1
|
Mandić V, Bafti A, Panžić I, Radovanović-Perić F. Bio-Based Aerogels in Energy Storage Systems. Gels 2024; 10:438. [PMID: 39057461 PMCID: PMC11275867 DOI: 10.3390/gels10070438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Bio-aerogels have emerged as promising materials for energy storage, providing a sustainable alternative to conventional aerogels. This review addresses their syntheses, properties, and characterization challenges for use in energy storage devices such as rechargeable batteries, supercapacitors, and fuel cells. Derived from renewable sources (such as cellulose, lignin, and chitosan), bio-based aerogels exhibit mesoporosity, high specific surface area, biocompatibility, and biodegradability, making them advantageous for environmental sustainability. Bio-based aerogels serve as electrodes and separators in energy storage systems, offering desirable properties such as high specific surface area, porosity, and good electrical conductivity, enhancing the energy density, power density, and cycle life of devices. Recent advancements highlight their potential as anode materials for lithium-ion batteries, replacing non-renewable carbon materials. Studies have shown excellent cycling stability and rate performance for bio-aerogels in supercapacitors and fuel cells. The yield properties of these materials, primarily porosity and transport phenomena, demand advanced characterization methods, and their synthesis and processing methods significantly influence their production, e.g., sol-gel and advanced drying. Bio-aerogels represent a sustainable solution for advancing energy storage technologies, despite challenges such as scalability, standardization, and cost-effectiveness. Future research aims to improve synthesis methods and explore novel applications. Bio-aerogels, in general, provide a healthier path to technological progress.
Collapse
Affiliation(s)
- Vilko Mandić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.P.); (F.R.-P.)
| | - Arijeta Bafti
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (I.P.); (F.R.-P.)
| | | | | |
Collapse
|
2
|
Jafari M, Botte GG. Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors. ACS OMEGA 2024; 9:13134-13147. [PMID: 38524414 PMCID: PMC10955698 DOI: 10.1021/acsomega.3c09438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Supercapacitors are high-power energy storage devices due to their charge storage capability and long cyclic stability. These devices rely on highly porous materials for electrodes providing a substantial surface area per mass, such as highly porous carbon. Developing high-performance porous carbon from biomass wastes such as waste-activated sludge and spent coffee is a sustainable way to reduce adverse environmental effects, contributing toward a carbon circular economy. In this study, hierarchically porous carbon with a high surface area of 1198 ± 60 m2 g-1 was synthesized through a green route. Sodium acetate was utilized as an environmentally friendly electrolyte. The long-term stability test at a high current density was conducted, providing valuable insights into the viability of sodium acetate as a robust electrolyte in supercapacitor application. The supercapacitor demonstrated an excellent cycle stability of 98.4% after 20,000 cycles at a current density of 10 A g-1 in sodium acetate. Further assessment revealed dominant fast surface kinetics. Moreover, a maximum energy density of 15.9 Wh kg-1 at 0.2 A g-1 was achieved. By utilizing highly porous carbon in conjunction with a water-based binder, a substantial improvement of 76% in capacity with respect to a nonaqueous-based binder was demonstrated.
Collapse
Affiliation(s)
- Maasoomeh Jafari
- Chemical and Electrochemical
Technology and Innovation Laboratory, Institute for Sustainability
and Circular Economy, Department of Chemical Engineering, Edward E.
Whitacre Jr. College of Engineering, Texas
Tech University, Lubbock, Texas 79409, United States
| | - Gerardine G. Botte
- Chemical and Electrochemical
Technology and Innovation Laboratory, Institute for Sustainability
and Circular Economy, Department of Chemical Engineering, Edward E.
