1
|
Mgijima T, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Onani MO. Wound healing effects of biogenic gold nanoparticles synthesized using red wine extracts. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:399-410. [PMID: 39069752 DOI: 10.1080/21691401.2024.2383583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Gold nanoparticles (AuNPs) were synthesized using three red wine extracts (RW-Es); by varying temperature, pH, concentrations of RW-Es and gold salt. The RW-AuNPs were characterized by UV-vis, transmission electron microscopy (TEM), dynamic light scattering (DLS), and the Fourier Transform Infra-red Spectroscopy (FT-IR). Their stability was evaluated in water, foetal bovine serum (FBS), phosphate-buffered saline (PBS), and Dulbecco's Modified Eagle Medium (DMEM) by UV-Vis. The effect of the RW-Es and RW-AuNPs on KMST-6 cell cell viability was evaluated by MTT assay; and their wound healing effects were monitored by scratch assay. RW-AuNPs synthesis was observed by colour change, and confirmed by UV-Vis spectrum, with an absorption peak around 550 nm. The hydrodynamic sizes of the RW-AuNPs ranged between 10 and 100 nm. Polyphenols, carboxylic acids, and amino acids are some of functional groups in the RW-Es that were involved in the reduction of RW-AuNPs. The RW-AuNPs were stable in test solutions and showed no cytotoxicity to the KMST-6 cells up to 72 h. AuNPs synthesized from Pinotage and Cabernet Sauvignon enhanced proliferation of KMST-6 cells and showed potential as wound healing agents. Further studies are required to investigate the molecular mechanisms involved in the potential wound-healing effect of the RW-AuNPs.
Collapse
Affiliation(s)
- Tswellang Mgijima
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole R S Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- Health Platform, Advanced Materials Division, Mintek, Randburg, South Africa
| | - Adewale O Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Samantha Meyer
- Phytotherapy Research Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Abram M Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Martin O Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
2
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
3
|
Yudaev P, Butorova I, Chuev V, Posokhova V, Klyukin B, Chistyakov E. Wound Gel with Antimicrobial Effects Based on Polyvinyl Alcohol and Functional Aryloxycyclotriphosphazene. Polymers (Basel) 2023; 15:2831. [PMID: 37447477 DOI: 10.3390/polym15132831] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
A silver-containing gel based on polyvinyl alcohol and aryloxycyclotriphosphazene containing β-carboxyethenylphenoxy and p-formylphenoxy groups has been developed. Phosphazene was synthesized via the Doebner reaction from hexakis[(4-formyl)phenoxy]cyclotriphosphazene and malonic acid and characterized by 1H, 13C, and 31P NMR spectroscopy and MALDI-TOF mass spectrometry. The study of the gel using scanning electron microscopy showed that the gel contains open pores and can absorb wound exudate. The maximum water absorption capacity of the gel was 272%, which was reached after 80 min of testing. The antimicrobial activity of the obtained silver-containing gel was evaluated using the diffusion method. The gel was found to inhibit the growth of the main microorganisms in contact with the skin: the bacteria S. aureus, P. aeruginosa, E. coli, B. subtilis, S. epidermidis, and C. stationis and the fungus C. albicans. The study of the wound-healing effect of the gel in vivo showed a decrease in the wound area of the rabbit hind limb by 91.43% (p < 0.05) on the 10th day of observation and a decrease in the content of C-reactive protein in the rabbit blood serum by 1.3 times (p < 0.05).
Collapse
Affiliation(s)
- Pavel Yudaev
- Department of Chemical Technology of Plastics, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Irina Butorova
- Department of Chemical Technology of Plastics, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Vladimir Chuev
- Belgorod National Research University, Pobedy Street, 85, 308015 Belgorod, Russia
| | | | - Bogdan Klyukin
- Department of Chemical Technology of Plastics, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Evgeniy Chistyakov
- Department of Chemical Technology of Plastics, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| |
Collapse
|
4
|
Rokkarukala S, Cherian T, Ragavendran C, Mohanraju R, Kamaraj C, Almoshari Y, Albariqi A, Sultan MH, Alsalhi A, Mohan S. One-pot green synthesis of gold nanoparticles using Sarcophyton crassocaule, a marine soft coral: Assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of toxic organic pollutants. Heliyon 2023; 9:e14668. [PMID: 36994394 PMCID: PMC10040709 DOI: 10.1016/j.heliyon.2023.e14668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Marine bio-resources are being extensively researched as a priceless supply of substances with therapeutic potential. This work report the first time attempt made towards the green synthesis of gold nanoparticles (AuNPs) using the aqueous extract of marine soft coral (SCE), Sarcophyton crassocaule. The synthesis was conducted under optimized conditions and the visual coloration of reaction mixture changed from yellowish to ruby red at 540 nm. The electron microscopic (TEM, SEM) studies exhibited spherical and oval shaped SCE-AuNPs in the size ranges of 5–50 nm. The organic compounds present in SCE were primarily responsible for the biological reduction of gold ions validated by FT-IR while the zeta potential confirmed the overall stability of SCE-AuNPs. The synthesized SCE-AuNPs exhibited variety of biological efficacies like antibacterial, antioxidant and anti-diabetic in nature. The biosynthesized SCE-AuNPs demonstrated remarkable bactericidal efficacy against clinically significant bacterial pathogens with inhibition zones of mm. Additionally, SCE-AuNPs exhibited greater antioxidant capacity in terms of DPPH: 85 ± 0.32% and RP: 82 ± 0.41%). The ability of enzyme inhibition assays to inhibit α-amylase (68 ± 0.21%) and α-glucosidase (79 ± 0.2%) was quite high. The study also highlighted the spectroscopic analysis of the biosynthesized SCE-AuNPs' catalytic effectiveness of 91% in the reduction processes of the perilous organic dyes, exhibiting pseudo-first order kinetics.
Collapse
Affiliation(s)
- Samson Rokkarukala
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
| | - Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
- Corresponding author.
