1
|
Rossnerova A, Chvojkova I, Elzeinova F, Pelclova D, Klusackova P, Zdimal V, Ondrackova L, Bradna P, Roubickova A, Simova Z, Rossner P. Genetic alteration profiling in middle-aged women acutely exposed during the mechanical processing of dental nanocomposites. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104462. [PMID: 38710242 DOI: 10.1016/j.etap.2024.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic.
| | - Irena Chvojkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Fatima Elzeinova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Lucie Ondrackova
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Zuzana Simova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| |
Collapse
|
2
|
Solorio-Rodriguez SA, Wu D, Boyadzhiev A, Christ C, Williams A, Halappanavar S. A Systematic Genotoxicity Assessment of a Suite of Metal Oxide Nanoparticles Reveals Their DNA Damaging and Clastogenic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:743. [PMID: 38727337 PMCID: PMC11085103 DOI: 10.3390/nano14090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Metal oxide nanoparticles (MONP/s) induce DNA damage, which is influenced by their physicochemical properties. In this study, the high-throughput CometChip and micronucleus (MicroFlow) assays were used to investigate DNA and chromosomal damage in mouse lung epithelial cells induced by nano and bulk sizes of zinc oxide, copper oxide, manganese oxide, nickel oxide, aluminum oxide, cerium oxide, titanium dioxide, and iron oxide. Ionic forms of MONPs were also included. The study evaluated the impact of solubility, surface coating, and particle size on response. Correlation analysis showed that solubility in the cell culture medium was positively associated with response in both assays, with the nano form showing the same or higher response than larger particles. A subtle reduction in DNA damage response was observed post-exposure to some surface-coated MONPs. The observed difference in genotoxicity highlighted the mechanistic differences in the MONP-induced response, possibly influenced by both particle stability and chemical composition. The results highlight that combinations of properties influence response to MONPs and that solubility alone, while playing an important role, is not enough to explain the observed toxicity. The results have implications on the potential application of read-across strategies in support of human health risk assessment of MONPs.
Collapse
Affiliation(s)
- Silvia Aidee Solorio-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Callum Christ
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
3
|
Klusackova P, Lischkova L, Kolesnikova V, Navratil T, Vlckova S, Fenclova Z, Schwarz J, Ondracek J, Ondrackova L, Kostejn M, Dvorackova S, Rossnerova A, Pohanka M, Bradna P, Zdimal V, Pelclova D. Elevated glutathione in researchers exposed to engineered nanoparticles due to potential adaptation to oxidative stress. Nanomedicine (Lond) 2024; 19:185-198. [PMID: 38275177 DOI: 10.2217/nnm-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Aim: To find a practical biomonitoring method for researchers exposed to nanoparticles causing oxidative stress. Methods: In a continuation of a study in 2016-2018, biological samples (plasma, urine and exhaled breath condensate [EBC]) were collected in 2019-2020 from 43 researchers (13.8 ± 3.0 years of exposure) and 45 controls. Antioxidant status was assessed using glutathione (GSH) and ferric-reducing antioxidant power, while oxidative stress was measured as thiobarbituric acid reactive substances, all using spectrophotometric methods. Researchers' personal nanoparticle exposure was monitored. Results: Plasma GSH was elevated in researchers both before and after exposure (p < 0.01); postexposure plasma GSH correlated with nanoparticle exposure, and GSH in EBC increased. Conclusion: The results suggest adaptation to chronic exposure to nanoparticles, as monitored by plasma and EBC GSH.