Whitacre Jr. College of Engineering, Texas
Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
3
|
Shrestha LK, Shahi S, Gnawali CL, Adhikari MP, Rajbhandari R, Pokharel BP, Ma R, Shrestha RG, Ariga K. Phyllanthus emblica Seed-Derived Hierarchically Porous Carbon Materials for High-Performance Supercapacitor Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8335. [PMID: 36499823 PMCID: PMC9739855 DOI: 10.3390/ma15238335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The electrical double-layer supercapacitance performance of the nanoporous carbons prepared from the Phyllanthus emblica (Amala) seed by chemical activation using the potassium hydroxide (KOH) activator is reported. KOH activation was carried out at different temperatures (700-1000 °C) under nitrogen gas atmosphere, and in a three-electrode cell set-up the electrochemical measurements were performed in an aqueous 1 M sulfuric acid (H2SO4) solution. Because of the hierarchical pore structures with well-defined micro- and mesopores, Phyllanthus emblica seed-derived carbon materials exhibit high specific surface areas in the range of 1360 to 1946 m2 g-1, and the total pore volumes range from 0.664 to 1.328 cm3 g-1. The sample with the best surface area performed admirably as the supercapacitor electrode-material, achieving a high specific capacitance of 272 F g-1 at 1 A g-1. Furthermore, it sustained 60% capacitance at a high current density of 50 A g-1, followed by a remarkably long cycle-life of 98% after 10,000 subsequent charging/discharging cycles, demonstrating the electrode's excellent rate-capability. These results show that the Phyllanthus emblica seed would have significant possibilities as a sustainable carbon-source for the preparing high-surface-area activated-carbons desired in high-energy-storage supercapacitors.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1, Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | | | - Rinita Rajbhandari
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | - Bhadra P. Pokharel
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Kashiwa, Japan
| |
Collapse
|
4
|
Yue X, Chen Z, Xiao C, Song G, Zhang S, He H. Synthesis of CNT@CoS/NiCo Layered Double Hydroxides with Hollow Nanocages to Enhance Supercapacitors Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3509. [PMID: 36234638 PMCID: PMC9565481 DOI: 10.3390/nano12193509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
One of the key factors to improve electrochemical properties is to find exceptional electrode materials. In this work, the nickel-cobalt layered double hydroxide (CNT@CoS/NiCo-LDH) with the structure of a hollow nanocage was prepared by etching CNT@CoS with zeolitic imidazolate framework-67 (ZIF-67) as a template. The results show that the addition of nickel has a great influence on the structure, morphology and chemical properties of materials. The prepared material CNT@CoS/NiCo-LDH-100 (C@CS/NCL-100) inherited the rhombic dodecahedral shape of ZIF-67 well and the CNTs were evenly interspersed among the rhombic dodecahedrons. The presence of CNTs improved the conductivity and surface area of the samples. The C@CS/NCL-100 demonstrates a high specific capacitance of 2794.6 F·g-1 at 1 A·g-1. Furthermore, as an assemble device, the device of C@CS/NCL-100 as a positive electrode exhibits a relatively high-energy density of 35.64 Wh·kg-1 at a power density of 750 W·kg-1 Further, even at the high-power density of 3750 W·kg-1, the energy density can still retain 26.38 Wh·kg-1. Hence, the superior performance of C@CS/NCL-100 can be ascribed to the synergy among CNTs, CoS and NiCo LDH, as well as the excellent three-dimensional structure obtained by used ZIF-67 as a template.
Collapse
Affiliation(s)
- Xiaoming Yue
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Zihua Chen
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Cuicui Xiao
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Guohao Song
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuangquan Zhang
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Hu He
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
5
|
Zhang Z, Li F, Chen J, Yang G, Ji X, Tian Z, Wang B, Zhang L, Lucia L. High performance bio-supercapacitor electrodes composed of graphitized hemicellulose porous carbon spheres. Front Bioeng Biotechnol 2022; 10:1030944. [PMID: 36246347 PMCID: PMC9556887 DOI: 10.3389/fbioe.2022.1030944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
A template-free and one-step carbonization process was developed for fabricating graphitic porous carbon spheres (GPCSs) on hemicelluloses as the electrode material for supercapacitors. This method is green, low-energy, and less time consuming compared to the conventional two-step process (pore-forming and graphitizing). It uses K2FeO4, a mild activating agent that fulfills synchronous activation and graphitization. The GPCSs is regular spherical shape, have high nanoporosity, a large specific surface area (1,250 m2 g−1), and have a high graphitization degree. A unique structural advantage includes a rich interconnected conductive network for electron transfer that shortens the ion transport distance of the electrolyte. Remarkably, the GPCSs electrode displays outstanding electrochemical performance including high specific capacitance (262 F g−1 at 1.0 A g−1), rate capability energy (80%, 20 A g−1), and excellent cycling stability (95%, 10,000 cycles). This work represents a powerful methodology to develop sustainable and low-cost energy storage devices from hemicellulose.