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Raju Mohanraju
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Drug Testing Laboratory, Directorate of Research, SRM Institute Science and Technology, Kattankulathur - 603 203, Tamil Nadu, India
| | - Yosif Almoshari
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed Albariqi
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Muhammad H. Sultan
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Saveetha University, Chennai, India
- Corresponding author. .
| |
Collapse
|
5
|
Antimicrobial Effects of Gum Arabic-Silver Nanoparticles against Oral Pathogens. Bioinorg Chem Appl 2022; 2022:9602325. [PMID: 36561898 PMCID: PMC9767746 DOI: 10.1155/2022/9602325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/07/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Dental caries is considered one of the most prevalent oral diseases worldwide, with a high rate of morbidity among populations. It is a chronic infectious disease with a multifactorial etiology that leads to the destruction of the dental tissues. Due to their antimicrobial, anti-inflammatory, antifungal, and antioxidant properties; silver nanoparticles (AgNPs) are incorporated in dental products to help prevent infectious oral diseases. In this study, the antimicrobial effects of AgNPs synthesized using Gum Arabic extracts (GAE) were examined. The GA-AgNPs were synthesized and characterized using ultraviolet-visible (UV-Vis) spectrophotometer, dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The antimicrobial activity of the GA-AgNPs was evaluated on Streptococcus sanguinis (S. sanguinis), Streptococcus mutans (S. mutans), Lactobacillus acidophilus (L. acidophilus), and Candida albicans (C. albicans) using agar disc diffusion and microdilution assays. The antibiofilm of GA-AgNPs was evaluated on the surface of human tooth enamel that had been exposed to S. mutans with and without the GA-AgNPs using scanning electron microscopy (SEM). GA-AgNPs were spherical in shape with a particle size distribution between 4 and 26 nm. The GA-AgNPs exhibited antimicrobial activity against all the tested oral microbes, with GA-AgNPs_0.4g having higher antimicrobial activity. The GA-AgNPs_0.4g inhibited S. mutans adhesion and biofilm formation on the surface of the tooth enamel. Therefore, this study supports the prospective implementation of the plant extract-mediated AgNPs in dental healthcare.
Collapse
|
6
|
Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents. Bioengineering (Basel) 2022; 9:bioengineering9110712. [PMID: 36421113 PMCID: PMC9687874 DOI: 10.3390/bioengineering9110712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic wounds are a silent epidemic threatening the lives of many people worldwide. They are associated with social, health care and economic burdens and can lead to death if left untreated. The treatment of chronic wounds is very challenging as it may not be fully effective and may be associated with various adverse effects. New wound healing agents that are potentially more effective are being discovered continuously to combat these chronic wounds. These agents include silver nanoformulations which can contain nanoparticles or nanocomposites. To be effective, the discovered agents need to have good wound healing properties which will enhance their effectiveness in the different stages of wound healing. This review will focus on the process of wound healing and describe the properties of silver nanoformulations that contribute to wound healing.
Collapse
|
7
|
Tim B, Rojewska M, Prochaska K. Effect of Silica Microparticles on Interactions in Mono- and Multicomponent Membranes. Int J Mol Sci 2022; 23:ijms232112822. [PMID: 36361613 PMCID: PMC9654498 DOI: 10.3390/ijms232112822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/01/2022] Open
Abstract
Advancing our understanding of the mechanism of the interaction between inhaled pollutant microparticles and cell membrane components is useful to study the impact of fine particulate matter on human health. In this paper, we focus on the effect of cholesterol (Chol) molecules on the surface properties of a model membrane in the presence of silica microparticles (MPs). Mixed monolayers containing phospholipid-dipalmitoylphosphatidylcholine (DPPC), Chol and silica particle dispersions (MPs; 0.033% w/w, 0.33% w/w and 0.83% w/w) were formed and studied using the Langmuir monolayer technique complemented by Brewster Angle Microscopy (BAM) images. It was shown that Chol caused a condensation of the DPPC monolayer, which influenced the penetration of MPs and their interactions with the model membrane. The relaxation experiments of the lipid–MP monolayer proved that the presence of Chol molecules in the monolayer led to the formation of lipid and MP complexes. Strong interactions between Chol and MPs contributed to the formation of more stable monolayers. The presented results can be useful to better comprehend the interaction between particulate materials and the lipid components of biomembranes.
Collapse
Affiliation(s)
- Beata Tim
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Ul. Piotrowo 3, 60-965 Poznan, Poland
| | - Monika Rojewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965 Poznan, Poland
- Correspondence: ; Tel.: +48-61-665-3772; Fax: +48-61-665-3649
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
8
|
Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. PLANTS 2022; 11:plants11152011. [PMID: 35956489 PMCID: PMC9370299 DOI: 10.3390/plants11152011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Medicinal plants are the product of natural drug discoveries and have gained traction due to their pharmacological activities. Pathogens are everywhere, and they thrive in ideal conditions depending on the nutrients, moisture, temperature, and pH that increase the growth of harmful pathogens on surfaces and textiles. Thus, antimicrobial agents and finishes may be the solution to the destruction of pathogens. This review article presents an analysis of various aspects of producing antimicrobial finishings, the microorganisms, their mechanism of attachment to natural and synthetic fibre, the effect of microbial growth, and the principle and mechanism of the microbial activity of the medicinal plants. Furthermore, the extraction methods, qualitative and quantitative phytochemical evaluations of antimicrobial efficacy, and developments of antimicrobial treated textiles using various agents are covered in this review.
Collapse
|
9
|
A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers (Basel) 2022; 14:polym14112238. [PMID: 35683916 PMCID: PMC9182805 DOI: 10.3390/polym14112238] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
In tissue engineering, three-dimensional (3D) printing is an emerging approach to producing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows for precise control of materials and other components in the tissue constructs in an automated way, potentially permitting great throughput production. An ink made using one or multiple biomaterials can be 3D printed into tissue constructs by the printing process; though promising in tissue engineering, the printed constructs have also been reported to have the ability to lead to the emergence of unforeseen illnesses and failure due to biomaterial-related infections. Numerous approaches and/or strategies have been developed to combat biomaterial-related infections, and among them, natural biomaterials, surface treatment of biomaterials, and incorporating inorganic agents have been widely employed for the construct fabrication by 3D printing. Despite various attempts to synthesize and/or optimize the inks for 3D printing, the incidence of infection in the implanted tissue constructs remains one of the most significant issues. For the first time, here we present an overview of inks with antibacterial properties for 3D printing, focusing on the principles and strategies to accomplish biomaterials with anti-infective properties, and the synthesis of metallic ion-containing ink, chitosan-containing inks, and other antibacterial inks. Related discussions regarding the mechanics of biofilm formation and antibacterial performance are also presented, along with future perspectives of the importance of developing printable inks.