Collapse
Affiliation(s)
- Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Viktoriia Kolesnikova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Tomas Navratil
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 182 00, Czech Republic
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Jakub Ondracek
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Lucie Ondrackova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Martin Kostejn
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Stepanka Dvorackova
- Faculty of Mechanical Engineering, Department of Machining & Assembly, Department of Engineering Technology, Department of Material Science, Technical University of Liberec, Liberec, 461 17, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Nanotoxicology & Molecular Epidemiology, Prague, 142 20, Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Hradec Kralove, 500 01, Czech Republic
| | - Pavel Bradna
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Vladimir Zdimal
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| |
Collapse
|
4
|
Bocca B, Battistini B. Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance. Nanotoxicology 2024; 18:1-35. [PMID: 38436298 DOI: 10.1080/17435390.2023.2301692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
Metal-based nanomaterials (MNMs) have gained particular interest in nanotechnology industry. They are used in various industrial processes, in biomedical applications or to improve functional properties of several consumer products. The widescale use of MNMs in the global consumer market has resulted in increases in the likelihood of exposure and risks to human beings. Human exposure to MNMs and assessment of their potential health effects through the concomitant application of biomarkers of exposure and effect of the most commonly used MNMs were reviewed in this paper. In particular, interactions of MNMs with biological systems and the nanobiomonitoring as a prevention tool to detect the early damage caused by MNMs as well as related topics like the influence of some physicochemical features of MNMs and availability of analytical approaches for MNMs testing in human samples were summarized in this review. The studies collected and discussed seek to increase the current knowledge on the internal dose exposure and health effects of MNMs, highlighting the advantages in using biomarkers in primary prevention and health surveillance.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Romeo D, Clement P, Wick P. Release and toxicity assessment of carbon nanomaterial reinforced polymers during the use and end-of-life phases: A comparative review. NANOIMPACT 2023; 31:100477. [PMID: 37499755 DOI: 10.1016/j.impact.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/02/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
The research on carbon-based nanomaterial (C-NM) composites has increased in the last two decades. This family of functional materials shows outstanding mechanical, thermal and electrical properties, and are being used in a variety of applications. An important challenge remains before C-NM can be fully integrated in our production industries and our lives: to assess the release of debris during production, use, and misuse of composites and the effect they may have on the environment and on human health. During their lifecycle, composites materials can be subjected to a variety of stresses which may release particles from the macroscopic range to the nanoscale. In this review, the release of debris due to abrasion, weathering and combustion as well as their toxicity is evaluated for the three most used C-NM: Carbon Black, Carbon Nanotubes and Graphene-related materials. The goal is to stimulate a Safe-By-Design approach by guiding the selection of carbon nano-fillers for specific applications based of safety and performance.
Collapse
Affiliation(s)
- Daina Romeo
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland.
| |
Collapse
|
6
|
Guseva Canu I, Plys E, Velarde Crézé C, Fito C, Hopf NB, Progiou A, Riganti C, Sauvain JJ, Squillacioti G, Suarez G, Wild P, Bergamaschi E. A harmonized protocol for an international multicenter prospective study of nanotechnology workers: the NanoExplore cohort. Nanotoxicology 2023; 17:1-19. [PMID: 36927342 DOI: 10.1080/17435390.2023.2180220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Nanotechnology applications are fast-growing in many industrial fields. Consequently, health effects of engineered nanomaterials (ENMs) should be investigated. Within the EU-Life project NanoExplore, we developed a harmonized protocol of an international multicenter prospective cohort study of workers in ENM-producing companies. This article describes the development of the protocol, sample size calculation, data collection and management procedures and discusses its relevance with respect to research needs. Within this protocol, workers' ENM exposure will be assessed over four consecutive working days during the initial recruitment campaign and the subsequent follow-up campaigns. Biomonitoring using noninvasive sampling of exhaled breath condensate (EBC), exhaled air, and urine will be collected before and after 4-day exposure monitoring. Both exposure and effect biomarkers, will be quantified along with pulmonary function tests and diagnosed diseases reported using a standardized epidemiological questionnaire available in four languages. Until now, this protocol was implemented at seven companies in Switzerland, Spain and Italy. The protocol is well standardized, though sufficiently flexible to include company-specific conditions and occupational hygiene measures. The recruitment, to date, of 140 participants and collection of all data and samples, enabled us launching the first international cohort of nanotechnology workers. All companies dealing with ENMs could join the NanoExplore Consortium, apply this harmonized protocol and enter in the cohort, concieved as an open cohort. Its protocol meets all requirements of a hypotheses-driven prospective study, which will assess and reassess effects of ENM exposure on workers' health by updating the follow-up of the cohort. New hypothesis could be also considered.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Ekaterina Plys
