1
|
Chen D, Wang B, Xu XL, Bu XM, Zhang MY, Xu X, Yu L, Shi N. One-pot derivatization/extraction coupled with liquid chromatography-tandem mass spectrometry for furfurals determination. Food Chem 2023; 428:136839. [PMID: 37429242 DOI: 10.1016/j.foodchem.2023.136839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Furfurals (5-hydroxymethylfurfural, furfural and 5-methyl furfural) have potential toxic effects to humans. This study developed a simple and rapid one-pot derivatization/extraction procedure for effective sample preparation of furfurals in complex samples prior to instrument analysis. The sample solution was incubated with 1-pyrenebutyric hydrazide (PBH) and hydroxyl-functionalized multi-walled carbon nanotubes (MWCNTs-OH) in a vial for 3 min. During this process, the furfurals were effectively derivatized by PBH and the furfural-PBH derivatives were selectively captured by MWCNTs-OH simultaneously. The detection selectivity and accuracy were greatly improved for the following liquid chromatography-tandem mass spectrometry analysis. Quantifying furfurals was validated over the 0.5-500 ng/mL concentration range with satisfactory linearities (R2 >0.99), accuracies (84.7%-119.0%) and precisions (<9.0%). The limits of quantification of 0.30, 0.36 and 0.20 ng/mL for 5-hydroxymethylfurfural, furfural and 5-methyl furfural, respectively, were achieved. Finally, the validated method was successfully applied to determine furfurals concentrations in various samples.
Collapse
Affiliation(s)
- Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin-Li Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin-Miao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Man-Yu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| | - Lei Yu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621000, China.
| | - Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Thomoglou AK, Falara MG, Gkountakou FI, Elenas A, Chalioris CE. Smart Cementitious Sensors with Nano-, Micro-, and Hybrid-Modified Reinforcement: Mechanical and Electrical Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:2405. [PMID: 36904609 PMCID: PMC10006917 DOI: 10.3390/s23052405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The current paper presents the results of an experimental study of carbon nano-, micro-, and hybrid-modified cementitious mortar to evaluate mechanical performance, energy absorption, electrical conductivity, and piezoresistive sensibility. Three amounts of single-walled carbon nanotubes (SWCNTs), namely 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, and 0.3 wt.% of the cement mass, were used to prepare nano-modified cement-based specimens. In the microscale modification, 0.05 wt.%, 0.5 wt.%, 1.0 wt.% carbon fibers (CFs) were incorporated in the matrix. The hybrid-modified cementitious specimens were enhanced by adding optimized amounts of CFs and SWCNTs. The smartness of modified mortars, indicated by their piezoresistive behavior, was investigated by measuring the changes in electrical resistivity. The effective parameters that enhance the composites' mechanical and electrical performance are the different concentrations of reinforcement and the synergistic effect between the types of reinforcement used in the hybrid structure. Results reveal that all the strengthening types improved flexural strength, toughness, and electrical conductivity by about an order of magnitude compared to the reference specimens. Specifically, the hybrid-modified mortars presented a marginal reduction of 1.5% in compressive strength and an increase in flexural strength of 21%. The hybrid-modified mortar absorbed the most energy, 1509%, 921%, and 544% more than the reference mortar, nano-modified mortar, and micro-modified mortar, respectively. The change rate of impedance, capacitance, and resistivity in piezoresistive 28-day hybrid mortars improved the tree ratios by 289%, 324%, and 576%, respectively, for nano-modified mortars and by 64%, 93%, and 234%, respectively, for micro-modified mortars.
