1
|
Pavić V, Kovač-Andrić E, Ćorić I, Rebić S, Užarević Z, Gvozdić V. Antibacterial Efficacy and Characterization of Silver Nanoparticles Synthesized via Methanolic Extract of Fomes fomentarius L. Fr. Molecules 2024; 29:3961. [PMID: 39203038 PMCID: PMC11357466 DOI: 10.3390/molecules29163961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Green synthesis employs environmentally friendly, biodegradable substances for the production of nanomaterials. This study aims to develop an innovative method for synthesizing silver nanoparticles (AgNPs) using a methanolic extract of Fomes fomentarius L. Fr. as the reducing agent and to assess the potential antibacterial properties of the resulting nanoparticles. The successful synthesis of AgNPs was confirmed through characterization techniques such as UV-visible (UV-Vis) spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD). The UV-Vis analysis revealed an absorption peak at 423 nm, while FT-IR identified key phytochemical compounds involved in the reduction process. PXRD analysis indicated a face-centered cubic (fcc) structure with prominent peaks observed at 2θ = 38°, 44.6°, 64.6°, and 78°, confirming the crystalline nature of the AgNPs, with a crystallite diameter of approximately 24 nm, consistent with TEM analysis. The synthesized AgNPs demonstrated significant antibacterial activity, particularly against S. aureus, with higher efficacy against gram-positive bacteria.
Collapse
Affiliation(s)
- Valentina Pavić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia;
| | - Elvira Kovač-Andrić
- Department of Chemistry, University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia; (E.K.-A.); (S.R.)
| | - Ivan Ćorić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine in Osijek, University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Stella Rebić
- Department of Chemistry, University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia; (E.K.-A.); (S.R.)
| | - Zvonimir Užarević
- Faculty of Education, University of Osijek, Cara Hadrijana 10, 31000 Osijek, Croatia;
| | - Vlatka Gvozdić
- Department of Chemistry, University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia; (E.K.-A.); (S.R.)
| |
Collapse
|
2
|
Atapakala S, Sana SS, Kuppam B, Varma RS, Aly Saad Aly M, Kim SC, Vadde R. Honey mediated synthesis of zinc oxide nanoparticles, and evaluation of antimicrobial, antibiofilm activities against multidrug resistant clinical bacterial isolates. J IND ENG CHEM 2024; 135:110-121. [DOI: 10.1016/j.jiec.2024.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Fares A, Mahdy A, Ahmed G. Unraveling the mysteries of silver nanoparticles: synthesis, characterization, antimicrobial effects and uptake translocation in plant-a review. PLANTA 2024; 260:7. [PMID: 38789841 PMCID: PMC11126449 DOI: 10.1007/s00425-024-04439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
MAIN CONCLUSION The study thoroughly investigates nanosilver production, properties, and interactions, shedding light on its multifaceted applications. It underscores the importance of characterizing nanosilver for predicting its behavior in complex environments. Particularly, it highlights the agricultural and environmental ramifications of nanosilver uptake by plants. Nowadays, silver nanoparticles (AgNPs) are a very adaptable nanomaterial with many uses, particularly in antibacterial treatments and agricultural operations. Clarification of key elements of nanosilver, such as its synthesis and characterization procedures, antibacterial activity, and intricate interactions with plants, particularly those pertaining to uptake and translocation mechanisms, is the aim of this in-depth investigation. Nanosilver synthesis is a multifaceted process that includes a range of methodologies, including chemical, biological, and sustainable approaches that are also environmentally benign. This section provides a critical evaluation of these methods, considering their impacts on repeatability, scalability, and environmental impact. The physicochemical properties of nanosilver were determined by means of characterization procedures. This review highlights the significance of analytical approaches such as spectroscopy, microscopy, and other state-of the-art methods for fully characterizing nanosilver particles. Although grasp of these properties is necessary in order to predict the behavior and potential impacts of nanosilver in complex biological and environmental systems. The second half of this article delves into the intricate interactions that plants have with nanosilver, emphasizing the mechanisms of absorption and translocation. There are significant ramifications for agricultural and environmental problems from the uptake of nanosilver by plants and its subsequent passage through their tissues. In summary, by summarizing the state-of-the-art information in this field, this study offers a comprehensive overview of the production, characterization, antibacterial capabilities, and interactions of nanosilver with plants. This paper contributes to the ongoing conversation in nanotechnology.