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Camille Velarde Crézé
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Carlos Fito
- Institutotecnológico del embalaje, transporte y logística (ITENE), Paterna, Spain
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Guillaume Suarez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
7
|
Luo X, Xie D, Hu J, Su J, Xue Z. Oxidative Stress and Inflammatory Biomarkers for Populations with Occupational Exposure to Nanomaterials: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:2182. [PMID: 36358554 PMCID: PMC9687069 DOI: 10.3390/antiox11112182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2023] Open
Abstract
Exposure to nanomaterials (NMs) is suggested to have the potential to cause harmful health effects. Activations of oxidative stress and inflammation are assumed as main contributors to NM-induced toxicity. Thus, oxidative stress- and inflammation-related indicators may serve as biomarkers for occupational risk assessment. However, the correlation between NM exposure and these biomarkers remains controversial. This study aimed to perform a meta-analysis to systematically investigate the alterations of various biomarkers after NM exposure. Twenty-eight studies were found eligible by searching PubMed, EMBASE and Cochrane Library databases. The pooled results showed NM exposure was significantly associated with increases in the levels of malonaldehyde (MDA) [standardized mean difference (SMD) = 2.18; 95% confidence interval (CI), 1.50-2.87], 4-hydroxy-2-nonhenal (HNE) (SMD = 2.05; 95% CI, 1.13-2.96), aldehydes C6-12 (SMD = 3.45; 95% CI, 2.80-4.10), 8-hydroxyguanine (8-OHG) (SMD = 2.98; 95% CI, 2.22-3.74), 5-hydroxymethyl uracil (5-OHMeU) (SMD = 1.90; 95% CI, 1.23-2.58), o-tyrosine (o-Tyr) (SMD = 1.81; 95% CI, 1.22-2.41), 3-nitrotyrosine (3-NOTyr) (SMD = 2.63; 95% CI, 1.74-3.52), interleukin (IL)-1β (SMD = 1.76; 95% CI, 0.87-2.66), tumor necrosis factor (TNF)-α (SMD = 1.52; 95% CI, 1.03-2.01), myeloperoxidase (MPO) (SMD = 0.25; 95% CI, 0.16-0.34) and fibrinogen (SMD = 0.11; 95% CI, 0.02-0.21), and decreases in the levels of glutathione peroxidase (GPx) (SMD = -0.31; 95% CI, -0.52--0.11) and IL-6 soluble receptor (IL-6sR) (SMD = -0.18; 95% CI, -0.28--0.09). Subgroup analysis indicated oxidative stress biomarkers (MDA, HNE, aldehydes C6-12, 8-OHG, 5-OHMeU, o-Tyr, 3-NOTyr and GPx) in exhaled breath condensate (EBC) and blood samples were strongly changed by NM exposure; inflammatory biomarkers (IL-1β, TNF-α, MPO, fibrinogen and IL-6sR) were all significant in EBC, blood, sputum and nasal lavage samples. In conclusion, our findings suggest that these oxidative stress and inflammatory indicators may be promising biomarkers for the biological monitoring of occupationally NM-exposed workers.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jing Su
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Shanghai 200240, China
| | - Zhebin Xue
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| |
Collapse
|
8
|
Turcu V, Wild P, Hemmendinger M, Sauvain JJ, Bergamaschi E, Hopf NB, Canu IG. Towards Reference Values for Malondialdehyde on Exhaled Breath Condensate: A Systematic Literature Review and Meta-Analysis. TOXICS 2022; 10:258. [PMID: 35622671 PMCID: PMC9147097 DOI: 10.3390/toxics10050258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 01/07/2023]
Abstract
Many pathological conditions and certain airway exposures are associated with oxidative stress (OS). Malondialdehyde (MDA) is an end-product of the oxidation of lipids in our cells and is present in all biological matrices including exhaled breath condensate (EBC). To use MDA as a biomarker of OS in EBC, a reference interval should be defined. Thus, we sought to summarize reference values reported in healthy adult populations by performing a systematic review and meta-analysis using a standardized protocol registered in PROSPERO (CRD42020146623). Articles were retrieved from four major databases and 25 studies with 28 subgroups were included. Defining the distribution of MDA measured in reference populations with a detection combined with a separation technique still represents a challenge due to the low number of studies available, different analytical methods used, and questionable methodological qualities of many studies. The most salient methodological drawbacks have been in data collection and reporting of methods and study results by the researchers. The lack of compliance with the recommendations of the European Respiratory Society and American Thoracic Society was the major limitation in the current research involving EBC. Consequently, we were unable to establish a reference interval for MDA in EBC.
Collapse
Affiliation(s)
- Veronica Turcu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland; (V.T.); (P.W.); (M.H.); (J.-J.S.); (N.B.H.)