Collapse
|
10
|
Characterization and Toxicity of Hypoxoside Capped Silver Nanoparticles. PLANTS 2022; 11:plants11081037. [PMID: 35448764 PMCID: PMC9033108 DOI: 10.3390/plants11081037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022]
Abstract
The reducing potential of plant extracts in the green synthesis of nanoparticles has been associated with their phytochemicals. Although pharmacologically inactive, a norlignan diglucoside “hypoxoside” (HP) occurs in large quantities in the extract of Hypoxis hemerocallidea (HE). In this work, HP was isolated from HE where both were used in the biosynthesis of the corresponding silver nanoparticles (HP-AgNPs and HE-AgNPs). The AgNPs were fully characterized using various physicochemical techniques and their antimicrobial and anticancer properties were evaluated. Transmission electron microscopy (TEM) revealed sizes of 24.3 ± 4 nm for the HE-AgNPs and 3.9 ± 1.6 nm for the HP-AgNPs. The HE-AgNPs demonstrated enhanced anti-bactericidal effects on Escherichia coli and Salmonella enterica with a minimum inhibitory concentration (MIC) value of 1.95 µg/mL, competing well with the standard drug. The cytotoxic activity showed that the HE-AgNPs reduced cell viability with an IC50 of 0.81 and 4.0 µg/mL, respectively, for the U87 and U251 cells, while the HP-AgNPs displayed 0.20 and 0.55 µg/mL for both cell lines, respectively. Furthermore, while the HE-AgNPs were selective to U87 alone, the HP-AgNPs were selective to both glioblastoma cells tested. The study demonstrated the ability of a single phytoconstituent (hypoxoside), not only as the chief bioreductant in the extract, but also as a standalone reducing and capping agent, producing ultra-small, spherical, and monodispersed AgNPs with enhanced biological properties.
Collapse
|
11
|
Rojewska M, Tim B, Prochaska K. Interactions between silica particles and model phospholipid monolayers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Sibuyi NRS, Moabelo KL, Fadaka AO, Meyer S, Onani MO, Madiehe AM, Meyer M. Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review. NANOSCALE RESEARCH LETTERS 2021; 16:174. [PMID: 34866165 PMCID: PMC8645298 DOI: 10.1186/s11671-021-03632-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 05/07/2023]
Abstract
The medical properties of metals have been explored for centuries in traditional medicine for the treatment of infections and diseases and still practiced to date. Platinum-based drugs are the first class of metal-based drugs to be clinically used as anticancer agents following the approval of cisplatin by the United States Food and Drug Administration (FDA) over 40 years ago. Since then, more metals with health benefits have been approved for clinical trials. Interestingly, when these metals are reduced to metallic nanoparticles, they displayed unique and novel properties that were superior to their bulk counterparts. Gold nanoparticles (AuNPs) are among the FDA-approved metallic nanoparticles and have shown great promise in a variety of roles in medicine. They were used as drug delivery, photothermal (PT), contrast, therapeutic, radiosensitizing, and gene transfection agents. Their biomedical applications are reviewed herein, covering their potential use in disease diagnosis and therapy. Some of the AuNP-based systems that are approved for clinical trials are also discussed, as well as the potential health threats of AuNPs and some strategies that can be used to improve their biocompatibility. The reviewed studies offer proof of principle that AuNP-based systems could potentially be used alone or in combination with the conventional systems to improve their efficacy.
Collapse
Affiliation(s)
- Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Koena Leah Moabelo
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
13
|
Tyavambiza C, Dube P, Goboza M, Meyer S, Madiehe AM, Meyer M. Wound Healing Activities and Potential of Selected African Medicinal Plants and Their Synthesized Biogenic Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122635. [PMID: 34961106 PMCID: PMC8706794 DOI: 10.3390/plants10122635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 05/06/2023]
Abstract
In Africa, medicinal plants have been traditionally used as a source of medicine for centuries. To date, African medicinal plants continue to play a significant role in the treatment of wounds. Chronic wounds are associated with severe healthcare and socio-economic burdens despite the use of conventional therapies. Emergence of novel wound healing strategies using medicinal plants in conjunction with nanotechnology has the potential to develop efficacious wound healing therapeutics with enhanced wound repair mechanisms. This review identified African medicinal plants and biogenic nanoparticles used to promote wound healing through various mechanisms including improved wound contraction and epithelialization as well as antibacterial, antioxidant and anti-inflammatory activities. To achieve this, electronic databases such as PubMed, Scifinder® and Google Scholar were used to search for medicinal plants used by the African populace that were scientifically evaluated for their wound healing activities in both in vitro and in vivo models from 2004 to 2021. Additionally, data on the wound healing mechanisms of biogenic nanoparticles synthesized using African medicinal plants is included herein. The continued scientific evaluation of wound healing African medicinal plants and the development of novel nanomaterials using these plants is imperative in a bid to alleviate the detrimental effects of chronic wounds.
Collapse
Affiliation(s)
- Caroline Tyavambiza
- Phytotherapy Research Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7535, South Africa; (C.T.); (S.M.)
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
| | - Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
| | - Mediline Goboza
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
| | - Samantha Meyer
- Phytotherapy Research Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7535, South Africa; (C.T.); (S.M.)
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (P.D.); (M.G.); (A.M.M.)
- Correspondence: ; Tel.: +27-21-9592032
| |
Collapse
|
14
|
López-Miranda JL, Molina GA, Esparza R, González-Reyna MA, Silva R, Estévez M. Green Synthesis of Homogeneous Gold Nanoparticles Using Sargassum spp. Extracts and Their Enhanced Catalytic Activity for Organic Dyes. TOXICS 2021; 9:280. [PMID: 34822671 PMCID: PMC8623730 DOI: 10.3390/toxics9110280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Sargassum species-based extracts were used to carry out the synthesis of homogeneous gold nanoparticles. Various techniques were used to determine the characteristics and composition of the nanoparticles. The UV-Vis results showed that the 50% water/ethanol extract had the most reducing agents and stabilizers. Therefore, this type of extract was used to synthesize nanoparticles and for their subsequent characterization. Crystallinity and crystal size were evaluated using X-ray diffraction. Size and morphology were analyzed using scanning electron microscopy, showing that the gold nanoparticles were mostly spherical, with a size range of 15-30 nm. The catalytic activity of the gold nanoparticles was evaluated through the degradation of organic dyes: methylene blue, methyl orange, and methyl red. The degradation rates were different, depending on the nature of each dye, the simplest to degrade was methylene blue and methyl red was the most difficult to degrade. The results indicated that the use of Sargassum spp. for the synthesis of gold nanoparticles has potential in the remediation of water that is contaminated with organic dyes. Moreover, given the recent serious environmental and economic problems caused by the overpopulation of Sargassum spp. in the Mexican Caribbean, the findings hold promise for their practical and sustainable use in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- J. Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Gustavo A. Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Marlen Alexis González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| | - Rodolfo Silva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico;
| | - Miriam Estévez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico; (J.L.L.-M.); (G.A.M.); (R.E.); (M.A.G.-R.)
