1
|
Sadeghzadeh F, Golestani P, Beyramabdi P, Pouresmaeil V, Hosseini H, Homayouni Tabrizi M. The anticancer impact of folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles on human pancreatic, breast, lung, and colon cancers. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1845-1862. [PMID: 38809850 DOI: 10.1080/09205063.2024.2356967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
In the current study, we aimed to design an individual hybrid silibinin nano-delivery system consisting of ZnO and BSA components to study its antioxidant activity and apoptotic potential on human pancreatic, breast, lung, and colon cancer cell lines. The folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles (FZBS-NP) were synthesized and characterized by FTIR, FESEM, DLS, and zeta potential analysis. The FZBS-NP's cytotoxicity was evaluated by measuring the cancer cells' (MCF-7, A549, HT-29, and Panc) viability. Moreover, the apoptotic potential of the nanoparticles was studied by conducting several analyses including AO/PI and DAPI cell staining analysis, apoptotic gene expression profile (BAX, BCL2, and Caspase-8) preparation, and FITC Annexin V/PI flow cytometry. Finally, both antioxidant assays (ABTS and DPPH) were utilized to analyze the FZBS-NPs' antioxidant activities. The 152-nm FZBS-NP significantly induced the selective apoptotic death on the MCF-7, A549, HT-29, Panc, and Huvec cancer cells by increasing the SubG1 cell population following the increased treatment concentrations of FZBS-NP. Moreover, the FZBS-NPs exhibited powerful antioxidant activity. The BSA component of the FZBS-NPs delivery system improves the ability of the nanoparticles to gradually release silibinin and ZnO near the cancer cells. On the other hand, considering the powerful antioxidant activity of FZBS-NP, they have the potential to selectively induce apoptosis in human colon and breast cancer cells and protect normal types, which makes it an efficient safe anticancer compound. However, to verify the FZBS-NP anti-cancer efficiency further cancer and normal cell lines are required to measure several types of apoptotic gene expression.
Collapse
Affiliation(s)
- Farzaneh Sadeghzadeh
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Parisa Golestani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Beyramabdi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Wang C, Huang C, Cao Y. Epigallocatechin gallate alleviated the in vivo toxicity of ZnO nanoparticles to mouse intestine. J Appl Toxicol 2024; 44:686-698. [PMID: 38095138 DOI: 10.1002/jat.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 04/16/2024]
Abstract
To evaluate the oral toxicity of nanoparticles (NPs), it is necessary to consider the interactions between NPs and nutrient molecules. Recently, we reported that epigallocatechin gallate (EGCG), a healthy component in green tea, alleviated the toxicity of ZnO NPs to 3D Caco-2 spheroids in vitro. The present study investigated the combined effects of EGCG and ZnO NPs to mice in vivo. Mice were administrated with 35 or 105 mg/kg bodyweight ZnO NPs with or without the presence of 80 mg/kg bodyweight EGCG via gastric route, once a day, for 21 days, and the influences of EGCG on the toxicity of ZnO NPs to intestine were investigated. We found that EGCG altered the colloidal properties of ZnO NPs both in water and artificial intestine juice. As expected, ZnO NPs induced toxicological effects, such as decreased bodyweight, higher Chiu's scores, and ultrastructural changes in intestine, whereas EGCG alleviated these effects. Combined exposure to EGCG and ZnO NPs also changed trace element levels in mouse intestine. For example, the levels of Ti, Co, and Ni were only significantly elevated after co-exposure to EGCG and ZnO NPs, and Fe levels were only significantly decreased by ZnO NPs. Western blot analysis suggested that tight junction (TJ) and endoplasmic reticulum (ER) proteins were elevated by ZnO NPs, but EGCG inhibited this trend. Combined, these data suggested that gastric exposure to ZnO NPs induced intestinal damage, trace element imbalance, and TJ/ER protein expression in mouse intestine, whereas EGCG alleviated these effects of ZnO NPs.