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland; (V.T.); (P.W.); (M.H.); (J.-J.S.); (N.B.H.)
| | - Maud Hemmendinger
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland; (V.T.); (P.W.); (M.H.); (J.-J.S.); (N.B.H.)
| | - Jean-Jacques Sauvain
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland; (V.T.); (P.W.); (M.H.); (J.-J.S.); (N.B.H.)
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Via Zuretti 29, 10125 Turin, Italy;
| | - Nancy B. Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland; (V.T.); (P.W.); (M.H.); (J.-J.S.); (N.B.H.)
| | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland; (V.T.); (P.W.); (M.H.); (J.-J.S.); (N.B.H.)
| |
Collapse
|
9
|
Rossnerova A, Honkova K, Chvojkova I, Pelclova D, Zdimal V, Hubacek JA, Lischkova L, Vlckova S, Ondracek J, Dvorackova S, Topinka J, Rossner P. Individual DNA Methylation Pattern Shifts in Nanoparticles-Exposed Workers Analyzed in Four Consecutive Years. Int J Mol Sci 2021; 22:ijms22157834. [PMID: 34360600 PMCID: PMC8346047 DOI: 10.3390/ijms22157834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
- Correspondence: ; Tel.: +420-241-062-053
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.O.)
| | - Jaroslav A. Hubacek
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic;
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Jakub Ondracek
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.O.)
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic;
| |
Collapse
|
10
|
Effects of Workers Exposure to Nanoparticles Studied by NMR Metabolomics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effects of occupational exposure to nanoparticles (NPs) were studied by NMR metabolomics. Exhaled breath condensate (EBC) and blood plasma samples were obtained from a research nanoparticles-processing unit at a national research university. The samples were taken from three groups of subjects: samples from workers exposed to nanoparticles collected before and after shift, and from controls not exposed to NPs. Altogether, 60 1H NMR spectra of exhaled breath condensate (EBC) samples and 60 1H NMR spectra of blood plasma samples were analysed, 20 in each group. The metabolites identified together with binning data were subjected to multivariate statistical analysis, which provided clear discrimination of the groups studied. Statistically significant metabolites responsible for group separation served as a foundation for analysis of impaired metabolic pathways. It was found that the acute effect of NPs exposure is mainly reflected in the pathways related to the production of antioxidants and other protective species, while the chronic effect is manifested mainly in the alteration of glutamine and glutamate metabolism, and the purine metabolism pathway.
Collapse
|
11
|
Novotna B, Pelclova D, Rossnerova A, Zdimal V, Ondracek J, Lischkova L, Vlckova S, Fenclova Z, Klusackova P, Zavodna T, Topinka J, Komarc M, Dvorackova S, Rossner P. The genotoxic effects in the leukocytes of workers handling nanocomposite materials. Mutagenesis 2021; 35:331-340. [PMID: 32701136 DOI: 10.1093/mutage/geaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
The extensive development of nanotechnologies and nanomaterials poses a number of questions to toxicologists about the potential health risks of exposure to nanoparticles (NP). In this study, we analysed DNA damage in the leukocytes of 20 workers who were long-term exposed (18 ± 10 years) to NP in their working environment. Blood samples were collected in September 2016, before and after a shift, to assess (i) the chronic effects of NP on DNA (pre-shift samples) and (ii) the acute effects of exposure during the shift (the difference between pre- and post-shift samples). The samples from matched controls were taken in parallel with workers before the shift. Leukocytes were isolated from heparinised blood on a Ficoll gradient. The enzyme-modified comet assay (DNA formamido-pyrimidine-glycosylase and endonuclease III) demonstrated a considerable increase of both single- and double-strand breaks in DNA (DNA-SB) and oxidised bases when compared with the controls (2.4× and 2×, respectively). Acute exposure induced a further increase of DNA-SB. The welding and smelting of nanocomposites represented a higher genotoxic risk than milling and grinding of nanocomposite surfaces. Obesity appeared to be a factor contributing to an increased risk of oxidative damage to DNA. The data also indicated a higher susceptibility of males vs. females to NP exposure. The study was repeated in September 2017. The results exhibited similar trend, but the levels of DNA damage in the exposed subjects were lower compared to previous year. This was probably associated with lower exposure to NP in consequence of changes in nanomaterial composition and working operations. The further study involving also monitoring of personal exposures to NP is necessary to identify (i) the main aerosol components responsible for genotoxic effects in workers handling nanocomposites and (ii) the primary cause of gender differences in response to NP action.