Collapse
|
3
|
Gkaravela A, Vareli I, Bekas DG, Barkoula NM, Paipetis AS. The Use of Electrochemical Impedance Spectroscopy as a Tool for the In-Situ Monitoring and Characterization of Carbon Nanotube Aqueous Dispersions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4427. [PMID: 36558280 PMCID: PMC9786001 DOI: 10.3390/nano12244427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
So far, there is no validated technology for characterizing the dispersion and morphology state of carbon nanotubes (CNTs) aqueous dispersions during sonication. Taking advantage of the conductive nature of CNTs, the main hypothesis of the current study is that Electrochemical Impedance Spectroscopy (EIS) is an appropriate technique for the in-situ monitoring and qualification of the dispersion state of CNTs in aqueous media. To confirm our hypothesis, we monitored the Impedance |Z| during the sonication process as a function of type CNTs/admixtures used for the preparation of the aqueous solutions and of crucial process parameters, such as the applied sonication power and duration (i.e., sonication energy). For dispersions above the percolation threshold, a drop of |Z| by approximately seven orders of magnitude was observed, followed by a linear reduction. The dramatic change in |Z| is regarded as an indication of the formation of a conductive path or destruction of an existing one during sonication and can be used to characterize the dispersion and morphology state of CNTs. The results of the EIS provide, straightforwardly and reliably, the required information to create an optimum dispersion protocol for conductive CNT suspensions. The produced dispersions are part of research focusing on the manufacturing of cement-based composite materials with advanced thermoelectric functionalities for energy harvesting. Such dispersions are not only limited to energy harvesting applications but also to applications where functionalities are introduced through the use of conductive-based suspensions.
Collapse
|
4
|
Effect of Carbon Nanotube Content and Mechanical Milling Conditions on the Manufacture of AA7075/MWCNT Composites. METALS 2022. [DOI: 10.3390/met12061020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Aluminium matrix composites (AlMCs) of AA7075 aluminium alloy reinforced with 0.5 and 1 wt.% multiwall carbon nanotubes (MWCNTs) were fabricated with powder metallurgy techniques using three different mechanical milling strategies, varying the milling energy and the stage in which the reinforcements were added to the pre-alloyed matrix powders. In this paper, we focus on the influence of these parameters on the dispersion of MWCNTs. Characterization of the obtained composite powders by X-ray diffraction and scanning electron microscopy showed that the evolution of the particle size and morphology of the composite powders is influenced by milling conditions and MWCNT content; however, under the conditions tested in this study, there were no significant differences in crystallite size and lattice strain. The best distribution of the reinforcements was obtained after milling 7075 powders and MWCNTs in a high-energy cycle (HEBM), varying the rotation speed between 1200 and 1300 rpm. Raman spectroscopy was used to assess the damage induced by the milling process in the nanotubes, and no reaction products were detected under any of the tested conditions. Nanoindentation tests were performed to measure the elastic modulus and hardness of the composite powders, revealing that the best mechanical behaviour was achieved by the 7075-0.5 wt.% MWCNT composites obtained by the HEBM route.
Collapse
|
5
|
Taborowska P, Stando G, Sahlman M, Krzywiecki M, Lundström M, Janas D. Doping of carbon nanotubes by halogenated solvents. Sci Rep 2022; 12:7004. [PMID: 35487941 PMCID: PMC9054843 DOI: 10.1038/s41598-022-11162-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Carbon nanotubes (CNTs) play a unique role in the area of flexible conductors as they have remarkably high electrical conductivity and bend easily without deformation. Consequently, CNTs are commonly deposited on substrates as conductive tracks/coatings. Halogenated solvents are often employed to facilitate the deposition process because they dry rapidly due to their high volatility. In this work, we report that halogenated solvents can dope CNTs considerably. The study showed that the use of dichloromethane, chloroform, or bromoform for the CNT deposition significantly impacts the chemical potential of the material, thereby modifying its charge transport characteristics. As a consequence, up to four-fold improvement in electrical conductivity is noted due to doping.