Collapse
Affiliation(s)
- Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Ryu JH, Mangal U, Yoo J, Youm JH, Kim JY, Seo JY, Kim D, Kwon JS, Choi SH. Low concentration zinc oxide nanoparticles enrichment enhances bacterial and pro-inflammatory resistance of calcium silicate-based cements. J Mech Behav Biomed Mater 2024; 151:106399. [PMID: 38244423 DOI: 10.1016/j.jmbbm.2024.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Calcium silicate-based cement (CSC) is a commonly used material in endodontic treatment. However, it has limited antibacterial activity, especially for cases involving primary infections. Zinc oxide nanoparticles (ZnO-NPs) are recognized for their potential in biomedical applications due to their antibacterial properties and ability to reduce inflammation. This study aims to optimize CSC by incorporating ZnO-NPs to maintain its physical properties, enhance its antibacterial activity, and reduce the production of pro-inflammatory cytokines. ZnO-NPs were integrated into a commercial CSC (Endocem MTA) at 1 wt% (CSZ1) or 3 wt% (CSZ3). Setting time, compressive strength, and X-ray diffraction were then measured. In addition, pH, calcium ion release, and zinc ion release were measured for 7 days. Antibacterial activity against Enterococcus faecalis and viability of murine macrophages (RAW264.7) were determined using colorimetric assays. Gene expression levels of pro-inflammatory cytokines in lipopolysaccharide induced RAW264.7 were evaluated using quantitative polymerase chain reaction. Results were compared to an unmodified CSC group. In the CSZ3 group, there was a significant increase of approximately 12% in setting time and a reduction of about 36.4% in compressive strength compared to the control and CSZ1 groups. The presence of ZnO-NPs was detected in both CSZ1 and CSZ3. Both CSC and CSZ1 groups maintained an alkaline pH and released calcium ions, while zinc ions were significantly released in the CSZ1 group. Additionally, CSZ1 showed a 1.8-fold reduction of bacterial activity and exhibited around 85% reduction in colony-forming units compared to the CSC group. Furthermore, the CSZ1 group showed a more than 39% reduction in pro-inflammatory cytokine levels compared to the CSC group. Thus, enriching CSC with 1 wt% ZnO-NPs can enhance its antibacterial activity and reduce pro-inflammatory cytokines without showing any tangible adverse effects on its physical properties.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaeyong Yoo
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Hun Youm
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Liu L, Wang J, Zhang J, Huang C, Yang Z, Cao Y. The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy. Cell Biol Toxicol 2021; 39:259-275. [PMID: 34766255 DOI: 10.1007/s10565-021-09678-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Although the neurotoxicity of ZnO nanoparticles (NPs) has been evaluated in animal and nerve cell culture models, these models cannot accurately mimic human brains. Three-dimensional (3D) brain organoids based on human-induced pluripotent stem cells have been developed to study the human brains, but this model has rarely been used to evaluate NP neurotoxicity. We used 3D brain organoids that express cortical layer proteins to investigate the mechanisms of ZnO NP-induced neurotoxicity. Cytotoxicity caused by high levels of ZnO NPs (64 μg/mL) correlated with high intracellular Zn ion levels but not superoxide levels. Exposure to a non-cytotoxic concentration of ZnO NPs (16 μg/mL) increased the autophagy-marker proteins LC3B-II/I but decreased p62 accumulation, whereas a cytotoxic concentration of ZnO NPs (64 μg/mL) decreased LC3B-II/I proteins but did not affect p62 accumulation. Fluorescence micro-optical sectioning tomography revealed that 64 μg/mL ZnO NPs led to decreases in LC3B proteins that were more obvious at the outer layers of the organoids, which were directly exposed to the ZnO NPs. In addition to reducing LC3B proteins in the outer layers, ZnO NPs increased the number of micronuclei in the outer layers but not the inner layers (where LC3B proteins were still expressed). Adding the autophagy flux inhibitor bafilomycin A1 to ZnO NPs increased cytotoxicity and intracellular Zn ion levels, but adding the autophagy inducer rapamycin only slightly decreased cellular Zn ion levels. We conclude that high concentrations of ZnO NPs are cytotoxic to 3D brain organoids via defective autophagy and intracellular accumulation of Zn ions.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Junkang Wang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Zhaogang Yang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China. .,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Sun M, Wang T, Li L, Li X, Zhai Y, Zhang J, Li W. The Application of Inorganic Nanoparticles in Molecular Targeted Cancer Therapy: EGFR Targeting. Front Pharmacol 2021; 12:702445. [PMID: 34322025 PMCID: PMC8311435 DOI: 10.3389/fphar.2021.702445] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is an anticancer drug target for a number of cancers, such as non-small cell lung cancer. However, unsatisfying treatment effects, terrible side-effects, and development of drug resistance are current insurmountable challenges of EGFR targeting treatments for cancers. With the advancement of nanotechnology, an increasing number of inorganic nanomaterials are applied in EGFR-mediated therapy to improve those limitations and further potentiate the efficacy of molecular targeted cancer therapy. Given their facile preparation, easy modification, and biosecurity, inorganic nanoparticles (iNPs) have been extensively explored in cancer treatments to date. This review presents an overview of the application of some typical metal nanoparticles and nonmetallic nanoparticles in EGFR-targeted therapy, then discusses and summarizes the relevant advantages. Moreover, we also highlight future perspectives regarding their remaining issues. We hope these discussions inspire future research on EGFR-targeted iNPs.