| |
Collapse
|
15
|
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Nanotechnology-Based Delivery Systems for Antimicrobial Peptides. Pharmaceutics 2021; 13:pharmaceutics13111795. [PMID: 34834210 PMCID: PMC8620809 DOI: 10.3390/pharmaceutics13111795] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant threat to global health. The conventional antibiotic pool has been depleted, forcing the investigation of novel and alternative antimicrobial strategies. Antimicrobial peptides (AMPs) have shown potential as alternative diagnostic and therapeutic agents in biomedical applications. To date, over 3000 AMPs have been identified, but only a fraction of these have been approved for clinical trials. Their clinical applications are limited to topical application due to their systemic toxicity, susceptibility to protease degradation, short half-life, and rapid renal clearance. To circumvent these challenges and improve AMP’s efficacy, different approaches such as peptide chemical modifications and the development of AMP delivery systems have been employed. Nanomaterials have been shown to improve the activity of antimicrobial drugs by providing support and synergistic effect against pathogenic microbes. This paper describes the role of nanotechnology in the targeted delivery of AMPs, and some of the nano-based delivery strategies for AMPs are discussed with a clear focus on metallic nanoparticle (MNP) formulations.
Collapse
Affiliation(s)
| | | | | | - Mervin Meyer
- Correspondence: (A.O.F.); (N.R.S.S.); (A.M.M.); (M.M.)
| |
Collapse
|
16
|
Aboyewa JA, Sibuyi NRS, Meyer M, Oguntibeju OO. Green Synthesis of Metallic Nanoparticles Using Some Selected Medicinal Plants from Southern Africa and Their Biological Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1929. [PMID: 34579460 PMCID: PMC8472917 DOI: 10.3390/plants10091929] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023]
Abstract
The application of metallic nanoparticles (MNPs), especially that of silver, gold, cobalt, and zinc as antimicrobial, anticancer, drug delivery, contrast, and bioimaging agents has transformed the field of medicine. Their functions, which are attributed to their physicochemical properties, have gained prominence in various technological fields. Although MNPs can be produced via rigorous physical and chemical techniques, in recent years, a biological approach utilizing natural materials has been developed. With the increasing enthusiasm for safe and efficient nanomaterials, the biological method incorporating microorganisms and plants is preferred over physical and chemical methods of nanoparticle synthesis. Of these bio-entities, plants have received great attention owing to their capability to reduce and stabilize MNPs in a single one-pot protocol. South Africa is home to ~10% of the world's plant species, making it a major contributor to the world's ecological scenery. Despite the documented contribution of South African plants, particularly in herbal medicine, very few of these plants have been explored for the synthesis of the noble MNPs. This paper provides a review of some important South African medicinal plants that have been utilized for the synthesis of MNPs. The enhanced biological properties of the biogenic MNPs attest to their relevance in medicine. In this endeavour, more of the African plant biodiversity must be explored for the synthesis of MNPs and be validated for their potential to be translated into future nanomedicine.
Collapse
Affiliation(s)
- Jumoke A. Aboyewa
- Oxidative Stress Research Centre, Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa;
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa;
| | - Oluwafemi O. Oguntibeju
- Oxidative Stress Research Centre, Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
17
|
Aremu OS, Qwebani-Ogunleye T, Katata-Seru L, Mkhize Z, Trant JF. Synergistic broad-spectrum antibacterial activity of Hypoxis hemerocallidea-derived silver nanoparticles and streptomycin against respiratory pathobionts. Sci Rep 2021; 11:15222. [PMID: 34315915 PMCID: PMC8316514 DOI: 10.1038/s41598-021-93978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Respiratory tract infections arise due to the introduction of microbes into the airway, disrupting the normal, healthy, complex interdependent microbiome. The selective disruption of this community can be either beneficial or dangerous. Nanoparticles are a potential tool for modifying this population. Coated silver nanoparticles (AgNPs) were synthesized using ethanolic extracts of Hypoxis hemerocallidea (EEHH), a Southern African plant used extensively in traditional medicine and the source of many bioactive secondary metabolites. The room temperature reaction between silver nitrate and EEHH forms largely spherical AgNPs with an average diameter of 6-20 nm. These nanoparticles show similar levels of antibacterial activity as the broad-spectrum antibiotic streptomycin against Bacillus cereus, Streptococcus pneumonia, Escherichia coli, Pseudomonas aeuroginosa, and Moraxella catarrhalis. However, the AgNPs synergistically increase the antibacterial activity of streptomycin when they are applied in combination (30-52%). AgNPs are reiterated to be promising dual-function antibiotics, synergistically enhancing activity while also acting as delivery agents for small molecules.
Collapse
Affiliation(s)
- Oluwole S Aremu
- Institute of Traditional Knowledge and Traditional Medicine, Vaal University of Technology Science and Technology Park, 5 Moshoeshoe Road, Sebokeng, 1911, South Africa.
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| | - T Qwebani-Ogunleye
- Institute of Traditional Knowledge and Traditional Medicine, Vaal University of Technology Science and Technology Park, 5 Moshoeshoe Road, Sebokeng, 1911, South Africa
| | | | - Zimbili Mkhize
- Department of Chemistry, North-West University, Mafikeng, South Africa
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
18
|
Tyavambiza C, Elbagory AM, Madiehe AM, Meyer M, Meyer S. The Antimicrobial and Anti-Inflammatory Effects of Silver Nanoparticles Synthesised from Cotyledon orbiculata Aqueous Extract. NANOMATERIALS 2021; 11:nano11051343. [PMID: 34065254 PMCID: PMC8160699 DOI: 10.3390/nano11051343] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Cotyledon orbiculata, commonly known as pig’s ear, is an important medicinal plant of South Africa. It is used in traditional medicine to treat many ailments, including skin eruptions, abscesses, inflammation, boils and acne. Many plants have been used to synthesize metallic nanoparticles, particularly silver nanoparticles (AgNPs). However, the synthesis of AgNPs from C. orbiculata has never been reported before. The aim of this study was to synthesize AgNPs using C. orbiculata and evaluate their antimicrobial and immunomodulatory properties. AgNPs were synthesized and characterized using Ultraviolet-Visible Spectroscopy (UV-Vis), Dynamic Light Scattering (DLS) and High-Resolution Transmission Electron Microscopy (HR-TEM). The antimicrobial activities of the nanoparticles against skin pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Methicillin Resistance Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) as well as their effects on cytokine production in macrophages (differentiated from THP-1 cells) were evaluated. The AgNPs from C. orbiculata exhibited antimicrobial activity, with the highest activity observed against P. aeruginosa (5 µg/mL). The AgNPs also showed anti-inflammatory activity by inhibiting the secretion of pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta) in lipopolysaccharide-treated macrophages. This concludes that the AgNPs produced from C. orbiculata possess antimicrobial and anti-inflammation properties.