Collapse
Affiliation(s)
- Patrycja Taborowska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Grzegorz Stando
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Mika Sahlman
- Hydrometallurgy and Corrosion, Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering, Aalto University, P.O. Box 16200, 00076, Aalto, Finland
| | - Maciej Krzywiecki
- Institute of Physics-CSE, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Mari Lundström
- Hydrometallurgy and Corrosion, Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering, Aalto University, P.O. Box 16200, 00076, Aalto, Finland
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
6
|
Abdulhameed A, Halin IA, Mohtar MN, Hamidon MN. Optimization of Surfactant Concentration in Carbon Nanotube Solutions for Dielectrophoretic Ceiling Assembly and Alignment: Implications for Transparent Electronics. ACS OMEGA 2022; 7:3680-3688. [PMID: 35128276 PMCID: PMC8811757 DOI: 10.1021/acsomega.1c06323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/30/2021] [Indexed: 05/15/2023]
Abstract
Surfactants such as sodium dodecyl sulfate (SDS) are used to improve the dispersity of carbon nanotubes (CNTs) in aqueous solutions. The surfactant concentration in CNT solutions is a critical factor in the dielectrophoretic (DEP) manipulation of CNTs. A high surfactant concentration causes a rapid increase in the solution conductivity, while a low concentration results in undesirably large CNT bundles within the solution. The increase in the solution conductivity causes drag velocity that obstructs the CNT manipulation process due to the electrothermal forces induced by the electric field. The presence of large CNT bundles is undesirable since they degrade the device performance. In this work, mathematical modeling and experimental work were used to optimize the concentration of the SDS surfactant in multiwalled carbon nanotube (MWCNT) solutions. The solutions were characterized using dynamic light scattering (DLS) and ultraviolet-visible spectroscopy (UV-Vis) analysis. We found that the optimum SDS concentration in MWCNT solutions for the successful DEP manipulation of MWCNTs was between 0.1 and 0.01 wt %. A novel DEP configuration was then used to assemble MWCNTs across transparent electrodes. The configuration was based on ceiling deposition, where the electrodes were on top of a droplet. The newly proposed configuration reduced the drag velocity and prevented the assembly of large MWCNT bundles. MWCNTs were successfully assembled and aligned across interdigitated electrodes (IDEs). The assembly of MWCNTs from aqueous solutions across transparent electrodes has potential use in future transparent electronics and sensor devices.
Collapse
Affiliation(s)
- Abdullah Abdulhameed
- Department
of Electronic Engineering, Faculty of Engineering, Hadhramout University, Mukalla 50511, Yemen
| | - Izhal Abdul Halin
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Nazim Mohtar
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Nizar Hamidon
- Institute
of Advanced Technology (ITMA), Universiti
Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
7
|
Dubey R, Dutta D, Sarkar A, Chattopadhyay P. Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. NANOSCALE ADVANCES 2021; 3:5722-5744. [PMID: 36132675 PMCID: PMC9419119 DOI: 10.1039/d1na00293g] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/08/2021] [Indexed: 05/03/2023]
Abstract
Carbon nanotubes (CNTs) are considered as one of the ideal materials due to their high surface area, high aspect ratio, and impressive material properties, such as mechanical strength, and thermal and electrical conductivity, for the manufacture of next generation composite materials. In spite of the mentioned attractive features, they tend to agglomerate due to their inherent chemical structure which limits their application. Surface modification is required to overcome the agglomeration and increase their dispersability leading to enhanced interactions of the functionalized CNTs with matrix materials/polymer matrices. Recent developments concerning reliable methods for the functionalization of carbon nanotubes offer an additional thrust towards extending their application areas. By chemical functionalization, organic functional groups are generated/attached to the surfaces as well as the tip of CNTs which opens up the possibilities for tailoring the properties of nanotubes and extending their application areas. Different research efforts have been devoted towards both covalent and non-covalent functionalization for different applications. Functionalized CNTs have been used successfully for the development of high quality nanocomposites, finding wide application as chemical and biological sensors, in optoelectronics and catalysis. Non covalently functionalized carbon nanotubes have been used as a substrate for the immobilization of a large variety of biomolecules to impart specific recognition properties for the development of miniaturized biosensors as well as designing of novel bioactive nanomaterials. Functionalized CNTs have also been demonstrated as one of the promising nanomaterials for the decontamination of water due to their high adsorption capacity and specificity for various contaminants. Specifically modified CNTs have been utilized for bone tissue engineering and as a novel and versatile drug delivery vehicle. This review article discusses in short the synthesis, properties and applications of CNTs. This includes the need for functionalization of CNTs, methods and types of functionalization, and properties of functionalized CNTs and their applications especially with respect to material and biomedical sciences, water purification, and drug delivery systems.
