1
|
Alkhaldi H, Alharthi S, Alharthi S, AlGhamdi HA, AlZahrani YM, Mahmoud SA, Amin LG, Al-Shaalan NH, Boraie WE, Attia MS, Al-Gahtany SA, Aldaleeli N, Ghobashy MM, Sharshir AI, Madani M, Darwesh R, Abaza SF. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Adv 2024; 14:33143-33190. [PMID: 39434995 PMCID: PMC11492427 DOI: 10.1039/d4ra05269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health. This review aims to analyze the unique properties of various polymeric materials, including porous aromatic frameworks, biopolymers, and molecularly imprinted polymers, and their effectiveness in water remediation applications. Key findings reveal that these adsorbents demonstrate high surface areas, tunable surface chemistries, and mechanical stability, which enhance their performance in removing contaminants such as heavy metals, organic pollutants, and emerging contaminants from water sources. Furthermore, the review identifies gaps in current research and suggests future directions, including developing multifunctional polymeric materials and integrating adsorption techniques with advanced remediation technologies. This comprehensive analysis aims to contribute to advancing next-generation water purification technologies, ensuring access to clean and safe water for future generations.
Collapse
Affiliation(s)
- Huda Alkhaldi
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Salha Alharthi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hind A AlGhamdi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Yasmeen M AlZahrani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Safwat A Mahmoud
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Lamia Galal Amin
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Waleed E Boraie
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | | | - Nadiah Aldaleeli
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A I Sharshir
- Solid State and Electronic Accelerators Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Reem Darwesh
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Sana F Abaza
- Physics Department, Faculty of Science, Alexandria University 21568 Alexandria Egypt
| |
Collapse
|
2
|
Yousefi M, Ghahremanzadeh R, Nejadmoghaddam MR, Samadi FY, Najafzadeh S, Fatideh FM, Mohammadi Z, Minai-Tehrani A. Nanofabrication of chitosan-based dressing to treat the infected wounds: in vitro and in vivo evaluations. Future Sci OA 2024; 10:FSO921. [PMID: 38827799 PMCID: PMC11140651 DOI: 10.2144/fsoa-2023-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/12/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Here, an innovative kind of antibacterial nanocomposite film is developed by incorporating graphene oxide and zinc oxide into chitosan matrix. Materials & methods: Our dressing was fabricated using the solution casting method. Fourier transform infrared spectra and TGA-DTG clearly confirmed the structure of film dressing. Results & conclusion: Our results showed the tensile strength and elongation at the break of the films were 20.1 ± 0.7 MPa and 36 ± 10%, respectively. Our fabricated film could absorb at least three-times the fluid of its dry weight while being biocompatible, antibacterial, non-irritant and non-allergic. In addition, it accelerated the healing process of infected wounds by regulating epithelium thickness and the number of inflammatory cells, thus it may be useful for direct application to damaged infected wounds.
Collapse
Affiliation(s)
- Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | | | - Fatemeh Yazdi Samadi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Somayeh Najafzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | | | - Zohreh Mohammadi
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| |
Collapse
|
3
|
Ali SA, Ali ES, Hamdy G, Badawy MSEM, Ismail AR, El-Sabbagh IA, El-Fass MM, Elsawy MA. Enhancing physical characteristics and antibacterial efficacy of chitosan through investigation of microwave-assisted chemically formulated chitosan-coated ZnO and chitosan/ZnO physical composite. Sci Rep 2024; 14:9348. [PMID: 38654048 DOI: 10.1038/s41598-024-58862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
This study investigates the creation and analysis of chitosan-zinc oxide (CS-ZnO) nanocomposites, exploring their effectiveness in inhibiting bacteria. Two synthesis approaches, physical and chemical, were utilized. The CS-ZnO nanocomposites demonstrated strong antibacterial properties, especially against Staphylococcus aureus, a Gram-positive bacterium. Chemically synthesized nanocomposites (CZ10 and CZ100) exhibited larger inhibition zones (16.4 mm and 18.7 mm) compared to physically prepared CS-Z5 and CS-Z20 (12.2 mm and 13.8 mm) against Staphylococcus aureus. Moreover, CZ nanocomposites displayed enhanced thermal stability, with decomposition temperatures of 281°C and 290°C, surpassing CS-Z5 and CS-Z20 (260°C and 258°C). The residual mass percentages at 800°C were significantly higher for CZ10 and CZ100 (58% and 61%) than for CS-Z5 and CS-Z20 (36% and 34%). UV-Visible spectroscopy revealed reduced band gaps in the CS-ZnO nanocomposites, indicating improved light absorption. Transmission electron microscopy (TEM) confirmed uniform dispersion of ZnO nanoparticles within the chitosan matrix. In conclusion, this research underscores the impressive antimicrobial potential of CS-ZnO nanocomposites, especially against Gram-positive bacteria, and highlights their enhanced thermal stability. These findings hold promise for diverse applications in industries such as medicine, pharmaceuticals, and materials science, contributing to the development of sustainable materials with robust antimicrobial properties.