Collapse
Affiliation(s)
- Zhili Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fengfeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Fengfeng Li, ; Jiachuan Chen,
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Fengfeng Li, ; Jiachuan Chen,
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Baobin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lucian Lucia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, United States
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Wang Y, Yuan X, Guan X, Ren K, Yang Y, Luo J, Zheng Y. Mango-Stone-Derived Nitrogen-Doped Porous Carbon for Supercapacitors. MICROMACHINES 2022; 13:1518. [PMID: 36144141 PMCID: PMC9502334 DOI: 10.3390/mi13091518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The preparation of N-doped porous carbon (NC-800) is presented via facile mango stone carbonization at 800 °C. The NC-800 material exhibits good cycle stability (the capacity retention is 97.8% after 5000 cycles) and high specific capacitance of 280 F/g at 1 A/g. Furthermore, the assembled symmetric device of NC-800//NCs-800 exhibits about 31.1 Wh/kg of energy density at 800 W/kg in a voltage range of 0-1.6 V. The results of the study suggest that NC-800 may be a promising energy storage material for practical application.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Xinzi Yuan
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Xingyu Guan
- Mechanical College, Saint Petersburg State Technical University, 190013 Saint Petersburg, Russia
| | - Kunling Ren
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Yan Yang
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Jun Luo
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Yantao Zheng
- Xifeng Phosphorite Mine Co., Ltd., Guiyang 551100, China
| |
Collapse
|
7
|
A Review on Production and Surface Modifications of Biochar Materials via Biomass Pyrolysis Process for Supercapacitor Applications. Catalysts 2022. [DOI: 10.3390/catal12070798] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biochar (BC) based materials are solid carbon enriched materials produced via different thermochemical techniques such as pyrolysis. However, the non-modified/non-activated BC-based materials obtained from the low-temperature pyrolysis of biomass cannot perform well in energy storage applications due to the mismatched physicochemical and electrical properties such as low surface area, poor pore features, and low density and conductivity. Therefore, to improve the surface features and structure of the BC and surface functionalities, surface modifications and activations are introduced to improve its properties to achieve enhanced electrochemical performance. The surface modifications use various activation methods to modify the surface properties of BC to achieve enhanced performance for supercapacitors in energy storage applications. This article provides a detailed review of surface modification methods and the application of modified BC to be used for the synthesis of electrodes for supercapacitors. The effect of those activation methods on physicochemical and electrical properties is critically presented. Finally, the research gap and future prospects are also elucidated.
Collapse
|
8
|
Microwave exfoliation of a biochar obtained from updraft retort carbonization for supercapacitor fabrication. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
SDBS induced glucose urea derived microporous 2D carbon nanosheets as supercapacitor electrodes with excellent electrochemical performances. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MIAA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2385-2485. [PMID: 35571983 PMCID: PMC9077033 DOI: 10.1007/s10311-022-01424-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/06/2023]
Abstract
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage. The ultimate storage reservoirs for biochar are soils, civil infrastructure, and landfills. Biochar-based fertilisers, which combine traditional fertilisers with biochar as a nutrient carrier, are promising in agronomy. The use of biochar as a feed additive for animals shows benefits in terms of animal growth, gut microbiota, reduced enteric methane production, egg yield, and endo-toxicant mitigation. Biochar enhances anaerobic digestion operations, primarily for biogas generation and upgrading, performance and sustainability, and the mitigation of inhibitory impurities. In composts, biochar controls the release of greenhouse gases and enhances microbial activity. Co-composted biochar improves soil properties and enhances crop productivity. Pristine and engineered biochar can also be employed for water and soil remediation to remove pollutants. In construction, biochar can be added to cement or asphalt, thus conferring structural and functional advantages. Incorporating biochar in biocomposites improves insulation, electromagnetic radiation protection and moisture control. Finally, synthesising biochar-based materials for energy storage applications requires additional functionalisation.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Samer Fawzy
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Marwa El-Azazy
- Department of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Ramy Amer Fahim
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M. I. A. Abdel Maksoud
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Abbas Abdullah Ajlan
