1
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Weiss GS, Silva FRO, Garcia RM, Sakae LO, Viana ÍEL, Hara AT, Lima LC, Scaramucci T. Experimental toothpastes containing β-TCP nanoparticles functionalized with fluoride and tin to prevent Erosive Tooth Wear. J Dent 2024; 149:105273. [PMID: 39084548 DOI: 10.1016/j.jdent.2024.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES The present study aimed to synthesize toothpastes containing Beta- TriCalcium Phosphate (β-TCP) nanoparticles, functionalized with fluoride and tin, and test their ability to reduce erosive tooth wear (ETW). METHODS Toothpastes were synthesized with the following active ingredients: 1100 ppm of fluoride (as sodium fluoride, F-), 3500 ppm of tin (as stannous chloride, Sn2+), and 800 ppm of β-TCP (Sizes a - 20 nm; and b - 100 nm). Enamel specimens were randomly assigned into the following groups (n = 10): 1. Commercial toothpaste; 2. Placebo; 3 F-; 4. F- + β-TCPa; 5. F- + β-TCPb; 6. F- + Sn2+; 7. F- + Sn2+ + β-TCPa and 8. F- + Sn2+ + β-TCPb. Specimens were subjected to erosion-abrasion cycling. Surface loss (in µm) was measured by optical profilometry. Toothpastes pH and available F- were also assessed. RESULTS Brushing with placebo toothpaste resulted in higher surface loss than brushing with F- (p = 0.005) and F- + β-TCPb (p = 0.007); however, there was no difference between F- and F- + β-TCPb (p = 1.00). Commercial toothpaste showed no difference from Placebo (p = 0.279). The groups F-, F- + β-TCPa, F- + β-TCPb, F- + Sn2+, F- + Sn2+ + β-TCPa and F- + Sn2+ + β-TCPb were not different from the commercial toothpaste (p > 0.05). Overall, the addition of β-TCP reduced the amount of available fluoride in the experimental toothpastes. The pH of toothpastes ranged from 4.97 to 6.49. CONCLUSIONS Although toothpaste containing β-TCP nanoparticles protected enamel against dental erosion-abrasion, this effect was not superior to the standard fluoride toothpaste (commercial). In addition, the functionalization of β-TCP nanoparticles with fluoride and tin did not enhance their protective effect. CLINICAL SIGNIFICANCE Although β-TCP nanoparticles have some potential to control Erosive Tooth Wear, their incorporation into an experimental toothpaste appears to have a protective effect that is similar to a commercial fluoride toothpaste.
Collapse
Affiliation(s)
- Guilherme Stangler Weiss
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Flávia Rodrigues Oliveira Silva
- Material Science and Technology Center, Nuclear and Energy Research Institute (IPEN-CNEN), Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000, Brazil
| | - Raíssa Manoel Garcia
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Letícia Oba Sakae
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Ítallo Emídio Lira Viana
- Department of Comprehensive Care, Division of Operative Dentistry - Tufts University School of Dental Medicine, Boston, MA, USA
| | - Anderson T Hara
- Department of Cariology and Operative Dentistry, Indiana University School of Dentistry (IUSD), Indianapolis, IN, USA
| | - Leonardo Custódio Lima
- Department of Dentistry, Federal University of Juiz de Fora (UFJF), Campus Governador Valadares, MG, 35010-180, Brazil.
| | - Taís Scaramucci
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
3
|
Wiatrak B, Rayad S, Gębarowski T, Hadzik J, Styczyńska M, Gedrange T, Dobrzyński M, Barg E, Dominiak M. Comparative Analysis of Heavy Metal Content in Impacted Third Molars from Industrial and Non-Industrial Areas and Its Effect on the Isolation, Culture, and Proliferation of Dental Stem Cells (DSCs). J Clin Med 2024; 13:5465. [PMID: 39336954 PMCID: PMC11432618 DOI: 10.3390/jcm13185465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Background: This study investigates the impact of environmental pollution on the quality and viability of dental stem cells (DSCs) from impacted third molars. By comparing DSCs from patients in industrial areas with high air pollution and those from non-industrial regions, the research assesses the adverse effects of heavy metals on stem cell proliferation. Methods: Impacted lower third molars were collected from 28 patients-10 from industrial and 18 from non-industrial areas. Patients were divided into two age groups: 18-27 years and 28-38 years old. Dental pulp was extracted under sterile conditions, and DSCs were isolated and cultured. Heavy metal concentrations in dental tissues were measured using atomic absorption/emission spectrometry. Results: The study found significantly higher concentrations of copper and lead in the dental tissues of patients in industrial areas. Cell viability was lower in samples from these areas, with a statistically significant difference in average doubling time and the number of cells obtained after the first passage. There was no significant impact of gender on heavy metal content, except for higher iron levels in men. Conclusions: Exposure to industrial pollutants negatively affects the viability and proliferation of DSCs, but there are no differences in differentiation in the osteogenic medium regarding cell mineralization. These studies highlight the importance of environmental factors for oral health, suggesting that residents of polluted areas may face greater difficulties in dental and regenerative treatments. Further research is needed to develop strategies to mitigate the effects and improve clinical outcomes for affected populations.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Sadri Rayad
- Academic Dental Polyclinic of Dental Center, Technology Transfer Ltd., Krakowska 26, 50-425 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland
| | - Jakub Hadzik
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (J.H.); (T.G.); (M.D.)