Collapse
Affiliation(s)
- Sara A Ali
- Chemistry Department, Faculty of Science, Al-Azhar University Girls, Nasr City, Cairo, Egypt
| | - E S Ali
- Polymer Laboratory, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - G Hamdy
- Chemistry Department, Faculty of Science, Al-Azhar University Girls, Nasr City, Cairo, Egypt
- Al-Azhar Technology Incubator (ATI), Nasr City, Cairo, Egypt
| | - Mona Shaban E M Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdallah R Ismail
- Department of Processes Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - Inas A El-Sabbagh
- Chemistry Department, Faculty of Science, Al-Azhar University Girls, Nasr City, Cairo, Egypt
| | - Magda M El-Fass
- Chemistry Department, Faculty of Science, Al-Azhar University Girls, Nasr City, Cairo, Egypt
| | - Moataz A Elsawy
- Polymer Laboratory, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| |
Collapse
|
4
|
Sanmugam A, Shanthi D, Sairam AB, Kumar RS, Almansour AI, Arumugam N, Kavitha A, Kim HS, Vikraman D. Fabrication of chitosan/fibrin-armored multifunctional silver nanocomposites to improve antibacterial and wound healing activities. Int J Biol Macromol 2024; 257:128598. [PMID: 38056742 DOI: 10.1016/j.ijbiomac.2023.128598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
A wound healing substitute promotes rapid tissue regeneration and protects wound sites from microbial contamination. The silver-based antiseptic frequently moist skin stains, burns and irritation, penetrates deep wounds and protects against pathogenic infections. Thus, we formulated a novel fibrin/chitosan encapsulated silver nanoparticle (CH:F:SPG-CH:SNP) composites bandage accelerating the polymicrobial wound healing. Electrospinning method was employed to form the nano-porous, inexpensive, and biocompatible smart bandages. The structural, functional, and mechanical properties were analyzed for the prepared composites. The biological capacity of prepared CH:F:SPG-CH:SNP bandage was assessed against NIH-3 T3 fibroblast and HaCaT cell lines. In vitro hemolytic assays using red blood cells were extensively studied and explored the low hemolytic effect (4.5 %). In addition, the improved drug delivery nature captured for the CH:F:SPG-CH:SNP composite bandage. Antibacterial experiments were achieved against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Lactobacillus bulgaricus using zone inhibition method. Moreover, in-vivo wound healing efficacy of fabricated smart bandage was evaluated on the albino Wistar rats which revealed the significant improvement on the postoperative abdomen wounds.
Collapse
Affiliation(s)
- Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India
| | - D Shanthi
- Department of Chemistry, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, Chennai 600062, TamilNadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - Natrajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - A Kavitha
- Department of Chemistry, Chennai Institute of Technology, Sarathy Nagar, Kundrathur, Chennai 600069, TamilNadu, India
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
5
|
Wang Q, Li Q, Zhu L, Lin C, Chen Q, Chen H. Fabrication of Cu/ZnO-loaded chitosan hydrogel for an effective wound dressing material to advanced wound care and healing efficiency after caesarean section surgery. Int Wound J 2024; 21:e14366. [PMID: 37705319 PMCID: PMC10784619 DOI: 10.1111/iwj.14366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 09/15/2023] Open
Abstract
Wound infections and delayed complications after caesarean section surgical procedure to mothers would have a prevalence of discomfort, stress and dissatisfaction in the postpartum period. In this report, one-pot synthesis is used for the preparation of chitosan (CS)-based copper nanoparticles (nCu), which was used for the preparation of zinc oxide (ZnO) hydrogel as wound dressing materials after surgery. The antibacterial activity of (CS-nCu/ZnO) developed hydrogels was studied zone of inhibition, against gram-positive and gram-negative bacteria. The antibacterial activity of the CS-nCu/ZnO hydrogel demonstrated that nanoformulated hydrogel materials have provided excellent bactericidal action against clinically approved bacterial pathogens. The biocompatibility and in vitro wound healing potential of the developed wound closure materials were studied by MTT assay and wound scratch assay methods, respectively. The MTT assay and cell migration assay results demonstrated that CS-nCu/ZnO hydrogel material induces cell compatibility and effective cell proliferation ability. These findings suggest that the CS-nCu/ZnO hydrogel outperforms CS-ZnO in terms of wound healing and could be used as a wound closure material in caesarean section wound treatment.