Collapse
Affiliation(s)
- Meng Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Ting Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiangyang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Yutong Zhai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| |
Collapse
|
6
|
Nanoparticles of two ZnO Precursors as an Encapsulating Matrix of Mangiferin: Associated Studies to Cytotoxic Effects on Liver Cancer Cells Hep-G2 and Healthy Lung Cell Beas-2B. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01957-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics 2020; 12:pharmaceutics12030217. [PMID: 32131531 PMCID: PMC7150957 DOI: 10.3390/pharmaceutics12030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Applications of nanoparticles in various fields have been addressed. Nanomaterials serve as carriers for transporting conventional drugs or proteins through lysosomes to various cellular targets. The basic function of lysosomes is to trigger degradation of proteins and lipids. Understanding of lysosomal functions is essential for enhancing the efficacy of nanoparticles-mediated therapy and reducing the malfunctions of cellular metabolism. The lysosomal function is modulated by the movement of ions through various ion channels. Thus, in this review, we have focused on the recruited ion channels for lysosomal function, to understand the lysosomal modulation through the nanoparticles and its applications. In the future, lysosomal channels-based targets will expand the therapeutic application of nanoparticles-associated drugs.
Collapse
|
8
|
Jafarirad S, Taghizadeh PM, Divband B. Biosynthesis, Characterization and Structural Properties of a Novel Kind of Ag/ZnO Nanocomposites In Order to Increase Its Biocompatibility Across Human A549 Cell Line. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00685-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorg Chem 2019; 94:103423. [PMID: 31776035 DOI: 10.1016/j.bioorg.2019.103423] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Inflammation plays a very important role in the pathogenesis of various diseases like atherosclerosis, rheumatoid arthritis, asthma, and cancer. Lack of anti-inflammatory drugs and vectors provokes the need for developing new molecules for the management of inflammatory disorders. Nanotechnology has emerged as a wonderful research area in the past decade owing to its enhanced properties than bulk counterparts. This paper discusses the green synthesis of zinc oxide nanoparticle (ZnO NPs) and various characterization tools employed to comprehend the physiochemical properties of nanoparticles. ZnO NPs interaction with cells and its pharmacokinetic behavior inside the cells has also been discussed. The anti-inflammatory activity of ZnO NPs has been elucidated with the mechanism-based approach. A concise literature review has been included which summarizes the size, shape of ZnO NPs and the inflammatory model used for analyzing the anti-inflammatory activity of ZnO NPs. ZnO NPs potential offering towards anti-inflammatory activity like stable nature, selective targeting has been discussed briefly. The present study highlights the potential of ZnO NPs as an anti-inflammatory drug molecule or a vector for drug delivery.
Collapse
|
10
|
Wu C, Luo Y, Liu L, Xie Y, Cao Y. Toxicity of combined exposure of ZnO nanoparticles (NPs) and myricetin to Caco-2 cells: changes of NP colloidal aspects, NP internalization and the apoptosis-endoplasmic reticulum stress pathway. Toxicol Res (Camb) 2019; 8:613-620. [PMID: 31588339 PMCID: PMC6762008 DOI: 10.1039/c9tx00127a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Phytochemicals as typical food components may significantly influence the toxicity of nanoparticles (NPs) in intestinal cells, indicating a need to evaluate the toxicological effects of NPs in a complex situation. Previous studies suggested that the anti-oxidative properties of phytochemicals were important to elicit cytoprotective effects against NP exposure. However, we recently found that the changes of signaling pathways may be more important for cytoprotective effects of phytochemicals. In this study, we investigated the influence of myricetin (MY) on the cytotoxicity of ZnO NPs in Caco-2 cells and the possible mechanism. MY at 50 μM showed minimal impact on the solubility and colloidal aspects of ZnO NPs, but protected Caco-2 cells from NP exposure as it increased the EC50 value. For comparison, dihydromyricetin (DMY; chemical analog of MY) increased the EC50 value to a much lesser extent. Exposure to ZnO NPs significantly induced intracellular Zn ions, whereas MY or DMY did not significantly influence the internalization of NPs. However, ZnO NPs significantly promoted the ratio of caspase-3/pro-caspase-3, which was inhibited by the presence of MY. Exposure to ZnO NPs did not significantly promote the biomarkers of endoplasmic reticulum (ER) stress, but co-exposure to ZnO NPs and MY significantly lowered the levels of a panel of ER stress biomarkers. In conclusion, these results suggested that MY could protect Caco-2 cells from ZnO NP exposure, which may not be related to the changes of colloidal stability or internalization of NPs but could be alternatively related to the reduction of ER stress leading to lower cleaved caspase-3.