| | - Marzena Styczyńska
- Department of Human Nutrition, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland;
| | - Tomasz Gedrange
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (J.H.); (T.G.); (M.D.)
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Ewa Barg
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Marzena Dominiak
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (J.H.); (T.G.); (M.D.)
| |
Collapse
|
4
|
dos Santos Calderon P, Chairmandurai A, Xia X, Rocha FG, Camargo SEA, Lakshmyya K, Ren F, Esquivel-Upshaw JF. Impact of Silicon Carbide Coating and Nanotube Diameter on the Antibacterial Properties of Nanostructured Titanium Surfaces. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3843. [PMID: 39124507 PMCID: PMC11313080 DOI: 10.3390/ma17153843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to comprehensively assess the influence of the nanotube diameter and the presence of a silicon carbide (SiC) coating on microbial proliferation on nanostructured titanium surfaces. An experiment used 72 anodized titanium sheets with varying nanotube diameters of 50 and 100 nm. These sheets were divided into four groups: non-coated 50 nm titanium nanotubes, SiC-coated 50 nm titanium nanotubes, non-coated 100 nm titanium nanotubes, and SiC-coated 100 nm titanium nanotubes, totaling 36 samples per group. P. gingivalis and T. denticola reference strains were used to evaluate microbial proliferation. Samples were assessed over 3 and 7 days using fluorescence microscopy with a live/dead viability kit and scanning electron microscopy (SEM). At the 3-day time point, fluorescence and SEM images revealed a lower density of microorganisms in the 50 nm samples than in the 100 nm samples. However, there was a consistently low density of T. denticola across all the groups. Fluorescence images indicated that most bacteria were viable at this time. By the 7th day, there was a decrease in the microorganism density, except for T. denticola in the non-coated samples. Additionally, more dead bacteria were detected at this later time point. These findings suggest that the titanium nanotube diameter and the presence of the SiC coating influenced bacterial proliferation. The results hinted at a potential antibacterial effect on the 50 nm diameter and the coated surfaces. These insights contribute valuable knowledge to dental implantology, paving the way for developing innovative strategies to enhance the antimicrobial properties of dental implant materials and mitigate peri-implant infections.
Collapse
Affiliation(s)
| | - Aravindraja Chairmandurai
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Xinyi Xia
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Fernanda G. Rocha
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Samira Esteves Afonso Camargo
- Department of Comprehensive Oral Healthy, Adams Dental School, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kesavalu Lakshmyya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
He L, Zhang W, Liu J, Pan Y, Li S, Xie Y. Applications of nanotechnology in orthodontics: a comprehensive review of tooth movement, antibacterial properties, friction reduction, and corrosion resistance. Biomed Eng Online 2024; 23:72. [PMID: 39054528 PMCID: PMC11270802 DOI: 10.1186/s12938-024-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Nanotechnology has contributed important innovations to medicine and dentistry, and has also offered various applications to the field of orthodontics. Intraoral appliances must function in a complex environment that includes digestive enzymes, a diverse microbiome, mechanical stress, and fluctuations of pH and temperature. Nanotechnology can improve the performance of orthodontic brackets and archwires by reducing friction, inhibiting bacterial growth and biofilm formation, optimizing tooth remineralization, improving corrosion resistance and biocompatibility of metal substrates, and accelerating or decelerating orthodontic tooth movement through the application of novel nanocoatings, nanoelectromechanical systems, and nanorobots. This comprehensive review systematically explores the orthodontic applications of nanotechnology, particularly its impacts on tooth movement, antibacterial activity, friction reduction, and corrosion resistance. A search across PubMed, the Web of Science Core Collection, and Google Scholar yielded 261 papers, of which 28 met our inclusion criteria. These selected studies highlight the significant benefits of nanotechnology in orthodontic devices. Recent clinical trials demonstrate that advancements brought by nanotechnology may facilitate the future delivery of more effective and comfortable orthodontic care.