Collapse
Affiliation(s)
- Qiaoying Wang
- Department of GynecologyWenling First People's HospitalWenlingChina
| | - Qingqing Li
- Department of GynecologyWenling First People's HospitalWenlingChina
| | - Lingping Zhu
- Department of ObstetricsWenling First People's HospitalWenlingChina
| | - Chenxiao Lin
- Department of ObstetricsWenling First People's HospitalWenlingChina
| | - Qiaoling Chen
- Department of ObstetricsWenling First People's HospitalWenlingChina
| | - Hong Chen
- Department of GynecologyWenling First People's HospitalWenlingChina
| |
Collapse
|
6
|
Hummadi KK, Zhu L, He S. Bio-adsorption of heavy metals from aqueous solution using the ZnO-modified date pits. Sci Rep 2023; 13:22779. [PMID: 38123837 PMCID: PMC10733537 DOI: 10.1038/s41598-023-50278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
The bio-adsorption of heavy metals (including Cu2+, Ni2+, and Zn2+) in aqueous solution and also in an industry wastewater using the ZnO-modified date pits (MDP) as the bio-adsorbent are investigated. The fresh and used bio-adsorbents were characterized by FT-IR, SEM, BET, and XRD. The bio-adsorption parameters (including the pH of solution, the particle size of MDP, the shaking speed, the initial concentration of heavy metals, the dosing of MDP, the adsorption time, and the adsorption temperature) were screened and the data were used to optimize the bio-adsorption process and to study the bio-adsorption isotherms, kinetics, and thermodynamics. Two adsorption models (Langmuir isotherm model and Freundlich isotherm model) and three kinetic models (pseudo-first-order model, pseudo-second-order model, and intra-particle diffusion model) were applied to model the experimental data. Results show that the maximum adsorption amount of Cu2+, Ni2+, and Zn2+ on a complete monolayer of MDP are 82.4, 71.9, and 66.3 mg g-1, which are over 4 times of those of date pits-based bio-adsorbents reported in literature. The bio-adsorption of heavy metals on MDP is spontaneous and exothermic, and is regulated by chemical adsorption on the homogeneous and heterogeneous adsorption sites of MDP surface. This work demonstrates an effective modification protocol for improved bio-adsorption performance of the date pits-based bio-adsorbent, which is cheap and originally from a waste.
Collapse
Affiliation(s)
- Khalid Khazzal Hummadi
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- College of Engineering, University of Baghdad, 47024, Aljadria, Baghdad, Iraq.
| | - Lin Zhu
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Songbo He
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- CoRe Pro BV, 9722NJ, Groningen, The Netherlands.
| |
Collapse
|
7
|
Humayoun UB, Mehmood F, Hassan Y, Rasheed A, Dastgeer G, Anwar A, Sarwar N, Yoon D. Harnessing Bio-Immobilized ZnO/CNT/Chitosan Ternary Composite Fabric for Enhanced Photodegradation of a Commercial Reactive Dye. Molecules 2023; 28:6461. [PMID: 37764237 PMCID: PMC10536000 DOI: 10.3390/molecules28186461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Growing demand for sustainable wastewater treatment drives interest in advanced photocatalytic materials. Immobilized photocatalysts hold potential for addressing industrial wastewater organic pollutants, offering substantial surface area, agglomeration prevention, and easy removal. In this study, we successfully immobilized ZnO and carbon nanotubes onto a textile substrate through bilateral esterification and explored their effectiveness as a potent photocatalyst for degrading of commercial textile colorant reactive blue 4 (RB-4) colorant. Findings demonstrated significant improvements in photocatalytic performance upon integrating ZnO and CNTs into the fabric, coupled with chitosan immobilization. The immobilization process of ZnO and CNTs onto the substrate was elucidated through a proposed reaction mechanism, while the appearance of carbonyl peaks at 1719.2 cm-1 in the composite fabric further confirmed bilateral esterification. The as-developed immobilized nano-catalyst exhibited remarkable photocatalytic efficiency with an impressive 93.54% color degradation of RB-4. This innovative approach underscores the immense potential of the ternary immobilized (ZnO/fCNT/chitosan) composite fabric for efficient photocatalytic degradation in textile coloration processes. Exploring the early-stage development of immobilized photocatalysts contributes to safer and more eco-friendly practices, addressing pressing environmental challenges effectively.
