of LND and mitigate inadequate or overloading of hydrophobic and sparingly soluble drug towards cancer cells. In this context, a quantum chemical model was employed to elucidate the characteristics of TPPCS nanoparticles, aiming to assess the efficiency of these nanocarriers for the anticancer drug LND. Fifteen configurations of TPPCS and LND (TPPCS /LND1-15) were optimized using B3LYP density functional level of theory and PCM model (H2O). AIM analysis revealed that the high drug loading capacity of TPPCS can be attributed to hydrogen bonds, as supported by the average binding energy (168 kJ mol-1). The encouraging theoretical results prompted us to fabricate this drug delivery system and characterize it using advanced analytical techniques. The encapsulation efficiency of LND within the TPPCS was remarkably high, reaching approximately 87 %. Cytotoxicity studies showed that TPPCS/LND nanoparticles are more effective than the LND drug. To sum up, TPPCS/LND nanoparticles improved bioavailability of poorly soluble LND through cancerous cell membrane. In light of this accomplishment, the novel drug delivery route enhances efficiency, allowing for lower therapy doses.
Collapse
Affiliation(s)
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | | | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sharareh Mohseni
- Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
13
|
Kandasamy G, Manisekaran R, Arthikala MK. Chitosan nanoplatforms in agriculture for multi-potential applications - Adsorption/removal, sustained release, sensing of pollutants & delivering their alternatives - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 240:117447. [PMID: 37863167 DOI: 10.1016/j.envres.2023.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
An increase in the global population has led to an increment in the food consumption, which has demanded high food production. To meet the production demands, different techniques and technologies are adopted in agriculture the past 70 years, where utilization of the industry-manufactured/synthetic pesticides (SPTCs - e.g., herbicides, insecticides, fungicides, bactericides, nematicides, acaricides, avicides, and so on) is one of them. However, it has been later revealed that the usage of SPTCs has negatively impacted the environment - especially water and soil, and also agricultural products - mainly foods. Though preventive measures are taken by government agencies, still the utilization rate of SPTCs is high, and consequently, their maximum residual limit (MRL) levels in food are above tolerance, which further results in serious health concerns in humans. So, there is an immediate need for decreasing the utilization of the SPTCs by delivering them effectively at reduced levels in agriculture but with the required efficacy. Apart from that, it is mandatory to detect/sense and also to remove them to lessen the environmental pollution, while developing effective alternative techniques/technologies. Among many suitable materials that are developed/idenified, chitosan, a bio-polymer has gained great attention and is comprehensively implemented in all the above-mentioned applications - sensing, delivery and removal, due to their excellent and required properties. Though many works are available, in this work, a special attention is given to chitosan and its derivatives (i.e., chitosan nanoparticles (CNPs))based removal, controlled release and sensing of the SPTCs - specifically herbicides and insecticides. Moreover, the chitosan/CNPs-based protective effects on the in vivo models during/after their exposure to the SPTCs, and the current technologies like clustered regularly interspaced short palindromic repeats (CRISPR) as alternatives for SPTCs are also reviewed.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, Tamil Nadu, India.
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| | - Manoj-Kumar Arthikala
- Interdisciplinary Research Laboratory (LII), Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| |
Collapse
|
14
|
Abdel-Raouf MS, Farag RK, Farag AA, Keshawy M, Abdel-Aziz A, Hasan A. Optimization, Kinetics, and Isotherm Studies of Methyl Thioninium Chloride Removal from Simulated Solutions Using Chitosan Derivatives. ACS OMEGA 2023; 8:33580-33592. [PMID: 37744862 PMCID: PMC10515362 DOI: 10.1021/acsomega.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Methylene blue (MB) dye or methyl thioninium chloride is one of the hazardous cationic dyes that are discharged into the textile effluent causing a highly negative environmental impact. The present work targets the investigation of the adsorption performance of some chitosan-modified products toward the MB dye from simulated solutions. The claimed chitosan derivatives were prepared, characterized, and applied for the removal of lead and copper cations from an aqueous medium in a previous work. These include: N,O-carboxymethyl chitosan (N,O-CM/Cs), chitosan grafted with glutaraldehyde (Cs/GA), chitosan cross-linked with GA/epichlorohydrin (Cs/GA/ECH), and chitosan cross-linked with glutaraldehyde/methylene bis(acrylamide) (Cs/GA/MBA). The modified chitosan derivatives in this study displayed outstanding mechanical qualities, exceptional reusability, and a significant amount of adsorption capacity. The ability of prepared Cs derivatives to eradicate MB was as follows: N,O-CM/Cs (95.1 mg/g) < Cs/GA (120.1 mg/g) < Cs/GA/ECH (220.1 mg/g) < Cs/GA/MBA (270.0 mg/g). The swelling performance of the prepared sorbents was verified under different experimental conditions, and the data revealed that the maximum swelling was attained at pH = 9, temperature 55 °C, and after 24 h. The produced Cs derivatives showed exceptional reusability by maintaining higher adsorption effectiveness throughout five cycles. The MB dye was adsorbed onto the modified derivatives according to pseudo-second-order kinetics and the Langmuir model. Moreover, the adsorption process was monitored via atomic force microscopy to verify the differences between the dye-free and dye-loaded adsorbents.