Collapse
Affiliation(s)
- Rama Dubey
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Dhiraj Dutta
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Arpan Sarkar
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Pronobesh Chattopadhyay
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| |
Collapse
|
8
|
Influence of Ultrasonication of Functionalized Carbon Nanotubes on the Rheology, Hydration, and Compressive Strength of Portland Cement Pastes. MATERIALS 2021; 14:ma14185248. [PMID: 34576471 PMCID: PMC8468256 DOI: 10.3390/ma14185248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
The functionalization process usually increases the localized defects of carbon nanotubes (CNT). Thus, the ultrasonication parameters used for dispersing non-functionalized CNT should be carefully evaluated to verify if they are adequate in dispersing functionalized CNT. Although ultrasonication is widely used for non-functionalized CNT, the effect of this dispersing process of functionalized CNT has not been thoroughly investigated. Thus, this work investigated the effect of ultrasonication on functionalized CNT + superplasticizer (SP) aqueous dispersions by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). Furthermore, Portland cement pastes with additions of 0.05% and 0.1% CNT by cement weight and ultrasonication amplitudes of 0%, 50% and 80% were evaluated through rheometry, isothermal calorimetry, compressive strength at 1, 7 and 28 days, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). FTIR results from CNT + SP dispersions indicated that ultrasonication may negatively affect SP molecules and CNT graphene structure. The increase in CNT content and amplitude of ultrasonication gradually increased the static and dynamic yield stress of paste but did not significantly affect its hydration kinetics. Compressive strength results indicated that the optimum CNT content was 0.05% by cement weight, which increased the strength of composite by up to 15.8% compared with the plain paste. CNT ultrasonication neither increases the degree of hydration of cement nor the mechanical performance of composite when compared with mixes containing unsonicated CNT. Overall, ultrasonication of functionalized CNT is not efficient in improving the fresh and hardened performance of cementitious composites.
Collapse
|
9
|
Li P, Liu J, Her S, Zal Nezhad E, Lim S, Bae S. Synthesis of Highly-Dispersed Graphene Oxide Nanoribbons-Functionalized Carbon Nanotubes-Graphene Oxide (GNFG) Complex and Its Application in Enhancing the Mechanical Properties of Cementitious Composites. NANOMATERIALS 2021; 11:nano11071669. [PMID: 34201941 PMCID: PMC8307864 DOI: 10.3390/nano11071669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/30/2023]
Abstract
In this study, a graphene oxide nanoribbons–functionalized carbon nanotubes–graphene oxide (GNFG) complex was hydrothermally synthesized as a nanomaterial for reinforcing cementitious composites, using a modified Hummers’ method. Three types of components existed in the GNFG: Type I, the functionalized carbon nanotubes–graphene oxide nanoribbons (FCNTs–GNR); and types II and III are graphene oxide (GO) and functionalized carbon nanotubes (FCNTs), respectively, which exist independently. The dispersivity of GNFG and its effects on the mechanical properties, hydration process, and microstructures of cement pastes were evaluated, and the results were compared with those using cement pastes incorporating other typical carbon nanomaterials. The results demonstrated that dispersion of GNFG in aqueous solutions was superior to that of the CNTs, FCNTs, and GO/FCNTs mixture. Furthermore, the highly-dispersed GNFG (0.05 wt.%) improved the mechanical properties of the cement paste after 28 days of hydration and promoted the hydration of cement compared to CNTs, GO, and GO/FCNTs mixture (0.05 wt.%). The results in this study validated the feasibility of using GNFG with enhanced dispersion as a new nano-reinforcing agent for various cementitious systems.
Collapse
Affiliation(s)
- Peiqi Li
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea; (P.L.); (J.L.); (S.H.)
| | - Junxing Liu
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea; (P.L.); (J.L.); (S.H.)
| | - Sungwun Her
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea; (P.L.); (J.L.); (S.H.)
| | - Erfan Zal Nezhad
- Department of Biomedical Engineering, University of Texas, San Antonio, TX 78249, USA;
| | - Seungmin Lim
- Department of Architecture, Kangwon National University, Chuncheon 24341, Korea;
| | - Sungchul Bae
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea; (P.L.); (J.L.); (S.H.)
- Correspondence:
| |
Collapse
|
10
|
Dispersion of Carbon Nanotubes with "Green" Detergents. Molecules 2021; 26:molecules26102908. [PMID: 34068851 PMCID: PMC8153609 DOI: 10.3390/molecules26102908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.