Collapse
Affiliation(s)
- Usama Bin Humayoun
- Department of Textile Engineering, University of Engineering & Technology, Lahore (Faisalabad Campus), Faisalabad 38000, Pakistan (A.A.)
| | - Fazal Mehmood
- Department of Textile Engineering, University of Engineering & Technology, Lahore (Faisalabad Campus), Faisalabad 38000, Pakistan (A.A.)
| | - Yasir Hassan
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Aamir Rasheed
- School of Materials Science and Engineering, Anhui University, Hefei 230022, China
| | - Ghulam Dastgeer
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea;
| | - Asad Anwar
- Department of Textile Engineering, University of Engineering & Technology, Lahore (Faisalabad Campus), Faisalabad 38000, Pakistan (A.A.)
| | - Nasir Sarwar
- Department of Textile Engineering, University of Engineering & Technology, Lahore (Faisalabad Campus), Faisalabad 38000, Pakistan (A.A.)
| | - Daeho Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Facile one-pot synthesis of silver nanoparticles embedded alginate beads: synthesis, characterization and antimicrobial activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
10
|
Graphene-Based Functional Hybrid Membranes for Antimicrobial Applications: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene-based nanomaterials have shown wide applications in antimicrobial fields due to their accelerated rate of pathogen resistance and good antimicrobial properties. To apply graphene materials in the antimicrobial test, the graphene materials are usually fabricated as two-dimensional (2D) membranes. In addition, to improve the antimicrobial efficiency, graphene membranes are modified with various functional nanomaterials, such as nanoparticles, biomolecules, polymers, etc. In this review, we present recent advances in the fabrication, functional tailoring, and antimicrobial applications of graphene-based membranes. To implement this goal, we first introduce the synthesis of graphene materials and then the fabrication of 2D graphene-based membranes with potential techniques such as chemical vapor deposition, vacuum filtration, spin-coating, casting, and layer-by-layer self-assembly. Then, we present the functional tailoring of graphene membranes by adding metal and metal oxide nanoparticles, polymers, biopolymers, metal–organic frameworks, etc., with graphene. Finally, we focus on the antimicrobial mechanisms of graphene membranes, and demonstrate typical studies on the use of graphene membranes for antibacterial, antiviral, and antifungal applications. It is expected that this work will help readers to understand the antimicrobial mechanism of various graphene-based membranes and, further, to inspire the design and fabrication of functional graphene membranes/films for biomedical applications.
Collapse
|
11
|
Pradeep H, M B, Suresh S, Thadathil A, Periyat P. Recent trends and advances in polyindole-based nanocomposites as potential antimicrobial agents: a mini review. RSC Adv 2022; 12:8211-8227. [PMID: 35424771 PMCID: PMC8982365 DOI: 10.1039/d1ra09317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Infections caused by multi-drug resistant microbes are a big challenge to the medical field and it necessitates the need for new biomedical agents that can act as potential candidates against these pathogens. Several polyindole based nanocomposites were found to exhibit the ability to release reactive oxygen species (ROS) and hence they show excellent antimicrobial properties. The features of polyindole can be fine-tuned to make them potential alternatives to antibiotics and antifungal medicines. This review clearly portrays the antimicrobial properties of polyindole based nanocomposites, reported so far for biomedical applications. This review will give a clear insight into the scope and possibilities for further research on the biomedical applications of polyindole based nanocomposites.
Collapse
Affiliation(s)
- Hareesh Pradeep
- Department of Chemistry, University of Calicut Kerala India-673635
| | - Bindu M
- Department of Environmental Studies, Kannur University Kerala India
| | - Shwetha Suresh
- Department of Environmental Studies, Kannur University Kerala India
| | | | | |
Collapse
|
12
|
Kahya N, Erim FB. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1986700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nilay Kahya
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - F. Bedia Erim
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
13
|
Lee M, Kim MS, Oh JM, Park JK, Paek SM. Two-Dimensional Organic/Inorganic Hybrid Nanosheet Electrodes for Enhanced Electrical Conductivity toward Stable and High-Performance Sodium-Ion Batteries. CHEMSUSCHEM 2021; 14:3244-3256. [PMID: 34105260 DOI: 10.1002/cssc.202100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/08/2021] [Indexed: 06/12/2023]
Abstract
To investigate the effect of electrical conductivity on the energy-storage characteristics of anode materials in sodium-ion batteries, covalent organic nanosheets (CONs) are hybridized with highly conductive graphene nanosheets (GNs) via two different optimized synthesis routes, that is, reflux and solvothermal methods. The reflux-synthesized hybrid shows a well-overlapped 2D structure, whereas the solvothermally prepared hybrid forms a segregated phase in which the contact area between the CONs and GNs is reduced. These two hybrids synthesized by facile methods are fully characterized, and the results reveal that their energy-storage properties can be significantly improved by enhancing the electrical conductivity via the formation of a well-overlapped structure between CONs and GNs. The discharge capacity and rate capability of the reflux-synthesized hybrid was considerably larger than that of the bare CONs, highlighting that the improvement in the charge-carrier transport properties can improve the accessibility of Na ions to the surface of the hybrids. This synthetic methodology can be extended to the fabrication of high-performance anodes for Na-ion batteries.