- Department of Chemistry -Faculty of Applied Science, Taiz University, P.O.Box 6803, Taiz, Yemen
| | - Mahmoud Yousry
- Faculty of Engineering, Al-Azhar University, Cairo, 11651 Egypt
- Cemart for Building Materials and Insulation, postcode 11765, Cairo, Egypt
| | - Yasmeen Saleem
- Institute of Food and Agricultural Sciences, Soil and Water Science, The University of Florida, Gainesville, FL 32611 USA
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
11
|
De Silva T, Damery C, Alkhaldi R, Karunanithy R, Gallaba DH, Patil PD, Wasala M, Sivakumar P, Migone A, Talapatra S. Carbon Nanotube Based Robust and Flexible Solid-State Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56004-56013. [PMID: 34792349 DOI: 10.1021/acsami.1c12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All solid-state flexible electrochemical double-layer capacitors (EDLCs) are crucial for providing energy options in a variety of applications, ranging from wearable electronics to bendable micro/nanotechnology. Here, we report on the development of robust EDLCs using aligned multiwalled carbon nanotubes (MWCNTs) grown directly on thin metal foils embedded in a poly(vinyl alcohol)/phosphoric acid (PVA/H3PO4) polymer gel. The thin metal substrate holding the aligned MWCNT assembly provides mechanical robustness and the PVA/H3PO4 polymer gel, functioning both as the electrolyte as well as the separator, provides sufficient structural flexibility, without any loss of charge storage capacity under flexed conditions. The performance stability of these devices was verified by testing them under straight and bent formations. A high value of the areal specific capacitance (CSP) of ∼14.5 mF cm-2 with an energy density of ∼1 μW h cm-2 can be obtained in these devices. These values are significantly higher (in some cases, orders of magnitude) than several graphene as well as single-walled nanotube-based EDLC's utilizing similar electrolytes. We further show that these devices can withstand multiple (∼2500) mechanical bending cycles, without losing their energy storage capacities and are functional within the temperature range of 20 to 70 °C. Several strategies for enhancing the capacitive charge storage, such as physically stacking (in parallel) individual devices, or postproduction thermal annealing of electrodes, are also demonstrated. These findings demonstrated in this article provide tremendous impetus toward the realization of robust, stackable, and flexible all solid-state supercapacitors.
Collapse
Affiliation(s)
- Thushani De Silva
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Cole Damery
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Rana Alkhaldi
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Robinson Karunanithy
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Dinuka H Gallaba
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Prasanna D Patil
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Milinda Wasala
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Poopalasingam Sivakumar
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Aldo Migone
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Saikat Talapatra
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
12
|
Shrestha LK, Shrestha RG, Chaudhary R, Pradhananga RR, Tamrakar BM, Shrestha T, Maji S, Shrestha RL, Ariga K. Nelumbo nucifera Seed-Derived Nitrogen-Doped Hierarchically Porous Carbons as Electrode Materials for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3175. [PMID: 34947524 PMCID: PMC8707477 DOI: 10.3390/nano11123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/18/2022]
Abstract
Biomass-derived activated carbon materials with hierarchically nanoporous structures containing nitrogen functionalities show excellent electrochemical performances and are explored extensively in energy storage and conversion applications. Here, we report the electrochemical supercapacitance performances of the nitrogen-doped activated carbon materials with an ultrahigh surface area prepared by the potassium hydroxide (KOH) activation of the Nelumbo nucifera (Lotus) seed in an aqueous electrolyte solution (1 M sulfuric acid: H2SO4) in a three-electrode cell. The specific surface areas and pore volumes of Lotus-seed-derived carbon materials carbonized at a different temperatures, from 600 to 1000 °C, are found in the range of 1059.6 to 2489.6 m2 g-1 and 0.819 to 2.384 cm3 g-1, respectively. The carbons are amorphous materials with a partial graphitic structure with a maximum of 3.28 atom% nitrogen content and possess hierarchically micro- and mesoporous structures. The supercapacitor electrode prepared from the best sample showed excellent electrical double-layer capacitor performance, and the electrode achieved a high specific capacitance of ca. 379.2 F g-1 at 1 A g-1 current density. Additionally, the electrode shows a high rate performance, sustaining 65.9% capacitance retention at a high current density of 50 A g-1, followed by an extraordinary long cycle life without any capacitance loss after 10,000 subsequent charging/discharging cycles. The electrochemical results demonstrate that Nelumbo nucifera seed-derived hierarchically porous carbon with nitrogen functionality would have a significant probability as an electrical double-layer capacitor electrode material for the high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (S.M.); (K.A.)