Collapse
Affiliation(s)
- Bozena Novotna
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Vladimir Zdimal
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Tana Zavodna
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Martin Komarc
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Faculty of Mechanical Engineering, Studentská, Liberec, Czech Republic
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| |
Collapse
|
12
|
Omari Shekaftik S, Nasirzadeh N. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker of oxidative DNA damage induced by occupational exposure to nanomaterials: a systematic review. Nanotoxicology 2021; 15:850-864. [PMID: 34171202 DOI: 10.1080/17435390.2021.1936254] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In nuclear and mitochondrial DNA, 8-hydroxy-2'-deoxyguanosine (8-OHdG) is one of the predominant forms of reactive oxygen species (ROSs) lesions, which commonly used as a biomarker for oxidative stress. Studies showed that the different nanomaterials can induce toxicity by ROSs in human body. So, this study is going to review the studies about oxidative DNA damage caused by occupational exposure to nanomaterials, using 8-OHdG biomarker.Systematic review was managed based on Cochrane systematic review guideline. Literature search was conducted in scientific databases with the main terms of "biomarkers," "biological markers," combined with "occupational exposure" and "nanomaterials." All papers in the field of occupational exposure to nanomaterials until 2020 December were included. To evaluate the quality and bias of studies, GRADE method (Grading of Recommendations, Assessment, Development, and Evaluation) was used.Two hundred twenty-six studies were primarily achieved. By considering the inclusion criteria, overall 8 articles were selected. The majority of the studies were classified as the moderate quality studies (six studies). Also, the study-level bias was critical. This review shows that there is a significant relationship between job title and amount of produced nanomaterials and the existence of 8-OHdG. Also, the levels of 8-OHdG can be measured in urine, blood, and inhalation samples by instrumental procedures.Oxidative damages are an important threat for workers exposed to nanomaterial. Blood and EBC 8-OHdG level can be introduced as a biomarker for metal nanomaterials, but urinary 8-OHdG needs to be taken with caution. So, it is recommended that evaluation not be solely based on one biomarker.
Collapse
Affiliation(s)
- Soqrat Omari Shekaftik
- Department of Occupational Health Engineering, Faculty of public health, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Nasirzadeh
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Pelclova D, Zdimal V, Komarc M, Schwarz J, Ondracek J, Ondrackova L, Kostejn M, Vlckova S, Fenclova Z, Dvorackova S, Lischkova L, Klusackova P, Kolesnikova V, Rossnerova A, Navratil T. Three-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine Analysis in Last Two Years. NANOMATERIALS 2020; 10:nano10122440. [PMID: 33291323 PMCID: PMC7762143 DOI: 10.3390/nano10122440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
Human data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects' afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.
Collapse
Affiliation(s)
- Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
- Correspondence: ; Tel.: +420-224-964-532
| | - Vladimir Zdimal
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Martin Komarc
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Salmovska, 120 00 Prague, Czech Republic; or
- Faculty of Physical Education and Sport, Charles University and General University Hospital in Prague, José Martího 31, 162 52 Prague, Czech Republic
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jakub Ondracek
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Lucie Ondrackova
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Martin Kostejn
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic;
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Viktoriia Kolesnikova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Tomas Navratil
- J. Heyrovský Institute of Physical Chemistry CAS, Dolejškova, 182 23 Prague, Czech Republic;
| |
Collapse
|
14
|
Ghafari J, Moghadasi N, Shekaftik SO. Oxidative stress induced by occupational exposure to nanomaterials: a systematic review. INDUSTRIAL HEALTH 2020; 58:492-502. [PMID: 32713896 PMCID: PMC7708742 DOI: 10.2486/indhealth.2020-0073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The rapid growth of nanotechnology has increased the occupational exposure to nanomaterials. On the other hand, a growing body of evidence considers exposure to these materials to be hazardous. Therefore, it is necessary to examine the effects of occupational exposure to these materials by different methods. Biological monitoring, especially the investigation of oxidative stress induced by exposure to nanomaterials, can provide useful information for researchers. This study systematically reviews studies that have investigated oxidative stress caused by occupational exposure to nanomaterials. The search was conducted on the PubMed, Scopus and Web of Science databases. Of the 266 studies we obtained in our initial search, eventually 11 were included in our study. There is currently no specific biomarker for investigating oxidative stress induced by exposure to nanomaterials. Therefore, the reviewed studies have used different biomarkers in different biological fluids for this purpose. Also, the methods of assessing occupational exposure to nanomaterials in the investigated studies were very diverse. Given the approach of the investigated studies to biomarkers and exposure assessment methods, finding a specific biomarker for investigating exposure to nanomaterials seems unattainable. But reaching a group of biomarkers, to assess exposure to nanomaterials seems more applicable and achievable.