Collapse
Affiliation(s)
- Minseop Lee
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Min-Sung Kim
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, 449-791, Gyeonggi-do, Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Jin Kuen Park
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, 449-791, Gyeonggi-do, Republic of Korea
| | - Seung-Min Paek
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
14
|
Gao Y, Wang X, Zhang Y, Li J, Zhang H, Li X. Development of chitosan-based bio-composited materials as a potential wound healing bandage in nursing care of caesarean section: In vivo evaluations. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of Aquatic Pollutants. MATERIALS 2021; 14:ma14133655. [PMID: 34209007 PMCID: PMC8269710 DOI: 10.3390/ma14133655] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives, especially graphene oxide (GO), are attracting considerable interest in the fabrication of new adsorbents that have the potential to remove various pollutants that have escaped into the aquatic environment. Herein, the development of GO/chitosan (GO/CS) composites as adsorbent materials is described and reviewed. This combination is interesting as the addition of graphene to chitosan enhances its mechanical properties, while the chitosan hydrogel serves as an immobilization matrix for graphene. Following a brief description of both graphene and chitosan as independent adsorbent materials, the emerging GO/CS composites are introduced. The additional materials that have been added to the GO/CS composites, including magnetic iron oxides, chelating agents, cyclodextrins, additional adsorbents and polymeric blends, are then described and discussed. The performance of these materials in the removal of heavy metal ions, dyes and other organic molecules are discussed followed by the introduction of strategies employed in the regeneration of the GO/CS adsorbents. It is clear that, while some challenges exist, including cost, regeneration and selectivity in the adsorption process, the GO/CS composites are emerging as promising adsorbent materials.
Collapse
|
16
|
Zhao Z, Fang F, Wu J, Tong X, Zhou Y, Lv Z, Wang J, Sawtell D. Interfacial Chemical Effects of Amorphous Zinc Oxide/Graphene. MATERIALS 2021; 14:ma14102481. [PMID: 34064837 PMCID: PMC8150847 DOI: 10.3390/ma14102481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Research on the preparation and performance of graphene composite materials has become a hotspot due to the excellent electrical and mechanical properties of graphene. Among such composite materials, zinc oxide/graphene (ZnO/graphene) composite films are an active research topic. Therefore, in this study, we used the vacuum thermal evaporation technique at different evaporation voltages to fabricate an amorphous ZnO/graphene composite film on a flexible polyethylene terephthalate (PET). The amorphous ZnO/graphene composite film inherited the great transparency of the graphene within the visible spectrum. Moreover, its electrical properties were better than those of pure ZnO but less than those of graphene, which is not consistent with the original theoretical research (wherein the performance of the composite films was better than that of ZnO film and slightly lower than that of graphene). For example, the bulk free charge carrier concentrations of the composite films (0.13, 1.36, and 0.47 × 1018 cm−3 corresponding to composite films with thicknesses of 40, 75, and 160 nm) were remarkably lower than that of the bare graphene (964 × 1018 cm−3) and better than that of the ZnO (0.10 × 1018 cm−3). The underlying mechanism for the abnormal electrical performance was further demonstrated by X-ray photoelectron spectroscopy (XPS) detection and first-principles calculations. The analysis found that chemical bonds were formed between the oxide (O) of amorphous ZnO and the carbon (C) of graphene and that the transfer of the π electrons was restricted by C=O and C-O-C bonds. Given the above, this study further clarifies the mechanism affecting the photoelectric properties of amorphous composite films.
Collapse
Affiliation(s)
- Zhuo Zhao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Z.Z.); (J.W.); (Z.L.)
- Research Institute of Surface Engineering, University of Science and Technology Liaoning, Anshan 114051, China;
| | - Fang Fang
- Research Institute of Surface Engineering, University of Science and Technology Liaoning, Anshan 114051, China;
| | - Junsheng Wu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Z.Z.); (J.W.); (Z.L.)