Collapse
Affiliation(s)
- Caroline Tyavambiza
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7535, South Africa;
| | - Abdulrahman Mohammed Elbagory
- Chemistry Department, Cape Peninsula University of Technology, P.O Box 1906, Bellville, Cape Town 7535, South Africa;
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (A.M.M.); (M.M.)
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (A.M.M.); (M.M.)
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (A.M.M.); (M.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7535, South Africa;
- Correspondence: ; Tel.: +27-21-959-6251
| |
Collapse
|
19
|
Botteon CEA, Silva LB, Ccana-Ccapatinta GV, Silva TS, Ambrosio SR, Veneziani RCS, Bastos JK, Marcato PD. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep 2021; 11:1974. [PMID: 33479338 PMCID: PMC7820602 DOI: 10.1038/s41598-021-81281-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) are highlighted due to their low toxicity, compatibility with the human body, high surface area to volume ratio, and surfaces that can be easily modified with ligands. Biosynthesis of AuNPs using plant extract is considered a simple, low-cost, and eco-friendly approach. Brazilian Red Propolis (BRP), a product of bees, exhibits anti-inflammatory, anti-tumor, antioxidant, and antimicrobial activities. Here, we described the biosynthesis of AuNPs using BRP extract (AuNPextract) and its fractions (AuNPhexane, AuNPdichloromethane, AuNPethyl acetate) and evaluated their structural properties and their potential against microorganisms and cancer cells. AuNPs showed a surface plasmon resonance (SPR) band at 535 nm. The sizes and morphologies were influenced by the BRP sample used in the reaction. FTIR and TGA revealed the involvement of bioactive compounds from BRP extract or its fractions in the synthesis and stabilization of AuNPs. AuNPdichloromethane and AuNPhexane exhibited antimicrobial activities against all strains tested, showing their efficacy as antimicrobial agents to treat infectious diseases. AuNPs showed dose-dependent cytotoxic activity both in T24 and PC-3 cells. AuNPdichloromethane and AuNPextract exhibited the highest in vitro cytotoxic effect. Also, the cytotoxicity of biogenic nanoparticles was induced by mechanisms associated with apoptosis. The results highlight a potential low-cost green method using Brazilian red propolis to synthesize AuNPs, which demonstrated significant biological properties.
Collapse
Affiliation(s)
- C E A Botteon
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - L B Silva
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - G V Ccana-Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - T S Silva
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - S R Ambrosio
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - R C S Veneziani
- Research Center of Exact and Technological Sciences, UNIFRAN, São Paulo, Brazil
| | - J K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - P D Marcato
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
20
|
Dube P, Meyer S, Madiehe A, Meyer M. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens. NANOTECHNOLOGY 2020; 31:505607. [PMID: 33021215 DOI: 10.1088/1361-6528/abb6a8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nanoparticles (NPs) synthesized using various chemical and physical methods are often cytotoxic which restricts their use in biomedical applications. In contrast, metallic biogenic NPs synthesized using biological systems such as plant extracts are said to be safer and their production more cost effective. NPs synthesized from plants with known medicinal properties can potentially have similar bioactivities as these plants. It has been shown that Salvia africana-lutea (SAL) and Sutherlandia frutescens (SF) have antibacterial activities. This study used water extracts of SAL and SF to produce biogenic silver NPs (AgNPs) and gold NPs (AuNPs). The antibacterial activity of AgNPs and AuNPs was tested against two pathogens (Staphylococcus epidermidis and P. aeruginosa). NP synthesis was optimized by varying the synthesis conditions which include synthesis time and temperature, plant extract concentration, silver nitrate (AgNO3) concentration and sodium tetrachloroaurate (III) dihydrate (NaAuCl4 · 2H2O) concentration. The NPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. SAL was able to synthesize both Ag (SAL AgNP) and Au (SAL AuNP) nanoparticles, whilst SF synthesized Ag (SF AgNP) nanoparticles only. The absorbance spectra revealed the characteristic surface plasmon resonance peak between 400-500 nm and 500-600 nm for AgNP and AuNP, respectively. HR-TEM displayed the presence of spherical and polygon shaped nanoparticles with varying sizes whilst the Energy Dispersive x-ray spectra and selected area diffraction pattern confirmed the successful synthesis of the AgNPs and AuNPs by displaying the characteristic crystalline nature, optical adsorption peaks and lattice fringes. FT-IR spectroscopy was employed to identify the functional groups involved in the NP synthesis. The microtitre plate method was employed to determine the minimum inhibitory concentration (MIC) of the NPs and the extracts. The water extracts and SAL AuNP did not have significant antibacterial activity, while SAL AgNP and SF AgNP displayed high antibacterial activity. In conclusion, the data generated suggests that SAL and SF could be used for the efficient synthesis of antibacterial biogenic nanoparticles.