Collapse
Affiliation(s)
- Chaohua Wu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education , Laboratory of Biochemistry , College of Chemistry , Xiangtan University , Xiangtan 411105 , P.R. China .
| | - Yunfeng Luo
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education , Laboratory of Biochemistry , College of Chemistry , Xiangtan University , Xiangtan 411105 , P.R. China .
| | - Liangliang Liu
- Institute of Bast Fiber Crops , Chinese Academy of Agricultural Sciences , Changsha 410205 , P.R. China .
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education , Laboratory of Biochemistry , College of Chemistry , Xiangtan University , Xiangtan 411105 , P.R. China .
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education , Laboratory of Biochemistry , College of Chemistry , Xiangtan University , Xiangtan 411105 , P.R. China .
| |
Collapse
|
11
|
Saleh M, Nowroozi J, Fotouhi F, Farahmand B. Physicochemical study of the influenza A virus M2 protein and aluminum salt adjuvant interaction as a vaccine candidate model. Future Virol 2019. [DOI: 10.2217/fvl-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The present study evaluated the structural changes resulting from the interaction between a recombinant influenza A virus M2 protein and aluminum hydroxide adjuvant to investigate the antigen for further immunological studies. Materials & methods: Membrane protein II was produced from the H1N1 subtype of human influenza A virus. The interaction between M2 protein and alum inum hydroxide adjuvant was evaluated by physicochemical techniques including scanning electron microscope, UV-Vis spectra, Fourier-transform infrared spectroscopy and circular dichroism spectroscopy. Results: Physicochemical methods showed high-level protein adsorption and accessibility to the effective parts of the protein. Conclusion: It was concluded that M2 protein secondary structural perturbations, including the α-helix-to-β-sheet transition, enhanced its mechanical properties toward adsorption.
Collapse
Affiliation(s)
- Maryam Saleh
- Department of Microbiology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Jamileh Nowroozi
- Department of Microbiology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fatemeh Fotouhi
- Department of Influenza & Respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza & Respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Jiang M, Wu B, Sun Y, Ding Y, Xie Y, Liu L, Cao Y. Toxicity of ZnO nanoparticles (NPs) to THP-1 macrophages: interactions with saturated or unsaturated free fatty acids. Toxicol Mech Methods 2019; 29:291-299. [DOI: 10.1080/15376516.2018.1550130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mengdie Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P.R. China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Bihan Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P.R. China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Yongbing Sun
- National Engineering Research Center for Solid Preparation Technology of Chinese Medicines, Jiangxi University of Traditional Chinese Medicines, Jiangxi Nanchang, PR China
| | - Yanhuai Ding
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P.R. China
| | - Yi Cao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, P.R. China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| |
Collapse
|
13
|
Liu T, Liang H, Liu L, Gong Y, Ding Y, Liao G, Cao Y. Influence of pristine and hydrophobic ZnO nanoparticles on cytotoxicity and endoplasmic reticulum (ER) stress-autophagy-apoptosis gene expression in A549-macrophage co-culture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:188-195. [PMID: 30340083 DOI: 10.1016/j.ecoenv.2018.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Exposure to ZnO nanoparticles (NPs) might modulate endoplasmic reticulum (ER) stress-autophagy gene expression, but the possible influence of hydrophobic surface coating on these responses was less studied. This study used A549-macrophage co-culture as the in vitro model for lung barrier and investigated the toxicity of pristine and hydrophobic ZnO NPs. Pristine and hydrophobic NPs exhibited different Zeta potential and solubility in water, which suggested that hydrophobic surface coating might alter the colloidal aspects of ZnO NPs. However, pristine and hydrophobic ZnO NPs induced cytotoxicity and reduced the release of soluble monocyte chemotactic protein-1 (sMCP-1) in A549-macrophage co-culture to a similar extent. Exposure to pristine ZnO NPs significantly promoted the expression of ER stress-apoptosis genes, namely DDIT3, XBP-1s, CASP9, CASP12 and BAX (p < 0.05), but hydrophobic ZnO NPs only significantly promoted the expression of BAX (p < 0.05). Exposure to pristine ZnO NPs also significantly reduced the expression of autophagic gene BECN1 (p < 0.05) but not ATG7 (p > 0.05), whereas hydrophobic ZnO NPs significantly reduced the expression of ATG7 and BECN1 (p < 0.01). Moreover, the expression of XBP-1s, HSPA5, CASP9, CASP12, BAX and ATG7 in pristine ZnO NP-exposed co-culture was significantly lower than that in hydrophobic ZnO NP-exposed co-culture (p < 0.05). In conclusion, hydrophobic surface coating might influence the colloidal aspects of ZnO NPs and alter ER stress-apoptosis-autophagy gene expression pattern by pristine ZnO NPs in A549-macrophage co-culture.