Collapse
Affiliation(s)
- Ahmed Fares
- Plant Research Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Abdou Mahdy
- Plant Pathology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Gamal Ahmed
- Plant Pathology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| |
Collapse
|
4
|
Bokhari SS, Ali T, Naeem M, Hussain F, Nasir A. Recent advances in nanoformulation-based delivery for cancer immunotherapy. Nanomedicine (Lond) 2024; 19:1253-1269. [PMID: 38717427 PMCID: PMC11285355 DOI: 10.1080/17435889.2024.2343273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide, and its treatment faces several challenges. Phytoconstituents derived from recently discovered medicinal plants through nanotechnology potentially target cancer cells via PI3K/Akt/mTOR pathways and exert their effects selectively through the generation of reactive oxygen species through β-catenin inhibition, DNA damage, and increasing caspase 3/9 and p53 expression. These nanocarriers act specifically against different cancer cell lines such as HT-29, MOLT-4 human leukemia cancer and MCF-7 cell lines SKOV-3, Caov-3, SW-626, HepG2, A-549, HeLa, and MCF-7. This review comprehensively elaborates on the cellular and molecular mechanisms, and therapeutic prospects of various plant-mediated nanoformulations to attain a revolutionary shift in cancer immunotherapy.
Collapse
Affiliation(s)
- Seyedeh Saimeh Bokhari
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
5
|
Subramani K, Incharoensakdi A. Physicochemical and photocatalytic properties of biogenic ZnO and its chitosan nanocomposites for UV-protection and antibacterial activity on coated textiles. Int J Biol Macromol 2024; 263:130391. [PMID: 38417746 DOI: 10.1016/j.ijbiomac.2024.130391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
The textiles for medical use and the purification of textile factory effluents have become the most crucial part of the human healthcare sector. In this study bioactive compounds produced by four distinct plant extracts were used for the synthesis of zinc oxide nanoparticles. The four different ZnO nanoparticles were comprehensively characterized by different analytical techniques. XRD analysis revealed the crystalline nature and phase purity of the ZnO nanoparticles. FTIR spectra provided information on the function of plant extracts in the stabilization or capping process. The size distribution and morphological diversity of the nanoparticles were further clarified by SEM and TEM images. The photocatalytic degradation activity of the four ZnO nanoparticles on two different dyes showed that ZnO nanoparticles prepared from A. indica were most effective for the degradation of 98 % and 91 % of Rhodamine B and Alizarin red dye respectively. The selected ZnO nanoparticles from A. indica were used to prepare ZnO-chitosan nanocomposites before coating on cotton fabrics. The hydrophobicity, UV protection factor, and antibacterial activity of ZnO-chitosan nanocomposites, when coated on cotton fabrics, were also examined. The overall results demonstrated the ZnO and ZnO-chitosan nanocomposite prepared in the present study as a promising material for environmental remediation application.
Collapse
Affiliation(s)
- Karthik Subramani
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
6
|
Joseph S, Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Synthesis, characterization, and application of honey stabilized inulin nanoparticles as colon targeting drug delivery carrier. Int J Biol Macromol 2024; 263:130274. [PMID: 38373569 DOI: 10.1016/j.ijbiomac.2024.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Inulin (INU) is a versatile natural polysaccharide primarily derived from chicory roots. INU possesses the unique quality of evading digestion or fermentation in the early stages of the human digestive tract, instead reaching the lower colon directly. Exploiting on this distinctive attribute, INU finds application in the creation of targeted carrier systems for delivering drugs tailored to colon-related diseases. This study presents a novel method for synthesizing highly stable and non-aggregatory inulin nanoparticles (INU NPs) by ionotropic gelation method, using calcium chloride as crosslinker and natural honey as a stabilizing agent. Different formulation and process parameters were optimized for the synthesis of monodispersed INU NPs. These INU NPs efficiently encapsulated a hydrophilic drug irinotecan hydrochloride trihydrate (IHT) and drug loaded formulation (IINPs) demonstrated excellent colloidal and storage stabilities. Notably, these IINPs exhibited pH-dependent drug release, suggesting potential for colon-specific drug delivery. Anticancer activity of the NPs was found significantly higher in comparison to IHT through cytotoxicity and apoptosis studies against human colorectal carcinoma cells. Overall, this study revealed that the INU NPs synthesized by ionotropic gelation will be an efficient nanocarrier system for colon-targeted drug delivery due to their exceptional biocompatibility and stability in stomach and upper intestinal conditions.