- Research Institute of Surface Engineering, University of Science and Technology Liaoning, Anshan 114051, China;
| | - Xinru Tong
- Ansteel Iron and Steel Research Institute, Anshan 114009, China;
| | - Yanwen Zhou
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Z.Z.); (J.W.); (Z.L.)
- Research Institute of Surface Engineering, University of Science and Technology Liaoning, Anshan 114051, China;
- Correspondence: (Y.Z.); (D.S.)
| | - Zhe Lv
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Z.Z.); (J.W.); (Z.L.)
- Research Institute of Surface Engineering, University of Science and Technology Liaoning, Anshan 114051, China;
| | - Jian Wang
- College of Science, University of Science and Technology Liaoning, Anshan 114051, China;
| | - David Sawtell
- Surface Engineering Group, Manchester Metropolitan University, Manchester M15GD, UK
- Correspondence: (Y.Z.); (D.S.)
| |
Collapse
|
17
|
Carvalho IC, Medeiros Borsagli FGL, Mansur AAP, Caldeira CL, Haas DJ, Lage AP, Ciminelli VST, Mansur HS. 3D sponges of chemically functionalized chitosan for potential environmental pollution remediation: biosorbents for anionic dye adsorption and 'antibiotic-free' antibacterial activity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2046-2066. [PMID: 31743650 DOI: 10.1080/09593330.2019.1689302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
In this work, it was developed three-dimensional (3D) porous hydrogel sponges produced by the freeze-dried process using chitosan polymer functionalized by 11-mercaptoundecanoic acid (MUA). These chitosan-based sponges were used as cationic adsorbents for the removal of anionic methyl orange (MO) dye, simulating a model organic pollutant in aqueous medium. Moreover, these porous 3D constructs were also evaluated as 'antibiotic-free' antibacterial materials against gram-negative and gram-positive bacteria, Pseudomonas aeruginosa and Staphylococcus aureus, respectively, which were used as model pathogens possibly found in contaminated hospital discharges. These 3D hydrogels were comprehensively characterized through morphological methods such as scanning electron microscopy and X-ray micro-computed tomography techniques, combined with FTIR, Raman, and UV-visible spectroscopy analyses. Additionally, the surface area, the degree of swelling, and the adsorption profiles and kinetics of these scaffolds were systematically investigated. The chemically thiolated chitosan (CHI-MUA) hydrogels were successfully produced with a supramolecular polymeric network based on hydrogen bonds, disulfide bonds, and hydrophobic interactions that resulted in higher stability in aqueous medium than hydrogels of pristine chitosan. CHI-MUA exhibited sponge-like three-dimensional structures, with highly interconnected and hierarchical pore size distribution with high porosity and surface area. These architectural aspects of the 3D sponges favoured the high adsorption capacity for MO dye (∼388 mg.g-1) in water with removal efficiency greater than 90% for MO solutions (from 20 mg.L-1-1200 mg.L-1). The adsorption data followed a pseudo-second-order kinetic model and adsorption isotherm analysis and spectroscopy studies suggested a multilayer behaviour with coexistence of adsorbent-adsorbate and adsorbate-adsorbate interactions. Additionally, the in vitro evaluation of toxicity (MTT and LIVE-DEAD® assays) of 3D-sponges revealed a non-toxic response and preliminary suitability for bio-related applications. Importantly, the 3D-sponges composed of chitosan-thiolated derivative proved high antibacterial activity, specificity against P. aeruginosa (model hazardous pathogen), equivalent to conventional antibiotic drugs, while no lethality against S. aureus (reference commensal bacteria) was observed.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais/UFMG, Belo Horizonte, Brazil
| | - Fernanda G L Medeiros Borsagli
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais/UFMG, Belo Horizonte, Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais/UFMG, Belo Horizonte, Brazil
| | - Cláudia L Caldeira
- National Institutes of Science and Technology: INCT-Acqua, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dionei J Haas
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andrey P Lage
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Virginia S T Ciminelli
- National Institutes of Science and Technology: INCT-Acqua, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais/UFMG, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, Khorshidi A, Khan H, Marzhoseyni Z, Salavati-Niasari M, Mirzaei H. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym 2021; 251:117108. [DOI: 10.1016/j.carbpol.2020.117108] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/23/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
|
19
|
Hemmati F, Salehi R, Ghotaslou R, Kafil HS, Hasani A, Gholizadeh P, Rezaee MA. The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Biol Macromol 2020; 163:2248-2258. [DOI: 10.1016/j.ijbiomac.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
|
20
|