Collapse
Affiliation(s)
- Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Abram Madiehe
- DSI/Mintek Nanotechnology Innovation Centre Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
21
|
Amina M, Al Musayeib NM, Alarfaj NA, El-Tohamy MF, Al-Hamoud GA. Antibacterial and Immunomodulatory Potentials of Biosynthesized Ag, Au, Ag-Au Bimetallic Alloy Nanoparticles Using the Asparagus racemosus Root Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2453. [PMID: 33302432 PMCID: PMC7762544 DOI: 10.3390/nano10122453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Two noble metals, such as silver and gold alloy nanoparticles, were successfully synthesized by the microwave assisted method in the presence of the Asparagus racemosus root extract and were used as an antibacterial and immunomodulatory agent. The nanostuctures of the synthesized nanoparticles were confirmed by various spectroscopic and microscopic techniques. The UV-vis spectrum exhibits a distinct absorption peak at 483 nm for the bimetallic alloy nanoparticles. The microscopic analysis revealed the spherical shaped morphology of the biosynthesized nanoparticles with a particle size of 10-50 nm. The antibacterial potential of the green synthesized single metal (AgNPs and AuNPs) and bimetallic alloy nanoparticles was tested against five bacterial strains. The bimetallic alloy nanoparticles displayed the highest zone of inhibition against P. aeurgnosia and S.aureus strains when compared to single metal nanoparticles and plant extract. In addition, the inmmunomodulatory potential of the root extract of A. racemosus, AgNPs, AuNPs, and Ag-Au alloy NPs is achieved by measuring the cytokine levels in macrophages (IL-1β, IL-6, and TNF-α) and NK cells (IFN-γ) of NK92 and THP1 cells using the solid phase sandwich ELISA technique. The results showed that the root extract of A. racemosus, AgNPs, and AuNPs can reduce the pro-inflammatory cytokine levels in the macrophages cells, while Ag-Au alloy NPs can reduce cytokine responses in NK92 cells. Overall, this study shows that the microwave assisted biogenic synthesized bimetallic nanoalloy nanoparticles could be further explored for the development of antibacterial and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (N.M.A.M.); (G.A.A.-H.)
| | - Nawal M. Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (N.M.A.M.); (G.A.A.-H.)
| | - Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Gadah A. Al-Hamoud
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (N.M.A.M.); (G.A.A.-H.)
| |
Collapse
|
22
|
Kowsalya E, MosaChristas K, Jaquline CRI, Balashanmugam P, Devasena T. Gold nanoparticles induced apoptosis via oxidative stress and mitochondrial dysfunctions in MCF‐7 breast cancer cells. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elumalai Kowsalya
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | - Kithiyon MosaChristas
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | - Chinna Rani Inbaraj Jaquline
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | | | | |
Collapse
|
23
|
Synthesis of Biogenic Gold Nanoparticles from Terminalia mantaly Extracts and the Evaluation of Their In Vitro Cytotoxic Effects in Cancer Cells. Molecules 2020; 25:molecules25194469. [PMID: 33003351 PMCID: PMC7582329 DOI: 10.3390/molecules25194469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
Scientists have demonstrated the potential of plant materials as ‘green’ reducing and stabilizing agents for the synthesis of gold nanoparticles (AuNPs) and opened new ecofriendly horizons to develop effective and less harmful treatment strategies. The current study demonstrated the use of Terminalia mantaly (TM) extracts to synthesize AuNPs with enhanced cytotoxic effects. The TM-AuNPs were synthesized at 25 and 70 °C using water (WTM) and methanolic (MTM) extracts of the leaf, root and stem/bark parts of the plant. The TM-AuNPs were characterized using UV–visible spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy, energy dispersive X-ray (EDX), selection area electron diffraction (SAED) and Fourier transform infrared (FTIR) spectroscopy. Majority of the TM-AuNPs were spherical with a mean diameter between 22.5 and 43 nm and were also crystalline in nature. The cytotoxic effects of TM-AuNPs were investigated in cancer (Caco-2, MCF-7 and HepG2) and non-cancer (KMST-6) cell lines using the MTT assay. While the plant extracts showed some cytotoxicity towards the cancer cells, some of the TM-AuNPs were even more toxic to the cells. The IC50 values (concentrations of the AuNPs that inhibited 50% cell growth) as low as 0.18 µg/mL were found for TM-AuNPs synthesized using the root extract of the plant. Moreover, some of the TM-AuNPs demonstrated selective toxicity towards specific cancer cell types. The study demonstrates the potential of TM extracts to produce AuNPs and describe the optimal conditions for AuNPs using TM extracts. The toxicity of some the TM-AuNPs can possibly be explored in the future as an antitumor treatment.
Collapse
|
24
|
Biosynthesis, Characterization, and Biological Activities of Procyanidin Capped Silver Nanoparticles. J Funct Biomater 2020; 11:jfb11030066. [PMID: 32961705 PMCID: PMC7564108 DOI: 10.3390/jfb11030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.
Collapse
|
25
|
Mohamed L, Chakraborty S, ArulJothi KN, Mabasa L, Sayah K, Costa-Lotufo LV, Jardine A, Prince S. Galenia africana plant extract exhibits cytotoxicity in breast cancer cells by inducing multiple programmed cell death pathways. Saudi Pharm J 2020; 28:1155-1165. [PMID: 33132708 PMCID: PMC7584788 DOI: 10.1016/j.jsps.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022] Open
Abstract
Globally, breast cancer is the most common malignancy in women and the second most common cause of cancer-related death among women. There is therefore a need to identify more efficacious therapies for this neoplasm. Galenia africana (Kraalbos) is a perennial shrub found in Southern Africa and is used by the indigenous people to treat various ailments. There has therefore been much interest to establish the scientific basis for the medicinal properties of Kraalbos. This study aimed to investigate and characterise the anti-cancer activity of an ethanolic extract of Kraalbos leaves, KB2, against oestrogen receptor positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cells. LC-MS/MS analyses identified the phytochemicals 7′-hydroxyflavanone, 5′,7'-dihydroxyflavanone, 2′,4′-dihydroxydihydrochalcone and 2′,4′-dihydroxychalcone in KB2. KB2 exhibited an IC50 of 114 µg/ml and 130.5 µg/ml in MCF-7 and MDA-MB-231 cells respectively, selectively inhibited their long-term survival and reduced their migration which correlated with a decrease in EMT markers. It induced oxidative stress (ROS), DNA damage (increased levels of γ-H2AX), and triggered cell cycle arrests in MCF-7 and MDA-MB-231 cells. Importantly, KB2 activated intrinsic (cleaved caspase 9) and extrinsic (cleaved caspase 8) apoptosis, necroptosis (p-RIP3 and the downstream target of the necrosome, pMLKL) and autophagy (LC3II). Co-treatment of the breast cancer cells with KB2 and the autophagy inhibitor bafilomycin A1 resulted in a significant increase in cell viability which suggests that KB2 induced autophagy is a cell death mechanism.