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (S.M.); (K.A.)
| | - Rashma Chaudhary
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.C.); (R.R.P.); (T.S.)
| | - Raja Ram Pradhananga
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.C.); (R.R.P.); (T.S.)
| | | | - Timila Shrestha
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.C.); (R.R.P.); (T.S.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (S.M.); (K.A.)
| | - Ram Lal Shrestha
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.C.); (R.R.P.); (T.S.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (S.M.); (K.A.)
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
13
|
Manganese Molybdenum Oxide Micro Rods Adorned Porous Carbon Hybrid Electrocatalyst for Electrochemical Determination of Furazolidone in Environmental Fluids. Catalysts 2021. [DOI: 10.3390/catal11111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The frequent occurrence of furazolidone (FZD) in environmental fluids reveals the ongoing increase in use and raises concerns about the need of monitoring it. To investigate the electrochemical behavior of FZD, a novel sensor of manganese molybdenum oxide (MMO) micro rods adorned three-dimensional porous carbon (PC) electrocatalyst was constructed. The crystalline structure and surface morphology of the MMO/PC composite was characterized by XRD, Raman, FESEM, and HR-TEM. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometric(i-t) methods were used to assess the electrocatalytic activity of modified electrodes. In the presence of FZD, the as-fabricated MMO/PC modified glassy carbon electrode (GCE) performed better at lower potentials with a greater peak current than other modified GCE. These results emanate from the synergistic effect of the MMO/PC suspension on the GCE. The electrochemical behavior of the amperometric(i-t) technique was used to determine FZD. Amperometric(i-t) detection yielded linear dynamic ranges of 150 nM to 41.05 µM and 41.05 to 471.05 µM with detection limits of 30 nM. The MMO/PC hybrid sensor was also effectively used to detect FZD in environmental fluids, yielding ultra-trace level detection.
Collapse
|
14
|
Nitrogen-doped hierarchical porous carbon nanomaterial from cellulose nanocrystals for voltammetric determination of ascorbic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Yang J, Tan Z, Chen X, Liang Y, Zheng M, Hu H, Dong H, Liu X, Liu Y, Xiao Y. A mild method to prepare nitrogen-rich interlaced porous carbon nanosheets for high-performance supercapacitors. J Colloid Interface Sci 2021; 599:381-389. [PMID: 33962199 DOI: 10.1016/j.jcis.2021.04.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 01/22/2023]
Abstract
In this work, a non-toxic and mild strategy was presented to efficiently fabricate porous and nitrogen-doped carbon nanosheets. Silkworm cocoon (SCs) acted as carbon source and original nitrogen source. Sodium carbonate (Na2CO3) could facilitate the SCs to expose silk protein and played a catalytic role in the subsequent activation of calcium chloride (CaCl2). Calcium chloride served as pore-making agent. The as-obtained carbon materials with protuberant porous nanosheets exhibit high specific surface area of 731 m2 g-1, rich native nitrogen-doped of 7.91 atomic %, wide pore size distribution from 0.5 to 65 nm, and thus possessing high areal specific capacitances of 34 μF cm-2 as well as excellent retention rate of 97% after 20 000 cycles at a current density of 20 A g-1 in 6 M KOH electrolyte. The assembled carbon nanosheet-based supercapacitor displays a maximum energy density of 21.06 Wh kg-1 at the power density of 225 W kg-1 in 1 M Na2SO4 electrolyte. Experimental results show that a mild and non-toxic treatment of biomass can be an effective and extensible method for preparing optimal porous carbon for electrochemical energy storage.