Collapse
Affiliation(s)
- Javad Ghafari
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Iran
| | - Nargess Moghadasi
- Department of Occupational Health, Faculty of Public Health, Iran University of Medical Sciences, Iran
| | - Soqrat Omari Shekaftik
- Department of Occupational Health, Faculty of Public Health, Iran University of Medical Sciences, Iran
| |
Collapse
|
15
|
Pelclová D, Navrátil T, Fenclová Z, Vlčková Š. Markers of oxidative stress after three days of nanoTiO 2 sunscreen use in humans: a pilot study. Cent Eur J Public Health 2020; 28 Suppl:S17-S21. [PMID: 33069176 DOI: 10.21101/cejph.a6158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Recent experimental studies point to a high reactivity of nanoparticles and the potential of sunscreens to penetrate the skin. We measured 20 markers of oxidative stress and inflammation to find out whether skin exposure to nanoTiO2 sunscreen may elevate the level of the markers in exhaled breath condensate (EBC) and urine of exposed subjects, as was suggested by our earlier study. METHODS Six volunteers (3 males and 3 females), with a mean age of 48.0 ± 6.7 years, used commercial sunscreen for three days continuously. The first samples were collected before the test. The second samples were collected on day 4, before the sunscreen was washed off, and the third samples on day 11. The following biomarkers were measured: malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, aldehydes C6-C12, 8-isoProstaglandin F2α, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine, 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine, 5-hydroxymethyl uracil, and leukotrienes B4, C4, D4, and E4, using liquid chromatography-electrospray ionisation-tandem mass spectrometry. RESULTS In the urine, 4-hydroxy-trans-hexenal was significantly higher in post-exposure sample 2, and the same trend was seen in all urinary markers. In EBC, no difference was seen between the mean values of 20 post-test markers as compared with pre-test samples. CONCLUSION This study suggests potential side effects of the sunscreen - borderline elevation of markers of oxidative stress/inflammation - which may relate to the absorption of the nanoTiO2, and the non-significant difference may be explained by the small number of subjects. The effect was not seen in EBC, where nanoTiO2 was not found. A larger study is needed, as according to our previous study, the beneficial effect of the sunscreen to suppress oxidative stress caused by UV radiation may be questioned.
Collapse
Affiliation(s)
- Daniela Pelclová
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomáš Navrátil
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenka Fenclová
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Štěpánka Vlčková
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
16
|
Jayaram DT, Payne CK. Food-Grade TiO 2 Particles Generate Intracellular Superoxide and Alter Epigenetic Modifiers in Human Lung Cells. Chem Res Toxicol 2020; 33:2872-2879. [PMID: 33064449 DOI: 10.1021/acs.chemrestox.0c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Titanium dioxide (TiO2) particles are a common ingredient in food, providing the bright white color for many candies, gums, and frostings. While ingestion of these materials has been examined previously, few studies have examined the effect of these particles on lung cells. Inhalation is an important exposure pathway for workers processing these foods and, more recently, home users who purchase these particles directly. We examine the response of lung cells to food-grade TiO2 particles using a combination of fluorescence microscopy and RT-PCR. These experiments show that TiO2 particles generate intracellular reactive oxygen species, specifically superoxide, and alter expression of two epigenetic modifiers, histone deacetylase 9 (HDAC9) and HDAC10. We use a protein corona formed from superoxide dismutase (SOD), an enzyme that scavenges superoxide, to probe the relationship between TiO2 particles and superoxide generation. These experiments show that low, non-cytotoxic, concentrations of food-grade TiO2 particles lead to cellular responses, including altering two enzymes responsible for epigenetic modifications. This production of superoxide and change in epigenetic modifiers could affect human health following inhalation. We expect this research will motivate future in vivo experiments examining the pulmonary response to food-grade TiO2 particles.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Rossnerova A, Honkova K, Pelclova D, Zdimal V, Hubacek JA, Chvojkova I, Vrbova K, Rossner P, Topinka J, Vlckova S, Fenclova Z, Lischkova L, Klusackova P, Schwarz J, Ondracek J, Ondrackova L, Kostejn M, Klema J, Dvorackova S. DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles. Int J Mol Sci 2020; 21:E2420. [PMID: 32244494 PMCID: PMC7177382 DOI: 10.3390/ijms21072420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Vladimir Zdimal
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jaroslav A. Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic;
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.V.); (P.R.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.V.); (P.R.)