Collapse
Affiliation(s)
| | - Reem Kamal Farag
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| | - Ahmed A. Farag
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| | - Mohamed Keshawy
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| | - Alaa Abdel-Aziz
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| | - Abdulraheim Hasan
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| |
Collapse
|
15
|
Matczuk M, Ruzik L, Keppler BK, Timerbaev AR. Nanoscale Ion-Exchange Materials: From Analytical Chemistry to Industrial and Biomedical Applications. Molecules 2023; 28:6490. [PMID: 37764266 PMCID: PMC10536074 DOI: 10.3390/molecules28186490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nano-sized ion exchangers (NIEs) combine the properties of common bulk ion-exchange polymers with the unique advantages of downsizing into nanoparticulate matter. In particular, being by nature milti-charged ions exchangers, NIEs possess high reactivity and stability in suspensions. This brief review provides an introduction to the emerging landscape of various NIE materials and summarizes their actual and potential applications. Special attention is paid to the different methods of NIE fabrication and studying their ion-exchange behavior. Critically discussed are different examples of using NIEs in chemical analysis, e.g., as solid-phase extraction materials, ion chromatography separating phases, modifiers for capillary electrophoresis, etc., and in industry (fuel cells, catalysis, water softening). Also brought into focus is the potential of NIEs for controlled drug and contrast agent delivery.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Lena Ruzik
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Andrei R. Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
16
|
Hu C, Zheng Z, Huang M, Yang F, Wu X, Zhang A. Adsorption Characterization of Cu(II) and Cd(II) by a Magnetite-Chitosan Composite: Kinetic, Thermodynamic and Equilibrium Studies. Polymers (Basel) 2023; 15:2710. [PMID: 37376356 DOI: 10.3390/polym15122710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Optimizing the use of magnetite-chitosan composites for heavy metal adsorption has been of great interest due to their environmental friendliness. To gain insights into their potential with green synthesis, this study analyzed one of these composites through X-ray diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. Adsorption properties were then explored via static experiments to evaluate the pH dependence, isotherms, kinetics, thermodynamics and regeneration adsorption of Cu(II) and Cd(II). Results disclosed that the optimum pH of adsorption was 5.0, the equilibrium time was about 10 min, and the capacity for Cu(II) and Cd(II) reached 26.28 and 18.67 mg/g, respectively. The adsorption amount of cations increased with temperature from 25 °C to 35 °C and decreased with further increase in temperature from 40 °C to 50 °C, which might be related to the unfolding of chitosan; the adsorption capacity was above 80% of the initial value after two regenerations and about 60% after five regenerations. The composite has a relatively rough outer surface, but its inner surface and porosity are not obvious; it has functional groups of magnetite and chitosan, and chitosan might dominate the adsorption. Consequently, this research proposes the value of maintaining green synthesis research to further optimize the composite system of heavy metal adsorption.
Collapse
Affiliation(s)
- Chao Hu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Zuhong Zheng
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Mengyao Huang
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Fan Yang
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Xuewei Wu
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Aiqun Zhang
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
17
|
Parimelazhagan V, Natarajan K, Shanbhag S, Madivada S, Kumar HS. Effective Adsorptive Removal of Coomassie Violet Dye from Aqueous Solutions Using Green Synthesized Zinc Hydroxide Nanoparticles Prepared from Calotropis gigantea Leaf Extract. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The removal of color from dye wastewater is crucial, since dyes are extremely toxic and can cause cancer in a variety of life forms. Studies must be done to use cost-effective adsorbents for the removal of color from dye effluents to protect the environment. To our knowledge, virtually no research has been done to describe the possibility of using Calotropis gigantea leaf extract zinc hydroxide nanoparticles (CG-Zn(OH)2NPs) as an adsorbent for the decolorization of Coomassie violet (CV) from the aqueous emulsion, either in batch mode or continuously. In the present batch investigation, CV dye is removed from the synthetic aqueous phase using CG-Zn(OH)2NPs as an adsorbent. The synthesized nanoparticles were characterized using various instrumental techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and Brunauer–Emmett–Teller (BET) surface area and pore volume, a particle size analyser, and zero-point charge. The decolorization efficacy of CV dye from an aqueous phase by the adsorbent was examined in batch mode by varying process parameters. The consequences of various experimental variables were optimized using response surface methodology (RSM) to achieve the maximum decolorization efficiency (90.74%) and equilibrium dye uptake, qe (35.12 mg g−1). The optimum pH, dye concentration, CG-Zn(OH)2NPs adsorbent dosage, and particle size were found to be 1.8, 225 mg L−1, 5 g L−1, and 78 μm, respectively for CV dye adsorption capacity at equilibrium. The adsorbent zero-point charge was found to be at pH 8.5. The Langmuir isotherm model provided a good representation of the equilibrium data in aqueous solutions, with a maximum monolayer adsorption capability (qmax) of 40.25 mg g−1 at 299 K. The dye adsorption rate follows a pseudo-second-order kinetic model at various dye concentrations, which indicated that the reaction is more chemisorption than physisorption. The negative values of ΔG and positive values of ΔH at different temperatures indicate that the adsorption process is spontaneous and endothermic, respectively. Reusability tests revealed that the prepared nanoparticles may be used for up to three runs, indicating that the novel CG-Zn(OH)2NPs seems to be a very promising adsorbent for the removal of Coomassie violet dye from wastewater.
Collapse
Affiliation(s)
- Vairavel Parimelazhagan
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kannan Natarajan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Srinath Shanbhag
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Sumanth Madivada
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Harish S. Kumar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| |
Collapse
|