Abbasi S. Response Surface Methodology for Photo Degradation of Methyl Orange Using Magnetic Nanocomposites Containing Zinc Oxide. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01847-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Ye Q, Chen W, Huang H, Tang Y, Wang W, Meng F, Wang H, Zheng Y. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl Microbiol Biotechnol 2020; 104:5213-5227. [PMID: 32303820 DOI: 10.1007/s00253-020-10600-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Drug-resistant bacteria are becoming an increasingly widespread problem in the clinical setting. The current pipeline of antibiotics cannot provide satisfactory options for clinicians, which brought increasing attention to the development and application of non-traditional antimicrobial substances as alternatives. Metal ions, such as iron and zinc ions, have been widely applied to inhibit pathogens through different mechanisms, including synergistic action with different metabolic enzymes, regulation of efflux pumps, and inhibition of biofilm formation. Compared with traditional metal oxide nanoparticles, iron oxide nanoparticles (IONPs) and zinc oxide nanoparticles (ZnO-NPs) display stronger bactericidal effect because of their smaller ion particle sizes and higher surface energies. The combined utilization of metal NPs (nanoparticles) and antibiotics paves a new way to enhance antimicrobial efficacy and reduce the incidence of drug resistance. In this review, we summarize the physiological roles and bactericidal mechanisms of iron and zinc ions, present the recent progress in the research on the joint use of metal NPs with different antibiotics, and highlight the promising prospects of metal NPs as antimicrobial agents for tackling multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Qian Ye
- College of Biotechnology and pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211806, China.,Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuqing Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Fanrong Meng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yishan Zheng
- Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
22
|
Treating wool fibers with chitosan-based nano-composites for enhancing the antimicrobial properties. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01203-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Synthesis and Antibacterial Properties of Novel ZnMn 2O 4-Chitosan Nanocomposites. NANOMATERIALS 2019; 9:nano9111589. [PMID: 31717589 PMCID: PMC6915490 DOI: 10.3390/nano9111589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/06/2023]
Abstract
The development of productive antibacterial agents from nontoxic materials via a simple methodology has been an immense research contribution in the medicinal chemistry field. Herein, a sol–gel one-pot reaction was used to synthesize hybrid composites of hausmannite–chitosan (Mn3O4–CS) and its innovative derivative zinc manganese oxide–chitosan (ZnMn2O4–CS). Fixed amounts of CS with different metal matrix w/v ratios of 0.5%, 1.0%, 1.5%, and 2.0% for Mn and Zn precursors were used to synthesize ZnMn2O4–CS hybrid composites. X-ray diffraction analysis indicated the formation of polycrystalline tetragonal-structured ZnMn2O4 with a CS matrix in the hybrids. Fourier-transform infrared spectroscopic analysis confirmed the formation of ZnMn2O4–CS hybrids. Detailed investigations of the surface modifications were conducted using scanning electron microscopy; micrographs at different magnifications revealed that the composites’ surface changed depending on the ratio of the source materials used to synthesize the ZnMn2O4–CS hybrids. The antibacterial activity of the Mn3O4–CS and ZnMn2O4–CS composites was tested against various bacterial species, including Bacillus subtilis, Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa. The zone of inhibition and minimum inhibitory concentration values were deduced to demonstrate the efficacy of the ZnMn2O4–CS nanocomposites as antibacterial agents.
Collapse
|
24
|
Hsueh YH, Hsieh CT, Chiu ST, Tsai PH, Liu CY, Ke WJ. Antibacterial Property of Composites of Reduced Graphene Oxide with Nano-Silver and Zinc Oxide Nanoparticles Synthesized Using a Microwave-Assisted Approach. Int J Mol Sci 2019; 20:E5394. [PMID: 31671904 PMCID: PMC6862684 DOI: 10.3390/ijms20215394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Graphene oxide (GO) composites with various metal nanoparticles (NPs) are attracting increasing interest owing to their broad scope in biomedical applications. Here, microwave-assisted chemical reduction was used to deposit nano-silver and zinc oxide NPs (Ag and ZnO NPs) on the surface of reduced GO (rGO) at the following weight percentages: 5.34% Ag/rGO, 7.49% Ag/rGO, 6.85% ZnO/rGO, 16.45% ZnO/rGO, 3.47/34.91% Ag/ZnO/rGO, and 7.08/15.28% Ag/ZnO/rGO. These materials were tested for antibacterial activity, and 3.47/34.91% Ag/ZnO/rGO and 7.08/15.28% Ag/ZnO/rGO exhibited better antibacterial activity than the other tested materials against the gram-negative bacterium Escherichia coli K12. At 1000 ppm, both these Ag/ZnO/rGO composites had better killing properties against both E. coli K12 and the gram-positive bacterium Staphylococcus aureus SA113 than Ag/rGO and ZnO/rGO did. RedoxSensor flow cytometry showed that 3.47/34.91% Ag/ZnO/rGO and 7.08/15.28% Ag/ZnO/rGO decreased reductase activity and affected membrane integrity in the bacteria. At 100 ppm, these two composites affected membrane integrity more in E. coli, while 7.08/15.28% Ag/ZnO/rGO considerably decreased reductase activity in S. aureus. Thus, the 3.47/34.91% and 7.08%/15.28% Ag/ZnO/rGO nanocomposites can be applied not only as antibacterial agents but also in a variety of biomedical materials such as sensors, photothermal therapy, drug delivery, and catalysis, in the future.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81143, Taiwan.