Collapse
|
11
|
Ostos FJ, Lebrón JA, Moyá ML, Bernal E, Flores A, Lépori C, Maestre Á, Sánchez F, López-Cornejo P, López-López M. Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes. Int J Mol Sci 2021; 22:E826. [PMID: 33467613 PMCID: PMC7830566 DOI: 10.3390/ijms22020826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
The interaction (adsorption process) of commercial ionic surfactants with non-functionalized and functionalized carbon nanotubes (CNTs) has been studied by potentiometric measurements based on the use of ion-selective electrodes. The goal of this work was to investigate the role of the CNTs' charge and structure in the CNT/surfactant interactions. Non-functionalized single- (SWCNT) and multi-walled carbon nanotubes (MWCNT), and amine functionalized SWCNT were used. The influence of the surfactant architecture on the CNT/surfactant interactions was also studied. Surfactants with different charge and hydrophobic tail length (sodium dodecyl sulfate (SDS), octyltrimethyl ammonium bromide (OTAB), dodecyltrimethyl ammonium bromide (DoTAB) and hexadecyltrimethyl ammonium bromide (CTAB)) were studied. According to the results, the adsorption process shows a cooperative character, with the hydrophobic interaction contribution playing a key role. This is made evident by the correlation between the free surfactant concentration (at a fixed [CNT]) and the critical micellar concentration, cmc, found for all the CNTs and surfactants investigated. The electrostatic interactions mainly determine the CNT dispersion, although hydrophobic interactions also contribute to this process.
Collapse
Affiliation(s)
- Francisco José Ostos
- Department of Physical Chemistry, University of Seville, c/Prof. García González 1, 41012 Seville, Spain; (F.J.O.); (J.A.L.); (M.L.M.); (E.B.); (F.S.)
| | - José Antonio Lebrón
- Department of Physical Chemistry, University of Seville, c/Prof. García González 1, 41012 Seville, Spain; (F.J.O.); (J.A.L.); (M.L.M.); (E.B.); (F.S.)
| | - María Luisa Moyá
- Department of Physical Chemistry, University of Seville, c/Prof. García González 1, 41012 Seville, Spain; (F.J.O.); (J.A.L.); (M.L.M.); (E.B.); (F.S.)
| | - Eva Bernal
- Department of Physical Chemistry, University of Seville, c/Prof. García González 1, 41012 Seville, Spain; (F.J.O.); (J.A.L.); (M.L.M.); (E.B.); (F.S.)
| | - Ana Flores
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Campus ‘El Carmen’, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva, Spain; (A.F.); (Á.M.)
| | - Cristian Lépori
- Institute of Physics Enrique Gaviola (IFEG), National Council of Scientific and Technical Research (CONICET), National University of Córdoba (UNC), Córdoba X5016LAE, Argentina;
| | - Ángeles Maestre
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Campus ‘El Carmen’, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva, Spain; (A.F.); (Á.M.)
| | - Francisco Sánchez
- Department of Physical Chemistry, University of Seville, c/Prof. García González 1, 41012 Seville, Spain; (F.J.O.); (J.A.L.); (M.L.M.); (E.B.); (F.S.)
| | - Pilar López-Cornejo
- Department of Physical Chemistry, University of Seville, c/Prof. García González 1, 41012 Seville, Spain; (F.J.O.); (J.A.L.); (M.L.M.); (E.B.); (F.S.)
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Campus ‘El Carmen’, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva, Spain; (A.F.); (Á.M.)
| |
Collapse
|
12
|
Rama P, Kummara S, Bandyopadhyaya R, Panwar AS, Bhattacharyya AR. Electrical conductivity of poly(vinyl alcohol)/carbon nanotube multilayer thin films: Influence of sodium polystyrene sulfonate mediated carbon nanotube dispersion. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Prasad Rama
- Centre for Research in Nanotechnology and Science Indian Institute of Technology Bombay, Powai Mumbai Maharashtra India
| | - Sreenivas Kummara
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay, Powai Mumbai Maharashtra India
| | - Rajdip Bandyopadhyaya
- Department of Chemical Engineering Indian Institute of Technology Bombay, Powai Mumbai Maharashtra India
| | - Ajay S. Panwar
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay, Powai Mumbai Maharashtra India
| | - Arup R. Bhattacharyya
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay, Powai Mumbai Maharashtra India
| |
Collapse
|
13
|
Nazeri N, Karimi R, Ghanbari H. The effect of surface modification of poly-lactide-co-glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering. J Biomed Mater Res A 2020; 109:159-169. [PMID: 32445230 DOI: 10.1002/jbm.a.37013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022]
Abstract
The presence of biological cues to promote the attachment, proliferation, and differentiation of neuronal cells is important in the process of nerve regeneration. In this study, laminin as a neurite promoting protein, has been used to modify poly-lactide-co-glycolide/carbon nanotube (PLGA/CNT) electrospun nanofibrous scaffolds by means of either mussel-inspired poly(dopamine) (PD) coating or via direct physical adsorption as a simple route for the functionalization of biomaterials. The laminin-modified scaffolds were characterized by a combination of field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, and contact angle measurements. Subsequently, various properties of scaffolds such as degradation time, amount of attached laminin and the rate of CNT release were investigated. The synergistic effect of topographical and biological cues for PC12 cell attachment, proliferation, and differentiation were then studied by SEM and confocal microscopy. The results of degradation study showed that laminin-modified scaffolds were biodegradable with good structural integrity that persisted about 4 weeks. The amount of laminin attached to the PLGA/CNT and PLGA/CNT-PD scaffolds was 3.12 ± 0.6 and 3.04 ± 071 μg per mg of the scaffold, respectively. Although laminin-modified scaffolds could improve cell proliferation identically, neurite extensions on the PLGA/CNT scaffold modified via PD coating (PLGA/CNT-PD-lam scaffold) were significantly longer than those observed on PLGA/CNT scaffold modified via physical adsorption (PLGA/CNT-lam scaffold) and unmodified scaffolds. Together, these results indicated that surface modification via PD coating could be a promising strategy to fabricate biomimetic scaffolds capable of sustaining longer neuronal growth for nerve tissue engineering.