Collapse
Affiliation(s)
- Ting Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Hongying Liang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yanhuai Ding
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Yi Cao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
14
|
Zhao C, Zhou Y, Liu L, Long J, Liu H, Li J, Cao Y. Lipid accumulation in multi-walled carbon nanotube-exposed HepG2 cells: Possible role of lipophagy pathway. Food Chem Toxicol 2018; 121:65-71. [PMID: 30138652 DOI: 10.1016/j.fct.2018.08.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022]
Abstract
Nanoparticle (NP) exposure might promote hepatic steatosis, but relatively few studies investigated the influence of multi-walled carbon nanotubes (MWCNTs) on lipid accumulation in hepatocytes in vitro. This study investigated lipid accumulation and the possible role of lipophagy (autophagic degradation of lipid droplets) in MWCNT-exposed HepG2 cells. Pristine (XFM19) and carboxylated MWCNTs (XFM21) were internalized, accompanying cytotoxicity, lysosomal destabilization, and intracellular reactive oxygen species (ROS) production. Compared with XFM21, XFM19 promoted lipid accumulation in HepG2 cells more effectively, which was further enhanced by pre-incubation with autophagy inhibitor NH4Cl. In addition, MWCNTs increased the expression of lipophagy genes PLIN2 and BECN1 but decreased that of ATG7. The expression of endoplasmic reticulum (ER) stress regulators, namely DDIT3, HSPA5, and XBP-1s, was also altered in MWCNT exposed HepG2 cells. Combined, these results suggested that MWCNT exposure might promote lipid accumulation in hepatocytes probably through the modulation of lipophagy pathway.
Collapse
Affiliation(s)
- Chunxue Zhao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yiwei Zhou
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Hongwen Liu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
15
|
Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev 2018; 118:11118-11193. [PMID: 30362737 DOI: 10.1021/acs.chemrev.7b00660] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.
Collapse
Affiliation(s)
- Marion J Limo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Interface and Surface Analysis Centre, School of Pharmacy , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna Sola-Rabada
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Estefania Boix
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | - Veeranjaneyulu Thota
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Zayd C Westcott
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Valeria Puddu
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
16
|
Yan D, Long J, Liu J, Cao Y. The toxicity of ZnO nanomaterials to HepG2 cells: the influence of size and shape of particles. J Appl Toxicol 2018; 39:231-240. [DOI: 10.1002/jat.3712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dejian Yan
- School of Chemical Engineering; Xiangtan University; Hunan 411105 People's Republic of China
| | - Jimin Long
- School of Chemical Engineering; Xiangtan University; Hunan 411105 People's Republic of China
| | - Jikai Liu
- School of Chemical Engineering; Xiangtan University; Hunan 411105 People's Republic of China
| | - Yi Cao
- School of Chemical Engineering; Xiangtan University; Hunan 411105 People's Republic of China
| |
Collapse
|
17
|
Liang H, He T, Long J, Liu L, Liao G, Ding Y, Cao Y. Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles. Toxicol Mech Methods 2018; 28:587-598. [DOI: 10.1080/15376516.2018.1479907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hongying Liang
- Institute of Rheological Mechanics, Xiangtan University, Hunan, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Tong He
- Institute of Rheological Mechanics, Xiangtan University, Hunan, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Jimin Long
- Institute of Rheological Mechanics, Xiangtan University, Hunan, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhuai Ding
- Institute of Rheological Mechanics, Xiangtan University, Hunan, China
| | - Yi Cao
- Institute of Rheological Mechanics, Xiangtan University, Hunan, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
18
|