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Jaroslav Schwarz
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Lucie Ondrackova
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Martin Kostejn
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic;
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2 Liberec, Czech Republic;
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The present work represents an update of the review published in this journal by Corradi et al., regarding the use of exhaled breath condensate (EBC) to investigate occupational lung diseases. RECENT FINDINGS The relevant literature was searched in the Medline database, assessed through PubMed using key terms such as 'breath AND condensate AND occupational'. Eleven pertinent publications were retrieved between January 2018 and October 2019. One article only was related to occupational allergy, and the conclusion is that EBC hydrogen peroxide is not an useful marker in laboratory animal allergy. The biomarkers of exposure most often assessed with EBC are metals. However, it is controversial whether this approach has any advantage over the conventional environmental monitoring. The biomarkers of effect studied by the majority of investigations were those related to oxidative stress. They appear consistently elevated upon occupational exposures to various agents, including welding fumes, crystalline silica, nanomaterials and chemicals. SUMMARY Although EBC represent a suitable tool to sample airway lining fluid in a noninvasive manner, it remains a niche approach to the investigation of occupational diseases. The confounding influence of EBC dilution should be better addressed in the expression of the results.
Collapse
|
19
|
Rossnerova A, Pelclova D, Zdimal V, Rossner P, Elzeinova F, Vrbova K, Topinka J, Schwarz J, Ondracek J, Kostejn M, Komarc M, Vlckova S, Fenclova Z, Dvorackova S. The repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: a pilot study. Mutagenesis 2019; 34:253-263. [DOI: 10.1093/mutage/gez016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/07/2019] [Indexed: 01/23/2023] Open
Abstract
Abstract
The application of nanomaterials has been rapidly increasing during recent years. Inhalation exposure to nanoparticles (NP) may result in negative toxic effects but there is a critical lack of human studies, especially those related to possible DNA alterations. We analyzed pre-shift and post-shift a group of nanocomposite researchers with a long-term working background (17.8 ± 10.0 years) and matched controls. The study group consisted of 73.2% males and 26.8% females. Aerosol exposure monitoring during a working shift (involving welding, smelting, machining) to assess the differences in exposure to particulate matter (PM) including nanosized fractions <25–100 nm, and their chemical analysis, was carried out. A micronucleus assay using Human Pan Centromeric probes, was applied to distinguish between the frequency of centromere positive (CEN+) and centromere negative (CEN−) micronuclei (MN) in the binucleated cells. This approach allowed recognition of the types of chromosomal damage: losses and breaks. The monitoring data revealed differences in the exposure to NP related to individual working processes, and in the chemical composition of nanofraction. The cytogenetic results of this pilot study demonstrated a lack of effect of long-term (years) exposure to NP (total frequency of MN, P = 0.743), although this exposure may be responsible for DNA damage pattern changes (12% increase of chromosomal breaks—clastogenic effect). Moreover, short-term (daily shift) exposure could be a reason for the increase of chromosomal breaks in a subgroup of researchers involved in welding and smelting processes (clastogenic effect, P = 0.037). The gender and/or gender ratio of the study participants was also an important factor for the interpretation of the results. As this type of human study is unique, further research is needed to understand the effects of long-term and short-term exposure to NP.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Zdimal
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Fatima Elzeinova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Schwarz
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Kostejn
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Komarc
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Technical University in Liberec, Liberec, Czech Republic
- Department of Engineering Technology, Technical University in Liberec, Liberec, Czech Republic
- Department of Material Science, Technical University in Liberec, Liberec, Czech Republic