Collapse
Affiliation(s)
- Longwen He
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Wenzhong Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Junfeng Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yuemei Pan
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yueqiang Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Karuppan Perumal MK, Rajan Renuka R, Manickam Natarajan P. Evaluating the potency of laser-activated antimicrobial photodynamic therapy utilizing methylene blue as a treatment approach for chronic periodontitis. FRONTIERS IN ORAL HEALTH 2024; 5:1407201. [PMID: 38872983 PMCID: PMC11169725 DOI: 10.3389/froh.2024.1407201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic periodontitis is a ubiquitous inflammatory disease in dental healthcare that is challenging to treat due to its impact on bone and tooth loss. Conventional mechanical debridement has been challenging in eliminating complex subgingival biofilms. Hence, adjunctive approaches like low-level laser antimicrobial photodynamic therapy (A-PDT) utilising methylene blue (MB) have been emerging approaches in recent times. This review evaluates the latest research on the use of MB-mediated A-PDT to decrease microbial count and enhance clinical results in chronic periodontitis. Studies have shown the interaction between laser light and MB generates a phototoxic effect thereby, eliminating pathogenic bacteria within periodontal pockets. Moreover, numerous clinical trials have shown that A-PDT using MB can reduce probing depths, improve clinical attachment levels, and decrease bleeding during probing in comparison to traditional treatment approaches. Notably, A-PDT shows superior antibiotic resistance compared to conventional antibiotic treatments. In conclusion, the A-PDT using MB shows promise as an adjunctive treatment for chronic periodontitis. Additional research is required to standardize treatment protocols and assess long-term outcomes of A-PDT with MB in the treatment of periodontitis.
Collapse
Affiliation(s)
- Manoj Kumar Karuppan Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
7
|
Safaei M, Mohammadi H, Beddu S, Mozaffari HR, Rezaei R, Sharifi R, Moradpoor H, Fallahnia N, Ebadi M, Md Jamil MS, Md Zain AR, Yusop MR. Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant. Int J Nanomedicine 2024; 19:4835-4856. [PMID: 38828200 PMCID: PMC11141758 DOI: 10.2147/ijn.s461549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.
Collapse
Affiliation(s)
- Mohsen Safaei
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Biomaterials Research Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, 14300, Malaysia
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Salmia Beddu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Rezaei
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Fallahnia
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Ebadi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Mohd Suzeren Md Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
8
|
El-Hussein IG. Effect of Adding Different Concentrations of Silver Nanoparticles on Flexural Strength and Microhardness of Different Denture Base Materials. J Contemp Dent Pract 2024; 25:417-423. [PMID: 39364839 DOI: 10.5005/jp-journals-10024-3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
AIM This study aimed to evaluate the effect of adding different concentrations of silver nanoparticles (AgNPs) on the flexural strength and microhardness of various denture base materials. MATERIALS AND METHODS For this study, a total of 60 specimens were used and divided into equal groups. The first group consisted of heat-cured acrylic resin (Vertex-Germany), while the second group consisted of thermoplastic resin (Breflex 2nd edition, Germany). The samples were created using a split brass mold with dimensions of 65 × 10 × 2.5 mm, in accordance with the specifications of the American Dental Association (specifically No. 12 for flexural and microhardness). Following this, the samples were divided into three groups (A, B, and C) based on different concentrations of AgNPs (0, 2, and 5%). The flexural and microhardness of the samples were assessed using a universal testing machine and the Vickers hardness test, respectively. The data were gathered, organized, and analyzed using statistical methods. RESULTS The flexural strength findings showed a significant difference between the two groups. Also, there was a considerable decrease in the average value of the acrylic group as the concentrations of AgNPs rose, while the flexural strength of the thermoplastic group notably improved. Regarding microhardness, the results showed a significant difference between the two groups. It showed that the mean value of both groups increased with increasing concentrations of AgNPs. CONCLUSION Within the limitations of laboratory testing conditions of this study, it was discovered that AgNPs negatively impact the flexural strength of acrylic resins. Furthermore, an increase in the concentration of AgNPs was found to be directly related to the flexural strength of thermoplastic resin and the microhardness of both groups. CLINICAL SIGNIFICANCE The concentration of AgNPs has a significant impact on certain mechanical properties of denture base materials, but it is important to consider their potential toxicity. How to cite this article: El-Hussein IG. Effect of Adding Different Concentrations of Silver Nanoparticles on Flexural Strength and Microhardness of Different Denture Base Materials. J Contemp Dent Pract 2024;25(5):417-423.