Collapse
Affiliation(s)
- Niloofar Nazeri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kim D, Lee T, Kwon M, Paik HJ, Han JH, Kang M, Choi J, Hong S, Kim YA. Polymer wrapping-induced dispersion of single walled carbon nanotubes in ethylene glycol under mild sonication. RSC Adv 2020; 10:26262-26267. [PMID: 35519752 PMCID: PMC9055412 DOI: 10.1039/d0ra04061d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/03/2020] [Indexed: 11/23/2022] Open
Abstract
SWCNTs were individually dispersed in ethylne glycol (EG) via mild bath-type sonication using quaternized poly(furfuryl methacrylate)-co-(2-(dimethylamino)ethyl methacrylate) p(FMA-co-QDMAEMA) as a dispersing agent. QDMAEMA, which has alkyl groups, was more favorable to the dispersion ability of single walled carbon nanotubes (SWCNTs). The dispersion mechanism of SWCNTs in EG via helical wrapping of polymer chains along their sidewalls was suggested based on transmission electron microscopic observation. The dispersion of bundled SWCNTs via helical wrapping of polymer chains along their sidewalls.![]()
Collapse
Affiliation(s)
- Dukeun Kim
- Department of Polymer Engineering
- Graduate School
- School of Polymer Science and Engineering
- Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
| | - Taeheon Lee
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Minho Kwon
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Jong Hun Han
- School of Chemical Engineering
- Optoelectronics Convergence Research Center
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Min Kang
- Department of Polymer Engineering
- Graduate School
- School of Polymer Science and Engineering
- Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
| | - Jueun Choi
- Department of Polymer Engineering
- Graduate School
- School of Polymer Science and Engineering
- Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
| | - Seungki Hong
- Department of Polymer Engineering
- Graduate School
- School of Polymer Science and Engineering
- Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
| | - Yoong Ahm Kim
- Department of Polymer Engineering
- Graduate School
- School of Polymer Science and Engineering
- Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
| |
Collapse
|
15
|
Sol–gel synthesis of Ag-doped titania-coated carbon nanotubes and study their biomedical applications. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00869-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Synergistic effect of β-Bi2O3 and graphene/MWCNT in silicone-based polymeric matrices on diagnostic X-ray attenuation. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00972-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Wang S, Li S, Hou C, Ma G, Wang H, Wu J, Hao X, Zhang H. Functionalization of multiwalled carbon nanotubes by amidation and Michael addition reactions and the effect of the functional chains on the properties of waterborne polyurethane composites. J Appl Polym Sci 2018. [DOI: 10.1002/app.46757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shaohui Wang
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
| | - Shasha Li
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Caiying Hou
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Guozhang Ma
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Hezhi Wang
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
| | - Jianbin Wu
- Shanxi Key Laboratory of Functional Polymers for Coatings; Shanxi Research Institute of Applied Chemistry; Taiyuan 030027 China
| | - Xiaogang Hao
- College of Chemistry and Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Hui Zhang
- Department of Chemical and Biochemical Engineering; University of Western Ontario; London Ontario N6A 5B9 Canada
| |
Collapse
|