Collapse
Affiliation(s)
- Jiewei Yang
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Tan
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xun Chen
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yeru Liang
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingtao Zheng
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hang Hu
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hanwu Dong
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiangrong Liu
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yong Xiao
- Key Laboratory for Biomassed Materias and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
16
|
Al Rai A, Yanilmaz M. High-performance nanostructured bio-based carbon electrodes for energy storage applications. CELLULOSE (LONDON, ENGLAND) 2021; 28:5169-5218. [PMID: 33897123 PMCID: PMC8053374 DOI: 10.1007/s10570-021-03881-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/10/2021] [Indexed: 06/01/2023]
Abstract
Polyacrylonitrile (PAN)-based carbon precursor is a well-established and researched material for electrodes in energy storage applications due to its good physical properties and excellent electrochemical performance. However, in the fight of preserving the environment and pioneering renewable energy sources, environmentally sustainable carbon precursors with superior electrochemical performance are needed. Therefore, bio-based materials are excellent candidates to replace PAN as a carbon precursor. Depending on the design requirement (e.g. carbon morphology, doping level, specific surface area, pore size and volume, and electrochemical performance), the appropriate selection of carbon precursors can be made from a variety of biomass and biowaste materials. This review provides a summary and discussion on the preparation and characterization of the emerging and recent bio-based carbon precursors that can be used as electrodes in energy storage applications. The review is outlined based on the morphology of nanostructures and the precursor's type. Furthermore, the review discusses and summarizes the excellent electrochemical performance of these recent carbon precursors in storage energy applications. Finally, a summary and outlook are also given. All this together portrays the promising role of bio-based carbon electrodes in energy storage applications.
Collapse
Affiliation(s)
- Adel Al Rai
- Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, 34469 Turkey
| | - Meltem Yanilmaz
- Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, 34469 Turkey
- Textile Engineering, Istanbul Technical University, Istanbul, 34469 Turkey
| |
Collapse
|
17
|
The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors. J Colloid Interface Sci 2021; 585:778-786. [DOI: 10.1016/j.jcis.2020.10.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
|
18
|
Shrestha RL, Chaudhary R, Shrestha RG, Shrestha T, Maji S, Ariga K, Shrestha LK. Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ram Lal Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Rashma Chaudhary
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Timila Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| |
Collapse
|
19
|
Kim KH, Shin DY, Ahn HJ. Ecklonia cava based mesoporous activated carbon for high-rate energy storage devices. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Rethinasabapathy M, Lee JH, Roh KC, Kang SM, Oh SY, Park B, Lee GW, Cha YL, Huh YS. Silver grass-derived activated carbon with coexisting micro-, meso- and macropores as excellent bioanodes for microbial colonization and power generation in sustainable microbial fuel cells. BIORESOURCE TECHNOLOGY 2020; 300:122646. [PMID: 31896046 DOI: 10.1016/j.biortech.2019.122646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, highly biocompatible three-dimensional hierarchically porous activated carbon from the low-cost silver grass (Miscanthus sacchariflorus) has been fabricated through a facile carbonization approach and tested it as bioanode in microbial fuel cell (MFC) using Escherichia coli as biocatalyst. This silver grass-derived activated carbon (SGAC) exhibited an unprecedented specific surface area of 3027 m2 g-1 with the coexistence of several micro-, meso-, and macropores. The synergistic effect from pore structure (macropores - hosting E. coli to form biofilm and facilitates internal mass transfer; mesopores - favors fast electron transfer; and micropores - promotes nutrient transport to the biofilm) with very high surface area facilitates excellent extracellular electron transfer (EET) between the anode and biofilm which resulted in higher power output of 963 mW cm-2. Based on superior biocompatibility, low cost, environment-friendliness, and facile fabrication, the proposed SGAC bioanode could have a great potential for high-performance and cost-effective sustainable MFCs.
Collapse
Affiliation(s)
- Muruganantham Rethinasabapathy
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Jeong Han Lee
- Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 660-031, Republic of Korea
| | - Kwang Chul Roh
- Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 660-031, Republic of Korea
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, United States
| | - Seo Yeong Oh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Bumjun Park
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Go-Woon Lee
- Platform Technology Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Daejeon 34129, Republic of Korea
| | - Young Lok Cha
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration (RDA), Moan-ro 199, Jeon-Nam 534-833, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea.