Li X, Fang X, Ding Y, Li J, Cao Y. Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA. Toxicol Mech Methods 2018; 28:520-528. [PMID: 29697006 DOI: 10.1080/15376516.2018.1469708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is recently shown that biological macromolecules in food could interact with nanoparticles (NPs) and consequently change the biological effects of NPs. In this study, the interactions between ZnO NPs with or without hydrophobic surface coating and bovine serum albumin (BSA) or oleate (OA) complexed to BSA (OA-BSA) were assessed. Atomic force microscope (AFM) showed topographic changes of both types of NPs by BSA or OA-BSA, which could indicate the formation of protein corona. ZnO NPs showed negative Zeta potential, which was slightly decreased by BSA or OA-BSA, with OA-BSA being more effective. The UV-Vis was increased, whereas the fluorescence and synchronous fluorescence was decreased by the presence of ZnO NPs. Exposure to both types of ZnO NPs was associated with cytotoxicity to THP-1 macrophages, which was equally mitigated by BSA or OA-BSA associated with decreased cellular Zn elements. Exposure to ZnO NPs was associated with decreased release of cytokines, which was not affected by BSA or OA-BSA. In combination, the results from this study suggested that both BSA and OA-BSA could be adsorbed to ZnO NPs regardless of hydrophobic surface coating, which reduced the cytotoxicity of NPs to macrophages probably due to reduced association between NPs and cells. BSA and OA-BSA equally protected THP-1 macrophages from ZnO NP exposure, which might indicate that complexation to OA did not compromise the cytoprotective effects of BSA. These data might also indicate the complex interaction between NPs and biological macromolecules as food components, which should be considered for future nanotoxicological studies.
Collapse
Affiliation(s)
- Xianqiang Li
- a College of Animal Science , Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University , Xinjiang , PR China
| | - Xin Fang
- b Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry , College of Chemistry, Xiangtan University , Xiangtan , PR China
| | - Yanhuai Ding
- b Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry , College of Chemistry, Xiangtan University , Xiangtan , PR China
| | - Juan Li
- b Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry , College of Chemistry, Xiangtan University , Xiangtan , PR China
| | - Yi Cao
- b Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry , College of Chemistry, Xiangtan University , Xiangtan , PR China
| |
Collapse
|
19
|
Luo Y, Wu C, Liu L, Gong Y, Peng S, Xie Y, Cao Y. 3-Hydroxyflavone enhances the toxicity of ZnO nanoparticles in vitro. J Appl Toxicol 2018; 38:1206-1214. [DOI: 10.1002/jat.3633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Yunfeng Luo
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Chaohua Wu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Liangliang Liu
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 People's Republic of China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Shengming Peng
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 People's Republic of China
| |
Collapse
|
20
|
Gong Y, Li X, Liao G, Ding Y, Li J, Cao Y. Cytotoxicity and ER stress-apoptosis gene expression in ZnO nanoparticle exposed THP-1 macrophages: influence of pre-incubation with BSA or palmitic acids complexed to BSA. RSC Adv 2018; 8:15380-15388. [PMID: 35539503 PMCID: PMC9079995 DOI: 10.1039/c8ra02509f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
In a biological microenvironment, biological macromolecules could interact with nanoparticles (NPs) and consequently influence the toxicity of NPs. This study investigated the effects of BSA or palmitic acids complexed to BSA (PA-BSA) on the toxicity of ZnO NPs to THP-1 macrophages. Atomic force microscopy showed the increase of NP heights after pre-incubation with BSA or PA-BSA, but PA-BSA more effectively altered the hydrodynamic size and zeta potential of NPs. Pre-incubation with BSA but not PA-BSA alleviated ZnO NP induced cytotoxicity, and transmission electron microscopy confirmed fewer intrastructural changes after exposure to ZnO NPs pre-incubated with BSA. ZnO NP exposure increased intracellular Zn ions but decreased reactive oxygen species (ROS) and release of soluble monocyte chemotactic protein-1 (sMCP-1), whereas pre-incubation with BSA and PA-BSA induced a different pattern of intracellular Zn ions and modestly increased intracellular ROS. The expression of ER stress marker DDIT3 was only significantly induced after exposure to NPs pre-incubated with PA-BSA, and CASP12 expression was significantly lower after exposure to NPs pre-incubated with BSA compared to NPs with or without pre-incubation of PA-BSA. In summary, these results showed that pre-incubation with BSA was more effective compared with PA-BSA to alleviate the toxicity of ZnO NPs to THP-1 macrophages, which should be considered for the evaluation of NP toxicity in a biological microenvironment.