Collapse
Affiliation(s)
- Luqmaan Mohamed
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Suparna Chakraborty
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa.,Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Chennai 603203, India
| | | | - Kenza Sayah
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | - Anwar Jardine
- Department of Chemistry, University of Cape Town, Cape Town 7925, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa.,Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, SP, Brazil
| |
Collapse
|
26
|
Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, Loh HS, Lim YP, Lee CF, Bhattamishra SK, Kesharwani P, Gorain B. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110925. [PMID: 32409075 DOI: 10.1016/j.msec.2020.110925] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Yan Qing Lim
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chea Yee Low
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Cheng Teck Lee
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Tee Cheng Ling Marilyn
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Huai Seang Loh
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yee Ping Lim
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Cheng Feng Lee
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500, Selengor, Malaysia.
| |
Collapse
|
27
|
Karra S, Sebii H, Yaich H, Bouaziz MA, Blecker C, Danthine S, Attia H, Besbes S. Effect of extraction methods on the physicochemical, structural, functional, and antioxidant properties of the dietary fiber concentrates from male date palm flowers. J Food Biochem 2020; 44:e13202. [PMID: 32189367 DOI: 10.1111/jfbc.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
Abstract
The current study evaluates the effect of both aqueous and alkaline extraction methods on the physicochemical, structural, functional, and antioxidant properties of dietary fibers (DF) from male date palm flowers (MDPF). The DF extracted by the alkali treatment (ADF) display a higher DF content as well as lower protein and lipid content than the DF resulting from watery extraction (WDF). The scanning electron microscopy, the Fourier-transform infrared spectroscopy, and the X-ray diffraction show that the alkaline treatment contributes to a slight modification of the structural characteristics of ADF leading to better purity and functional properties. The oil holding capacity and the antioxidant activity of ADF have improved compared to the WDF, which makes this concentrate a promoting functional ingredient and a natural antioxidant. Therefore, these findings confirm the wealth of both concentrates in DF, especially ADF, as well as their potential of functional and antioxidant properties, which emphasize their suitability to be used in food applications as functional ingredients. PRACTICAL APPLICATIONS: Nowadays, studies on the extraction of DF from vegetable waste are of considerable interest in the face of the rising global demand for dietetic food. The male date palm flowers (MDPF), an agricultural waste generated during the period of pollination, are valuable natural sources of DF and antioxidants. The insoluble DF of MDPF could be essential in a balanced diet as they could fight against obesity by creating a feeling of satiety. The presence of antioxidants, which are known for preventing or slowing cell damage caused by free radicals, could contribute to the improvement of the antioxidant properties of the formulated food. The functional properties of DF concentrates from MDPF are able to solve the technical problems of agri-food industries when used as food ingredients. The use of DF from MDPF, consequently, contributes to the minimization of waste and provides value addition to the by-product considered as waste in agricultural processing.
Collapse
Affiliation(s)
- Sirine Karra
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Haifa Sebii
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Hela Yaich
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Ali Bouaziz
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Christophe Blecker
- Laboratory of Food Science and Formulation, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sabine Danthine
- Laboratory of Food Science and Formulation, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hamadi Attia
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Souhail Besbes
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia.,Laboratory of Food Science and Formulation, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
28
|
Badeggi UM, Ismail E, Adeloye AO, Botha S, Badmus JA, Marnewick JL, Cupido CN, Hussein AA. Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules 2020; 10:biom10030452. [PMID: 32183213 PMCID: PMC7175165 DOI: 10.3390/biom10030452] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023] Open
Abstract
In this study, procyanidins fractions of dimers and trimers (F1-F2) from the Leucosidea sericea total extract (LSTE) were investigated for their chemical constituents. The total extract and the procyanidins were employed in the synthesis of gold nanoparticles (Au NPs) and fully characterized. Au NPs of 6, 24 and 21 nm were obtained using LSTE, F1 and F2 respectively. Zeta potential and in vitro stability studies confirmed the stability of the particles. The enzymatic activity of LSTE, F1, F2 and their corresponding Au NPs showed strong inhibitory alpha-amylase activity where F1 Au NPs demonstrated the highest with IC50 of 1.88 µg/mL. On the other hand, F2 Au NPs displayed the strongest alpha-glucosidase activity at 4.5 µg/mL. F2 and F2 Au NPs also demonstrated the highest antioxidant activity, 1834.0 ± 4.7 μM AAE/g and 1521.9 ± 3.0 μM TE/g respectively. The study revealed not only the ability of procyanidins dimers (F1 and F2) in forming biostable and bioactive Au NPs but also, a significant enhancement of the natural products activities, which could improve the smart delivery in future biomedical applications.
Collapse
Affiliation(s)
- Umar M. Badeggi
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Enas Ismail
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Adewale O. Adeloye
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Subelia Botha
- Electron Microscope Unit, University of the Western Cape, Bellville 7535, South Africa;
| | - Jelili A. Badmus
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (J.A.B.); (J.L.M.)
| | - Jeanine L. Marnewick
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (J.A.B.); (J.L.M.)
| | - Christopher N. Cupido
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
- Correspondence: ; Tel.: +27-21-959-6193; Fax: +27-21-959-3055
| |
Collapse
|
29
|
Majoumouo MS, Sibuyi NRS, Tincho MB, Mbekou M, Boyom FF, Meyer M. Enhanced Anti-Bacterial Activity Of Biogenic Silver Nanoparticles Synthesized From Terminalia mantaly Extracts. Int J Nanomedicine 2019; 14:9031-9046. [PMID: 31819417 PMCID: PMC6875292 DOI: 10.2147/ijn.s223447] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Background The global increase in outbreaks and mortality rates associated with multi-drug-resistant (MDR) bacteria is a major health concern and calls for alternative treatments. Natural-derived products have shown potential in combating the most dreadful diseases, and therefore serve as an effective source of bioactive compounds that can be used as anti-bacterial agents. These compounds are able to reduce metal ions and cap nanoparticles to form biogenic nanoparticles (NPs) with remarkable anti-bacterial activities. This study explores the use of Terminalia mantaly (TM) extracts for the synthesis of biogenic silver NPs (TM-AgNPs) and the evaluation of their antibacterial activity. Methods TM-AgNPs were synthetized by the reduction of AgNO3 with aqueous and methanolic TM extracts. UV-visible (UV-vis) spectrophotometry, Dynamic Light Scattering (DLS), Transmission Electron Microscopy, and Fourier Transform Infrared (FTIR) analyses were used to characterise the TM-AgNPs. Anti-bacterial activity of the TM extracts and TM-AgNPs was evaluated against eight bacterial strains using the broth microdilution assay. The growth inhibitory kinetics of the bio-active TM-AgNPs was assessed on susceptible strains for a period of 8 hrs. Results Polycrystalline biogenic AgNPs with anisotropic shapes and diameter range of 11 to 83 nm were synthesized from the TM extracts. The biogenic TM-AgNPs showed significant antibacterial activity compared to their respective extracts. The MIC values for TM-AgNPs and extracts were 3 and 125 µg/mL, respectively. Biogenic AgNPs synthesised from the aqueous TM leaf extract at 25°C (aTML-AgNPs-25°C) showed significant antibacterial activity against all the bacterial strains tested in this study. Their bactericidal effect was particularly higher against the Streptococcus pneumoniae and Haemophilus influenzae. Conclusion This study demonstrated the ability of TM extracts to synthesize biogenic AgNPs. The NPs synthesized from the aqueous TM extracts demonstrated higher antibacterial activity against the tested microorganisms compared to the methanolic extracts. Studies are underway to identify the phytochemicals involved in NP synthesis and their mechanism of action.