| |
Collapse
|
21
|
Effective Oxygen Reduction Reaction Performance of FeCo Alloys In Situ Anchored on Nitrogen-Doped Carbon by the Microwave-Assistant Carbon Bath Method and Subsequent Plasma Etching. NANOMATERIALS 2019; 9:nano9091284. [PMID: 31500402 PMCID: PMC6781016 DOI: 10.3390/nano9091284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022]
Abstract
Electrocatalysts with strong stability and high electrocatalytic activity have received increasing interest for oxygen reduction reactions (ORRs) in the cathodes of energy storage and conversion devices, such as fuel cells and metal-air batteries. However, there are still several bottleneck problems concerning stability, efficiency, and cost, which prevent the development of ORR catalysts. Herein, we prepared bimetal FeCo alloy nanoparticles wrapped in Nitrogen (N)-doped graphitic carbon, using Co-Fe Prussian blue analogs (Co3[Fe(CN)6]2, Co-Fe PBA) by the microwave-assisted carbon bath method (MW-CBM) as a precursor, followed by dielectric barrier discharge (DBD) plasma treatment. This novel preparation strategy not only possessed a fast synthesis rate by MW-CBM, but also caused an increase in defect sites by DBD plasma treatment. It is believed that the co-existence of Fe/Co-N sites, rich active sites, core-shell structure, and FeCo alloys could jointly enhance the catalytic activity of ORRs. The obtained catalyst exhibited a positive half-wave potential of 0.88 V vs. reversible hydrogen electrode (RHE) and an onset potential of 0.95 V vs. RHE for ORRs. The catalyst showed a higher selectivity and long-term stability than Pt/C towards ORR in alkaline media.
Collapse
|
22
|
Liu C, Chen W, Li M, Hong S, Li W, Pan M, Wu Q, Mei C. Rapid microwave activation of waste palm into hierarchical porous carbons for supercapacitors using biochars from different carbonization temperatures as catalysts. RSC Adv 2019; 9:19441-19449. [PMID: 35519395 PMCID: PMC9065327 DOI: 10.1039/c9ra03031j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/13/2019] [Indexed: 11/30/2022] Open
Abstract
A rapid, simple and cost-effective approach to prepare hierarchical porous carbons (PCs) for supercapacitors is reported by microwave activation of abundant and low-cost waste palm, biochar (BC) and KOH. BCs from waste palm at different carbonization temperatures (300-700 °C), as catalysts and microwave receptors, were used here for the first time to facilitate the conversion of waste palm into hierarchical PCs. As a result, the high-graphitization PC obtained at a BC carbonization temperature of 300 °C (PC-300) possessed a high surface area (1755 m2 g-1), a high pore volume (0.942 cm3 g-1) and a moderate mesoporosity (37.79%). Besides their high-graphitization and hierarchical porous structure, the oxygen doping in PC-300 can also promote the rapid transport of electrolyte ions. The symmetric supercapacitor based on the PC-300 even in PVA/LiCl gel electrolyte exhibited a high specific capacitance of 164.8 F g-1 at a current density of 0.5 A g-1 and retained a specific capacitance of 121.3 F g-1 at 10 A g-1, demonstrating a superior rate capacity of 73.6%. Additionally, the PC-300 supercapacitor delivered a high energy density of 14.6 W h kg-1 at a power density of 398.9 W kg-1 and maintained an energy density of 10.8 W h kg-1 at a high power density of 8016.5 W kg-1, as well as an excellent cycling stability after 2000 cycles with a capacitance retention of 92.06%.