Collapse
Affiliation(s)
- Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Xianqiang Li
- College of Animal Science, Tarim University, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production & Construction Corps Alar 843300 P. R. China
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 P. R. China
| | - Yanhuai Ding
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| |
Collapse
|
21
|
Zhang C, Li Y, Liu L, Gong Y, Xie Y, Cao Y. Chemical Structures of Polyphenols That Critically Influence the Toxicity of ZnO Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1714-1722. [PMID: 29383937 DOI: 10.1021/acs.jafc.8b00368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent studies suggested that phytochemicals as natural antioxidants in food could alleviate nanoparticle (NP) toxicity. This study investigated the combined toxicity of ZnO NPs and a panel of polyphenols. Surprisingly, polyphenols with both high and almost no radical scavenging activities could elicit cytoprotective effects against NP exposure in Caco-2 cells, which were primarily influenced by the positions of the hydroxyl group. Polyphenols with different chemical structures variously influenced the hydrodynamic size, zeta potential, and solubility of ZnO NPs as well as NP-induced intracellular superoxide and Zn ions, which could all contribute to the combined effects. Responses of human endothelial cells appeared to be different from the responses of Caco-2 cells, which may indicate cell-type dependent responses to combined exposure of NPs and phytochemicals. In conclusion, the data from this study suggested a pivotal role of chemical structures of phytochemicals in determining their capacity to affect ZnO NP toxicity.
Collapse
Affiliation(s)
- Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, P.R. China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, P.R. China
| |
Collapse
|
22
|
He T, Long J, Li J, Liu L, Cao Y. Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:233-240. [PMID: 29028602 DOI: 10.1016/j.etap.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/03/2017] [Accepted: 10/06/2017] [Indexed: 05/27/2023]
Abstract
Once inhaled, nanoparticles (NPs) will first interact with lung surfactant system, which may influence the colloidal aspects of NPs and consequently the toxic potential of NPs to pulmonary cells. In this study, we investigated the effects of dipalmitoyl phosphatidylcholine (DPPC), the major component in lung surfactant, on stability and toxicity of ZnO NPs. The presence of DPPC increased the UV-vis spectra, hydrodynamic size, Zeta potential and dissolution rate of ZnO NPs, which indicates that DPPC might interact with NPs and affect the colloidal stability of NPs. Exposure to ZnO NPs induced cytotoxicity associated with increased intracellular Zn ions but not superoxide in A549 cells. In A549 epithelium model, exposure to ZnO NPs induced cytotoxicity and decreased the release of interleukin 6 (IL-6) without a significant effect on epithelial permeability rate. Co-exposure of A549 cells or A549 epithelium model to DPPC and ZnO NPs induced a higher release of lactate dehydrogenase (LDH) and interleukin-6 (IL-6) compared with the exposure of ZnO NPs alone. We concluded that the presence of DPPC could influence the colloidal stability of ZnO NPs and increase the damage of NPs to membrane probably due to the increased positive surface charge.
Collapse
Affiliation(s)
- Tong He
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
23
|
Li Y, Zhang C, Liu L, Gong Y, Xie Y, Cao Y. The effects of baicalein or baicalin on the colloidal stability of ZnO nanoparticles (NPs) and toxicity of NPs to Caco-2 cells. Toxicol Mech Methods 2017; 28:167-176. [PMID: 28868948 DOI: 10.1080/15376516.2017.1376023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent study suggested that the presence of phytochemicals in food could interact with nanoparticles (NPs) and consequently reduce the toxicity of NPs, which has been attributed to the antioxidant properties of phytochemicals. In this study, we investigated the interactions between ZnO NPs and two flavonoids baicalein (Ba) or baicalin (Bn) as well as the influence of the interactions on the toxicity of ZnO NPs to Caco-2 cells. The antioxidant properties of Ba and Bn were confirmed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays, with Ba being stronger. However, the presence of Ba or Bn did not significantly affect cytotoxicity, intracellular superoxide or release of inflammatory cytokines of Caco-2 cells after ZnO NP exposure. When Ba was present, the cellular viability of Caco-2 cells after exposure to ZnO NPs was slightly increased, associated with a modest decrease of intracellular Zn ions, but these effects were not statistically different. Ba was more effective than Bn at changing the hydrodynamic sizes, Zeta potential and UV-Vis spectra of ZnO NPs, which indicated that Ba might increase the colloidal stability of NPs. Taken together, the results of the present study indicated that the anti-oxidative phytochemical Ba might only modestly protected Caco-2 cells from the exposure to ZnO NPs associated with an insignificant reduction of the accumulation of intracellular Zn ions. These results also indicated that when assessing the combined effects of NPs and phytochemicals to cells lining gastrointestinal tract, it might be necessary to evaluate the changes of colloidal stability of NPs altered by phytochemicals.