Collapse
Affiliation(s)
- Michele Stella Majoumouo
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon.,Department of Science and Technology (DST)/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Technology (DST)/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Marius Belmondo Tincho
- Department of Science and Technology (DST)/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Michele Mbekou
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Mervin Meyer
- Department of Science and Technology (DST)/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
30
|
Elbagory AM, Hussein AA, Meyer M. The In Vitro Immunomodulatory Effects Of Gold Nanoparticles Synthesized From Hypoxis hemerocallidea Aqueous Extract And Hypoxoside On Macrophage And Natural Killer Cells. Int J Nanomedicine 2019; 14:9007-9018. [PMID: 31819415 PMCID: PMC6875510 DOI: 10.2147/ijn.s216972] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background Macrophages and Natural Killer (NK) cells are an integral part of the innate immune system. These cells produce pro-inflammatory cytokines in response to bacterial infections. However, prolonged inflammation can be a contributing factor in the etiology of several diseases such as rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, psoriasis and eczema. Reducing the secretion of pro-inflammatory cytokines is an effective treatment strategy for these conditions. Gold nanoparticles (AuNPs) have been shown to have immunosuppressive effects. Extracts of the Hypoxis hemerocallidea plant have also been shown to have immunomodulatory effects. It has been demonstrated previously that extracts of the H. hemerocallidea can be used to synthesize AuNPs. Purpose This study aimed to investigate whether AuNPs synthesized using H. hemerocallidea extract and its major secondary metabolite, hypoxoside, have any immunomodulatory effects in macrophages and NK cells. Methodology AuNPs derived from the H. hemerocallidea extract were synthesized as previously described. Using similar methodologies, this study shows for the first time the synthesis of AuNPs from hypoxoside. The AuNPs were characterized using several optical and spectroscopic techniques. The immunomodulatory effects of the aqueous extract of H. hemerocallidea, hypoxoside, as well as the AuNPs produced from the extract and hypoxoside, were investigated by measuring the cytokine levels in macrophages (IL-1β, IL-6 and TNF-α) and NK cells (IFN-γ) using solid phase sandwich ELISA technique. Results The results show that spherical AuNPs (average size 26 ± 2 nm) were synthesized from hypoxoside. The results also show that the four treatments (H. hemerocallidea extract, hypoxoside and their respective AuNPs can lower the pro-inflammatory cytokine levels in the macrophages cells, while only AuNPs produced from hypoxoside can reduce cytokine responses in NK cells. Conclusion This study shows that all four treatments investigated here could be further explored for the development of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Abdulrahman M Elbagory
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
31
|
Li J, Cha R, Zhao X, Guo H, Luo H, Wang M, Zhou F, Jiang X. Gold Nanoparticles Cure Bacterial Infection with Benefit to Intestinal Microflora. ACS NANO 2019; 13:5002-5014. [PMID: 30916928 DOI: 10.1021/acsnano.9b01002] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antibiotics that are most used to cure bacterial infections in the clinic result in the imbalance of intestinal microflora, destroy the intestinal barrier, and induce bacterial resistance. There is an urgent need for antibacterial agent therapy for bacterial infections that does not destroy intestinal microflora. Herein, we applied 4,6-diamino-2-pyrimidinethiol (DAPT)-coated Au nanoparticles (D-Au NPs) for therapy of bacterial infection induced by Escherichia coli ( E. coli) in the gut. We cultured D-Au NPs and E. coli in an anaerobic atmosphere to evaluate their bactericidal effect. We studied the microflora, distribution of Au, and biomarkers in mice after a 28-day oral administration to analyze the effect of Au NPs on mice. D-Au NPs cured bacterial infections more effectively than levofloxacin without harming intestinal microflora. D-Au NPs showed great potential as alternatives to oral antibiotics.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences (Beijing) , No. 29 Xueyuan Road , Beijing 100083 , People's Republic of China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Xiaohui Zhao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Hongbo Guo
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Huize Luo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences (Beijing) , No. 29 Xueyuan Road , Beijing 100083 , People's Republic of China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Mingzheng Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences (Beijing) , No. 29 Xueyuan Road , Beijing 100083 , People's Republic of China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences (Beijing) , No. 29 Xueyuan Road , Beijing 100083 , People's Republic of China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Road , Nanshan District, Shenzhen , Guangdong 518055 , People's Republic of China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , People's Republic of China
| |
Collapse
|
32
|
Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E940. [PMID: 29865278 PMCID: PMC6024997 DOI: 10.3390/ma11060940] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
The ability of organisms and organic compounds to reduce metal ions and stabilize them into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various metal ions using a diverse array of plant extracts has been reported. However, a clear understanding of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract, several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant, cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess better bioactivities than NPs synthesized by other methods, which might be attributed to the presence of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form a stable complex has huge potential in the harvesting of precious molecules and for drug discovery, if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs is warranted to realize the full potential of green nanotechnology.
Collapse
Affiliation(s)
- Gregory Marslin
- Ratnam Institute of Pharmacy and Research, Nellore 524346, India.
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, India.
| | - Qaisar Maqbool
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | | | - Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| |
Collapse
|
33
|
Díez-Pascual AM. Antibacterial Activity of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E359. [PMID: 29882933 PMCID: PMC6027337 DOI: 10.3390/nano8060359] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ana María Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
34
|
Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Appl Microbiol Biotechnol 2018; 102:4305-4318. [DOI: 10.1007/s00253-018-8939-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022]
|