| |
Collapse
|
20
|
Pelclova D, Navratil T, Kacerova T, Zamostna B, Fenclova Z, Vlckova S, Kacer P. NanoTiO 2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO 2 is Absorbed in Humans. NANOMATERIALS 2019; 9:nano9060888. [PMID: 31212919 PMCID: PMC6631994 DOI: 10.3390/nano9060888] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
The present pilot study tested the efficiency of nanoTiO2 sunscreen to prevent the oxidative stress/inflammation caused by ultraviolet (UV) radiation using biomarkers in subjects’ blood, urine, and exhaled breath condensate (EBC). In addition, the skin absorption of nanoTiO2 was studied. Six identical subjects participated in three tests: (A) nanoTiO2 sunscreen, (B) UV radiation, and (C) sunscreen + UV. The first samples were collected before the test and the second after sunscreen application and/or UV exposure. On day 4, the third samples were collected, and the sunscreen was washed off, and the fourth samples were collected on day 11. The following biomarkers were measured: malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, aldehydes C6-C12, 8-iso-Prostaglandin F2α, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine, 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine, 5-hydroxymethyl uracil, and leukotrienes, using liquid chromatography-electrospray ionisation-tandem mass spectrometry. Titania was measured using inductively coupled plasma mass spectrometry and TiO2 nanoparticles by transmission and scanning electron microscopy. Sunscreen alone did not elevate the markers, but UV increased the biomarkers in the plasma, urine, and EBC. The sunscreen prevented skin redness, however it did not inhibit the elevation of oxidative stress/inflammatory markers. Titania and nanoTiO2 particles were found in the plasma and urine (but not in the EBC) in all sunscreen users, suggesting their skin absorption.
Collapse
Affiliation(s)
- Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojišti 1, 128 00 Prague 2, Czech Republic.
| | - Tomas Navratil
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 182 23 Prague 8, Czech Republic.
| | - Tereza Kacerova
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Blanka Zamostna
- Faculty of Science, Charles University in Prague, Vinicna 5, 128 43 Prague 2, Czech Republic.
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojišti 1, 128 00 Prague 2, Czech Republic.
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojišti 1, 128 00 Prague 2, Czech Republic.
| | - Petr Kacer
- Czech University of Life Sciences, Kamycka 129, 165 00 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Detection and identification of engineered nanoparticles in exhaled breath condensate, blood serum, and urine of occupationally exposed subjects. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2379-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers. NANOMATERIALS 2018; 8:nano8090731. [PMID: 30223600 PMCID: PMC6164906 DOI: 10.3390/nano8090731] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
Thousands of researchers and workers worldwide are employed in nanocomposites manufacturing, yet little is known about their respiratory health. Aerosol exposures were characterized using real time and integrated instruments. Aerosol mass concentration ranged from 0.120 mg/m3 to 1.840 mg/m3 during nanocomposite machining processes; median particle number concentration ranged from 4.8 × 104 to 5.4 × 105 particles/cm3. The proportion of nanoparticles varied by process from 40 to 95%. Twenty employees, working in nanocomposite materials research were examined pre-shift and post-shift using spirometry and fractional exhaled nitric oxide (FeNO) in parallel with 21 controls. Pro-inflammatory leukotrienes (LT) type B4, C4, D4, and E4; tumor necrosis factor (TNF); interleukins; and anti-inflammatory lipoxins (LXA4 and LXB4) were analyzed in their exhaled breath condensate (EBC). Chronic bronchitis was present in 20% of researchers, but not in controls. A significant decrease in forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) was found in researchers post-shift (p ˂ 0.05). Post-shift EBC samples were higher for TNF (p ˂ 0.001), LTB4 (p ˂ 0.001), and LTE4 (p ˂ 0.01) compared with controls. Nanocomposites production was associated with LTB4 (p ˂ 0.001), LTE4 (p ˂ 0.05), and TNF (p ˂ 0.001), in addition to pre-shift LTD4 and LXB4 (both p ˂ 0.05). Spirometry documented minor, but significant, post-shift lung impairment. TNF and LTB4 were the most robust markers of biological effects. Proper ventilation and respiratory protection are required during nanocomposites processing.
Collapse
|