Collapse
Affiliation(s)
- Chaozheng Liu
- College of Materials Science and Engineering, Nanjing Forestry University No. 159 Longpan Road Nanjing 210037 China +86-25-5427742
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials Nanjing 210037 China
- School of Renewable Natural Resources, Louisiana State University Baton Rouge LA 70803 USA
| | - Weimin Chen
- College of Materials Science and Engineering, Nanjing Forestry University No. 159 Longpan Road Nanjing 210037 China +86-25-5427742
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials Nanjing 210037 China
| | - Meichun Li
- College of Materials Science and Engineering, Nanjing Forestry University No. 159 Longpan Road Nanjing 210037 China +86-25-5427742
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials Nanjing 210037 China
- School of Renewable Natural Resources, Louisiana State University Baton Rouge LA 70803 USA
| | - Shu Hong
- College of Materials Science and Engineering, Nanjing Forestry University No. 159 Longpan Road Nanjing 210037 China +86-25-5427742
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials Nanjing 210037 China
| | - Wanzhao Li
- College of Materials Science and Engineering, Nanjing Forestry University No. 159 Longpan Road Nanjing 210037 China +86-25-5427742
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials Nanjing 210037 China
| | - Mingzhu Pan
- College of Materials Science and Engineering, Nanjing Forestry University No. 159 Longpan Road Nanjing 210037 China +86-25-5427742
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials Nanjing 210037 China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University Baton Rouge LA 70803 USA
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University No. 159 Longpan Road Nanjing 210037 China +86-25-5427742
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials Nanjing 210037 China
| |
Collapse
|
23
|
Ethylenediamine-Catalyzed Preparation of Nitrogen-Doped Hierarchically Porous Carbon Aerogel under Hypersaline Condition for High-Performance Supercapacitors and Organic Solvent Absorbents. NANOMATERIALS 2019; 9:nano9050771. [PMID: 31137475 PMCID: PMC6566518 DOI: 10.3390/nano9050771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 11/16/2022]
Abstract
The simple and cost-efficient preparation of high-performance nitrogen-doped carbon aerogel (N-CA) for supercapacitors and other applications is still a big challenge. In this work, we have presented a facile strategy to synthesize hierarchically porous N-CA, which is based on solvothermal polymerization of phenol and formaldehyde under hypersaline condition with ethylenediamine (EDA) functioning as both a catalyst and a nitrogen precursor. Benefited from the catalytic effect of EDA on the polymerization, the obtained N-CA has a predominant amount of micropores (micropore ratio: 52%) with large specific surface area (1201.1 m2·g-1). In addition, nitrogen doping brings N-CA enhanced wettability and reduced electrochemical impedance. Therefore, the N-CA electrode shows high specific capacitance (426 F·g-1 at 1 A·g-1 in 0.5 M H2SO4) and excellent cycling stability (104% capacitance retention after 10,000 cycles) in three-electrode systems. Besides, a high energy density of 32.42 Wh·kg-1 at 800 W·kg-1 can be achieved by symmetric supercapacitor based on the N-CA electrodes, showing its promising application for energy storage. Furthermore, N-CA also exhibits good capacity and long recyclability in the absorption of organic solvents.
Collapse
|
24
|
Xu C, Nasrollahzadeh M, Selva M, Issaabadi Z, Luque R. Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem Soc Rev 2019; 48:4791-4822. [DOI: 10.1039/c8cs00543e] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The waste-to-wealth concept aims to promote a future sustainable lifestyle where waste valorization is seen not only for its intrinsic benefits to the environment but also to develop new technologies, livelihoods and jobs.
Collapse
Affiliation(s)
- Chunping Xu
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | | | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi
- Universita Ca Foscari
- Venezia Mestre
- Italy
- Departamento de Quimica Organica
| | - Zahra Issaabadi
- Department of Chemistry
- Faculty of Science
- University of Qom
- Qom 3716146611
- Iran
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Cordoba
- Spain
- Peoples Friendship University of Russia (RUDN University)
| |
Collapse
|
25
|
Yan AL, Wang XC, Cheng JP. Research Progress of NiMn Layered Double Hydroxides for Supercapacitors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E747. [PMID: 30241330 PMCID: PMC6215097 DOI: 10.3390/nano8100747] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023]
Abstract
The research on supercapacitors has been attractive due to their large power density, fast charge/discharge speed and long lifespan. The electrode materials for supercapacitors are thus intensively investigated to improve the electrochemical performances. Various transition metal layered double hydroxides (LDHs) with a hydrotalcite-like structure have been developed to be promising electrode materials. Earth-abundant metal hydroxides are very suitable electrode materials due to the low cost and high specific capacity. This is a review paper on NiMn LDHs for supercapacitor application. We focus particularly on the recent published papers using NiMn LDHs as electrode materials for supercapacitors. The preparation methods for NiMn LDHs are introduced first. Then, the structural design and chemical modification of NiMn LDH materials, as well as the composites and films derived from NiMn LDHs are discussed. These approaches are proven to be effective to enhance the performance of supercapacitor. Finally, the reports related to NiMn LDH-based asymmetric supercapacitors are summarized. A brief discussion of the future development of NiMn LDHs is also provided.
Collapse
Affiliation(s)
- Ai-Lan Yan
- Institute of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
| | - Xin-Chang Wang
- Key Laboratory of Material Physics, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China.
| | - Ji-Peng Cheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|