Collapse
Affiliation(s)
- Yining Li
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
| | - Cao Zhang
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
| | - Liangliang Liu
- b Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha , PR China
| | - Yu Gong
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
| | - Yixi Xie
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
| | - Yi Cao
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China.,b Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha , PR China
| |
Collapse
|
24
|
Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact 2017; 278:40-47. [PMID: 28987328 DOI: 10.1016/j.cbi.2017.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/30/2023]
Abstract
The presence of food components may alter the colloidal aspects and toxicity of nanoparticles (NPs). In this study, the toxicity of ZnO NPs to Caco-2 and HepG2 cells was assessed, with the emphasis on the interactions between ZnO NPs and oleate (OA). The presence of OA increased UV-Vis spectra and hydrodynamic sizes, decreased Zeta potential, and markedly reduced the release of Zn ions from the dissolution of ZnO NPs, which combined indicated that OA could coat ZnO NPs and stabilize ZnO NPs. Exposure to ZnO NPs significantly induced cytotoxicity to Caco-2 and HepG2 cells, associated with increased intracellular Zn ions but not superoxide. When OA was added to the freshly prepared ZnO NP suspensions, the cytotoxicity, intracellular Zn ions and superoxide induced by ZnO NPs were not significantly affected. However, when ZnO NPs were aged for 24 h with the presence of OA, the cytotoxicity of ZnO NPs to Caco-2 and HepG2 cells was significantly reduced, associated with a reduction of intracellular Zn ions. The results from this study suggested that the presence of OA could increase colloidal stability of ZnO NPs and consequently reduce the toxicity of ZnO NPs after aging associated with reduced accumulation of intracellular Zn ions.
Collapse
Affiliation(s)
- Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Leying Jiang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
25
|
In vitro effect of flaxseed oil and α-linolenic acid against the toxicity of lipopolysaccharide (LPS) to human umbilical vein endothelial cells. Inflammopharmacology 2017; 26:645-654. [DOI: 10.1007/s10787-017-0400-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022]
|
26
|
Antioxidant Potential and Antibacterial Efficiency of Caffeic Acid-Functionalized ZnO Nanoparticles. NANOMATERIALS 2017. [PMID: 28621707 PMCID: PMC5485795 DOI: 10.3390/nano7060148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a novel zinc oxide (ZnO) nanoparticle with antioxidant properties, prepared by immobilizing the antioxidant 3-(3,4-dihydroxyphenyl)-2-propenoic acid (caffeic acid, CA) on the surfaces of micro-dielectric barrier discharge (DBD) plasma-treated ZnO nanoparticles. The microstructure and physical properties of ZnO@CA nanoparticles were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), infrared spectroscopy, and steady state spectroscopic methods. The antioxidant activity of ZnO@CA nanoparticles was evaluated using an ABTS (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation decolorization assay. ZnO@CA nanoparticles exhibited robust antioxidant activity. Moreover, ZnO@CA nanoparticles showed strong antibacterial activity against Gram-positive bacteria (Staphylococcus aureus) including resistant bacteria such as methicillin-resistant S. aureus and against Gram-negative bacteria (Escherichia coli). Although Gram-negative bacteria appeared to be more resistant to ZnO@CA nanoparticles than Gram-positive bacteria, the antibacterial activity of ZnO@CA nanoparticles was dependent on particle concentration. The antioxidant and antibacterial activity of ZnO@CA may be useful for various biomedical and nanoindustrial applications.
Collapse
|
27
|
Li KL, Zhang YH, Xing R, Zhou YF, Chen XD, Wang H, Song B, Sima YH, He Y, Xu SQ. Different toxicity of cadmium telluride, silicon, and carbon nanomaterials against hemocytes in silkworm, Bombyx mori. RSC Adv 2017. [DOI: 10.1039/c7ra09622d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to CdTe QDs, SiNPs, or C–NCDs exerted different toxic effects on silkworm hemocytes via the induction of different PCD processes.
Collapse
|