Collapse
Affiliation(s)
- Subin Joseph
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
7
|
Jadoun S, Yáñez J, Aepuru R, Sathish M, Jangid NK, Chinnam S. Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19123-19147. [PMID: 38379040 DOI: 10.1007/s11356-024-32357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.
Collapse
Affiliation(s)
- Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica E Inorgánica, Universidad de Concepción, Edmundo Larenas 129, 4070371, Concepción, Chile
| | - Radhamanohar Aepuru
- Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000, Talca, Chile
| | | | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology Bengaluru, Bengaluru, Karnataka, 560054, India
| |
Collapse
|
8
|
Al-darwesh MY, Ibrahim SS, Mohammed MA. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. RESULTS IN CHEMISTRY 2024; 7:101368. [DOI: 10.1016/j.rechem.2024.101368] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
9
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
10
|
Shahid H, Shah AA, Shah Bukhari SNU, Naqvi AZ, Arooj I, Javeed M, Aslam M, Chandio AD, Farooq M, Gilani SJ, Bin Jumah MN. Synthesis, Characterization, and Biological Properties of Iron Oxide Nanoparticles Synthesized from Apis mellifera Honey. Molecules 2023; 28:6504. [PMID: 37764280 PMCID: PMC10534332 DOI: 10.3390/molecules28186504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Green approaches for nanoparticle synthesis have emerged as biocompatible, economical, and environment-friendly alternatives to counteract the menace of microbial drug resistance. Recently, the utilization of honey as a green source to synthesize Fe2O3-NPs has been introduced, but its antibacterial activity against one of the opportunistic MDR pathogens, Klebsiella pneumoniae, has not been explored. Therefore, this study employed Apis mellifera honey as a reducing and capping agent for the synthesis of iron oxide nanoparticles (Fe2O3-NPs). Subsequent to the characterization of nanoparticles, their antibacterial, antioxidant, and anti-inflammatory properties were appraised. In UV-Vis spectroscopic analysis, the absorption band ascribed to the SPR peak was observed at 350 nm. XRD analysis confirmed the crystalline nature of Fe2O3-NPs, and the crystal size was deduced to be 36.2 nm. Elemental analysis by EDX validated the presence of iron coupled with oxygen in the nanoparticle composition. In ICP-MS, the highest concentration was of iron (87.15 ppm), followed by sodium (1.49 ppm) and other trace elements (<1 ppm). VSM analysis revealed weak magnetic properties of Fe2O3-NPs. Morphological properties of Fe2O3-NPs revealed by SEM demonstrated that their average size range was 100-150 nm with a non-uniform spherical shape. The antibacterial activity of Fe2O3-NPs was ascertained against 30 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zone recorded being 10 mm. The MIC value for Fe2O3-NPs was 30 µg/mL. However, when mingled with three selected antibiotics, Fe2O3-NPs did not affect any antibacterial activity. Momentous antioxidant (IC50 = 22 µg/mL) and anti-inflammatory (IC50 = 70 µg/mL) activities of Fe2O3-NPs were discerned in comparison with the standard at various concentrations. Consequently, honey-mediated Fe2O3-NP synthesis may serve as a substitute for orthodox antimicrobial drugs and may be explored for prospective biomedical applications.
Collapse
Affiliation(s)
- Hamna Shahid
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan; (A.A.S.); (A.D.C.)
| | - Syed Nizam Uddin Shah Bukhari
- Department of Basic Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan;
| | - Anjum Zehra Naqvi
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Iqra Arooj
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Mehvish Javeed
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia;
| | - Ali Dad Chandio
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan; (A.A.S.); (A.D.C.)
| | - Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), PCSIR Head Office, 01-Constitution Avenue, Sector G-5/2, Islamabad 44000, Pakistan;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - May Nasser Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
11
|
Youssef MS, Ahmed SI, Mohamed IMA, Abdel-Kareem MM. Biosynthesis, Spectrophotometric Follow-Up, Characterization, and Variable Antimicrobial Activities of Ag Nanoparticles Prepared by Edible Macrofungi. Biomolecules 2023; 13:1102. [PMID: 37509137 PMCID: PMC10377419 DOI: 10.3390/biom13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The biosynthesis of silver nanoparticles (Ag NPs) could play a significant role in the development of commercial antimicrobials. Herein, the biosynthesis of Ag NPs was studied using the edible mushroom Pleurotus floridanus, and following its formation, spectrophotometry was used to detect the best mushroom content, pH, temperature, and silver concentration. After that, the morphology was described via transmission electron microscopy (TEM), and nanoscale-size particles were found ranging from 11 to 13 nm. The best conditions of Ag content and pH were found at 1.0 mM and 11.0, respectively. In addition, the best mushroom extract concentration was found at 30 g/L. According to XRD analysis, the crystal structure of the formed amorphous Ag NPs is cubic with a space group of fm-3m and a space group number of 225. After that, the function groups at the surface of the prepared Ag NPs were studied via FTIR analysis, which indicated the presence of C=O, C-H, and O-H groups. These groups could indicate the presence of mushroom traces in the Ag NPs, which was confirmed via the amorphous characteristics of Ag NPs from the XRD analysis. The prepared Ag NPs have a high impact against different microorganisms, which could be attributed to the ability of Ag NPs to penetrate the cell bacterial wall.
Collapse
Affiliation(s)
- Mohamed S Youssef
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Sanaa Ibrahim Ahmed
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Ibrahim M A Mohamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Marwa M Abdel-Kareem
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
12
|
López-Miranda JL, Mares-Briones F, Molina GA, González-Reyna MA, Velázquez-Hernández I, España-Sánchez BL, Silva R, Esparza R, Estévez M. Sargassum natans I Algae: An Alternative for a Greener Approach for the Synthesis of ZnO Nanostructures with Biological and Environmental Applications. Mar Drugs 2023; 21:297. [PMID: 37233491 PMCID: PMC10224490 DOI: 10.3390/md21050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In this work, the influence of the Sargassum natans I alga extract on the morphological characteristics of synthesized ZnO nanostructures, with potential biological and environmental applications, was evaluated. For this purpose, different ZnO geometries were synthesized by the co-precipitation method, using Sargassum natans I alga extract as stabilizing agent. Four extract volumes (5, 10, 20, and 50 mL) were evaluated to obtain the different nanostructures. Moreover, a sample by chemical synthesis, without the addition of extract, was prepared. The characterization of the ZnO samples was carried out by UV-Vis spectroscopy, FT-IR spectroscopy, X-ray diffraction, and scanning electron microscopy. The results showed that the Sargassum alga extract has a fundamental role in the stabilization process of the ZnO nanoparticles. In addition, it was shown that the increase in the Sargassum alga extract leads to preferential growth and arrangement, obtaining well-defined shaped particles. ZnO nanostructures demonstrated significant anti-inflammatory response by the in vitro egg albumin protein denaturation for biological purposes. Additionally, quantitative antibacterial analysis (AA) showed that the ZnO nanostructures synthesized with 10 and 20 mL of extract demonstrated high AA against Gram (+) S. aureus and moderate AA behavior against Gram (-) P. aeruginosa, depending on the ZnO arrangement induced by the Sargassum natans I alga extract and the nanoparticles' concentration (ca. 3200 µg/mL). Additionally, ZnO samples were evaluated as photocatalytic materials through the degradation of organic dyes. Complete degradation of both methyl violet and malachite green were achieved using the ZnO sample synthesized with 50 mL of extract. In all cases, the well-defined morphology of ZnO induced by the Sargassum natans I alga extract played a key role in the combined biological/environmental performance.
Collapse
Affiliation(s)
- Jose Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (F.M.-B.); (G.A.M.); (M.A.G.-R.); (I.V.-H.); (R.E.)
| | - Fabian Mares-Briones
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (F.M.-B.); (G.A.M.); (M.A.G.-R.); (I.V.-H.); (R.E.)
| | - Gustavo A. Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (F.M.-B.); (G.A.M.); (M.A.G.-R.); (I.V.-H.); (R.E.)
| | - M. A. González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (F.M.-B.); (G.A.M.); (M.A.G.-R.); (I.V.-H.); (R.E.)
| | - Isaac Velázquez-Hernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (F.M.-B.); (G.A.M.); (M.A.G.-R.); (I.V.-H.); (R.E.)
| | - Beatriz Liliana España-Sánchez
- CONACYT_Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo 76703, Mexico;
| | - Rodolfo Silva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico;
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (F.M.-B.); (G.A.M.); (M.A.G.-R.); (I.V.-H.); (R.E.)
| | - Miriam Estévez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (F.M.-B.); (G.A.M.); (M.A.G.-R.); (I.V.-H.); (R.E.)
| |
Collapse
|