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Shu-Ting Chiu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Ping-Han Tsai
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Chia-Ying Liu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan.
| | - Wan-Ju Ke
- Graduate Institute of Biomedical Sciences, and Research Center for Bacterial Pathogenesis, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
25
|
Packirisamy RG, Govindasamy C, Sanmugam A, Venkatesan S, Kim HS, Vikraman D. Synthesis of novel Sn1-xZnxO-chitosan nanocomposites: Structural, morphological and luminescence properties and investigation of antibacterial properties. Int J Biol Macromol 2019; 138:546-555. [DOI: 10.1016/j.ijbiomac.2019.07.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/19/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022]
|
26
|
Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as Promising Alternative in the Infection Treatment. Int J Mol Sci 2019; 20:E3806. [PMID: 31382674 PMCID: PMC6696612 DOI: 10.3390/ijms20153806] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/01/2023] Open
Abstract
Both the prevalence of antibiotic resistance and the increased biofilm-associated infections are boosting the demand for new advanced and more effective treatment for such infections. In this sense, nanotechnology offers a ground-breaking platform for addressing this challenge. This review shows the current progress in the field of antimicrobial inorganic-based nanomaterials and their activity against bacteria and bacterial biofilm. Herein, nanomaterials preventing the bacteria adhesion and nanomaterials treating the infection once formed are presented through a classification based on their functionality. To fight infection, nanoparticles with inherent antibacterial activity and nanoparticles acting as nanovehicles are described, emphasizing the design of the carrier nanosystems with properties targeting the bacteria and the biofilm.
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain.
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| |
Collapse
|
27
|
Effect of TiO 2-ZnO-MgO Mixed Oxide on Microbial Growth and Toxicity against Artemia salina. NANOMATERIALS 2019; 9:nano9070992. [PMID: 31295802 PMCID: PMC6669554 DOI: 10.3390/nano9070992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Mixed oxide nanoparticles (MONs, TiO2–ZnO–MgO) obtained by the sol-gel method were characterized by transmission electron microscopy, (TEM, HRTEM, and SAED) and thermogravimetric analysis (TGA/DTGA–DTA). Furthermore, the effect of MONs on microbial growth (growth profiling curve, lethal and sublethal effect) of Escherichia coli, Salmonella paratyphi, Staphylococcus aureus and Listeria monocytogenes, as well as the toxicity against Artemia salina by the lethal concentration test (LC50) were evaluated. MONs exhibited a near-spherical in shape, polycrystalline structure and mean sizes from 17 to 23 nm. The thermal analysis revealed that the anatase phase of MONs is completed around 480–500 °C. The normal growth of all bacteria tested is affected by the MONs presence compared with the control group. MONs also exhibited a reduction on the plate count from 0.58 to 2.10 log CFU/mL with a sublethal cell injury from 17 to 98%. No significant toxicity within 24 h was observed on A. salina. A bacteriostatic effect of MONs on bacteria was evidenced, which was strongly influenced by the type of bacteria, as well as no toxic effects (LC50 >1000 mg/L; TiO2–ZnO (5%)–MgO (5%)) on A. salina were detected. This study demonstrates the potential of MONs for industrial applications.
Collapse
|
28
|
Andiappan K, Sanmugam A, Deivanayagam E, Karuppasamy K, Kim HS, Vikraman D. Schiff base rare earth metal complexes: Studies on functional, optical and thermal properties and assessment of antibacterial activity. Int J Biol Macromol 2019; 124:403-410. [DOI: 10.1016/j.ijbiomac.2018.11.251] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 01/14/2023]
|
29
|
Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:1989-2006. [PMID: 30637497 DOI: 10.1007/s00253-018-09602-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.
Collapse
|
30
|
Díez-Pascual AM. Antibacterial Activity of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E359. [PMID: 29882933 PMCID: PMC6027337 DOI: 10.3390/nano8060359] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ana María Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|