Collapse
Affiliation(s)
- Ibrahim Gamal El-Hussein
- Department of Removable Prosthodontics, Faculty of Dentistry, Sinai University (Kantara), Cairo, Egypt, Phone: +01156674887, e-mail:
| |
Collapse
|
9
|
de Matos JRV, Antunes LB, Catanoze IA, de Souza IS, dos Santos PH, Guiotti AM. Analysis of Physical and Mechanical Properties of Universal Composites under Different Types of Polishing before and after Acid Challenge. Int J Dent 2024; 2024:6817593. [PMID: 39376680 PMCID: PMC11458286 DOI: 10.1155/2024/6817593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 10/09/2024] Open
Abstract
This study aimed to evaluate in vitro the degree of surface smoothness provided by two different polishing techniques and the effect of acid challenge on the alteration of surface roughness (Ra), microhardness (Knoop), and color (ΔE00) of three nanoparticulate composites, simulating 1 year of exposure to hydrochloric acid (HCl). Eighty specimens for each composite were divided into four groups (n = 240), being control without polishing, control with wear, WPC (wear + polishing with Cosmedent Kit), and WPB (wear + BisCover LV liquid polish). Repeated measures ANOVA was applied for Ra and Knoop Microhardness. For the color (ΔE) three-way ANOVA was applied. In cases of statistically significant the Tukey posttest was applied (α = 0.05). Both types of polishing tested resulted in a surface smoothness below the critical value established by the studies (Ra ≥ 0.2 μm), even after immersion. The microhardness of all composite resins decreased after the challenges. The specimens immersed in HCl showed a lower microhardness (42.2 Kgf/mm2) when compared to the specimens immersed in artificial saliva (44.7 Kgf/mm2). Regarding the color change, the composites presented values compatible with clinical acceptability, with a statistically significant difference only between the control group and the other types of polishing for the Z350 XT resin (ΔE00 = 3.78). It was concluded that both mechanical and chemical polishing produced a satisfactory surface smoothness, even after immersions in artificial saliva and HCl. The microhardness of the composites was affected by the challenges and the composites tested were within clinical acceptability with regard to color change.
Collapse
Affiliation(s)
- José Roberto Vergínio de Matos
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Letícia Barbero Antunes
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Isabela Araguê Catanoze
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Isabela Saturnino de Souza
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Paulo Henrique dos Santos
- Dental Research Institute, Restorative Dentistry, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Aimée Maria Guiotti
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
10
|
Senthil R. Bone implant substitutes from synthetic polymer and reduced graphene oxide: Current perspective. Int J Artif Organs 2024; 47:57-66. [PMID: 38087802 DOI: 10.1177/03913988231216572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In the present work, bone implant materials (BIM) were produced, in sheet form which comprises epoxy resin (synthetic polymer) (ER), calcium carbonate (CaCO3), and reduced graphene oxide (R-GO), by open mold method, for the possibility uses in bone tissue engineering. The developed BIM was analyzed for its physico-chemical, mechanical, bioactivity test, antimicrobial study, and biocompatibility. The BIM had excellent mechanical properties such as tensile strength (194.44 + 0.21 MPa), flexural strength (278.76 + 0.41 MPa), and water absorption (02.61 + 0.24%). A pore size distribution study using the HR-SEM has proved the 180 and 255 μm average pore was observed in the BIM structure. The Bioactivity test of BIM was examined after being immersed in a simulated body fluids (SBF) solution. The result of BIM formed an excellent deposition of bone tube apatite crystals. High-resolution scanning electron microscopy (HR-SEM) morphology of the bone tube apatite crystals revealed the diameter size in the range from 100 ± 159 to 210 ± 188 nm. BIM has excellent antimicrobial characteristics against E. coli (8.75 + 0.06 mm) and S. aureus (9.82 + 0.08 mm). The biocompatibility of the study MTT (3-(4, 5-dimethyl) thiazol-2-yl-2, 5-dimethyl tetrazolium bromide) assay using the MG-63 (human osteoblast cell line) has proven to be the 78% viable cell presence in BIM. After receiving the necessary approval, the scaffold with the required strength and biocompatibility could be tested as a bone implant material in large animals.
Collapse
Affiliation(s)
- Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|