1
|
Cui Y, Li Q, Yang D, Yang Y. Colorimetric-SERS dual-mode sensing of Pb(II) ions in traditional Chinese medicine samples based on carbon dots-capped gold nanoparticles as nanozyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124100. [PMID: 38484642 DOI: 10.1016/j.saa.2024.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Peroxidase (POD)-mimicking nanozymes have got great progress in the sensing field, but most nanozyme assaying systems are built with a single-signal output mode, which is vulnerable to the effect of different factors. Thus, establishment of a dual-signal output mode is necessary for acquiring dependable and durable performance. This work described an Fe doped noradrenaline-based carbon dots and Prussian blue (Fe,NA-CDs/PB) nanocomposite as a POD-like nanozyme and modified gold nanoparticles (AuNPs) for the colorimetric and surface-enhanced Raman scattering (SERS) dual-mode sensor of Pb(II) in traditional Chinese medicine samples. With 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as the substrates, it was found that the addition of Pb(II) inhibited the POD-like activity of Fe,NA-CDs/PB and AuNPs, so it was used for colorimetric and SERS dual-mode assays. The POD-like activity was shown to be a "ping-pong" catalytic mechanism, whereas the addition of Pb(II) produced noncompetitive inhibition with modulatory effects on Fe,NA-CDs/PB. The linear response range for colorimetric and SERS sensor detection of Pb(II) was 0.01-1.00 mg/L with the detection limit of 5 μg/L and 8 μg/L, respectively. This dual-mode detection system shows excellent selectivity. More importantly, the Pb(II) in traditional Chinese medicine samples have successfully assayed with good recovery from 90.4 to 108.9 %.
Collapse
Affiliation(s)
- Yifan Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
2
|
Basu S, Das D, Ansari Z, Rana N, Majhi B, Patra D, Kanungo A, Morgan D, Dutta S, Sen K. A multispectroscopic approach for ultra-trace sensing of prostate specific antigen (PSA) by iron nanocomposite fabricated on graphene nanoplatelet. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122955. [PMID: 37301032 DOI: 10.1016/j.saa.2023.122955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Herein we report an easy, rapid and cost-effective method for spectroscopic sensing of a prostate cancer biomarker prostate specific antigen (PSA) using a novel nanocomposite. The material is a synthetic quinoxaline derivative-based iron nanocomposite fabricated on graphene nanoplatelet surface (1d-Fe-Gr). Presence of graphene enhanced the efficacy of synthesized 1d-Fe-Gr to sense PSA in serum medium with an impressive limit of detection (LOD) value of 0.878 pg/mL compared to 1d-Fe alone (LOD 17.619 pg/mL) using UV-visible absorption spectroscopy. LOD of PSA by 1d-Fe-Gr using Raman spectroscopy is even more impressive (0.410 pg/mL). Moreover, presence of interfering biomolecules like glucose, cholesterol, bilirubin and insulin in serum improves the detection threshold significantly in presence of 1d-Fe-Gr which otherwise cause LOD values of PSA to elevate in control sets. In presence of these biomolecules, the LOD values improve significantly as compared to healthy conditions in the range 0.623-3.499 pg/mL. Thus, this proposed detection method could also be applied efficiently to the patients suffering from different pathophysiological disorders. These biomolecules may also be added externally during analyses to improve the sensing ability. Fluorescence, Raman and circular dichroism spectroscopy were used to study the underlying mechanism of PSA sensing by 1d-Fe-Gr. Molecular docking studies confirm the selective interaction of 1d-Fe-Gr with PSA over other cancer biomarkers.
Collapse
Affiliation(s)
- Shalmali Basu
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Debashree Das
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Zarina Ansari
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Nabakumar Rana
- Department of Physics, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Bhim Majhi
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Dipendu Patra
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Ajay Kanungo
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - David Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Sanjay Dutta
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|
3
|
Zhang Q, Mi SN, Xie YF, Yu H, Guo YH, Yao WR. Core-shell Au@MIL-100 (Fe) as an enhanced substrate for flunixin meglumine ultra-sensitive detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122018. [PMID: 36332394 DOI: 10.1016/j.saa.2022.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to develop and validate a simple and efficient surface-enhanced Raman spectroscopy (SERS) method to determine flunixin meglumine (FM) residues in animal tissues through using core-shell Au@MIL-100 (Fe) as enhanced substrate. Au@MIL-100 (Fe) composite material was synthesized by coating metal-organic framework materials (MOFs) on the surface of gold nanoparticles using the solvothermal method. Transmission electron microscopy (TEM), UV-vis spectrum, SERS spectrum, X-ray diffraction (XRD), Infrared spectrum (FT-IR), and EDX elemental mapping results revealed that the structural composition of the compound has good properties with localized surface plasmon resonance (LSPR) properties, high adsorption capacity, excellent SERS sensitivity and stability. When it was used as SERS substrate, the results of quantitative analysis of FM in pork showed a linear range of 0.10-50 mg·L-1 with a correlation coefficient (R2) of 0.9819, the limit of detection (LOD) of 0.15 mg·g-1, the recovery rate of 88.94%∼104.77%, the intra- and inter- batch relative standard deviation (RSD) of 3.57%∼14.22% and 0.18%∼3.44% respectively. Further verification results of the existing standard methods showed no significant difference between the SERS and UV methods (P < 0.05), as well as demonstrating that the SERS method has optimal precision, accuracy, and practicality. These results exposed that Au@MIL-100 (Fe) as a SERS substrate has great potential in rapid and on-site detection analysis.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shu-Na Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
4
|
Yuan Y, Bi S, Zhang F, Wang Y, Yang B, Ren Z, Li X. Rapid determination of isepamicin by using SERS based on BSA-protected AgNPs modified by α-Fe 2O 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121942. [PMID: 36209715 DOI: 10.1016/j.saa.2022.121942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
A surface-enhanced Raman spectroscopy (SERS) method for the determination of isepamicin (ISE) using silver nanoparticles (AgNPs) protected by bovine serum albumin (BSA) and modified by α-Fe2O3 as an efficient substrate was established. The synthesized substrate was characterized and verified by transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-vis), and fourier transform infrared spectroscopy (FT-IR). The conditions affecting the Raman signal of ISE were optimized by single factor and response surface experiments. Under optimized conditions, a standard curve ISERS = 43.08c + 63598.69 (c: nmol/L) with a linear relationship (r = 0.9976) was established between the SERS intensity and ISE concentration in the range of 20.00 - 2000.00 nmol/L. The limit of detection (LOD) for ISE was 16.58 nmol/L (S/N = 3). The recovery of ISE in the samples was 96.29 % - 104.12 %, with relative standard deviation (RSD) was 1.53 % - 3.43 % (n = 5). The SERS method was reliable and satisfactory for the quantitative analysis of ISE at low concentration.
Collapse
Affiliation(s)
- Yue Yuan
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Fengming Zhang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yuting Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Bin Yang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhixin Ren
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xu Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
5
|
Fan J, Fang X, Zhang Y, Xu L, Zhao Z, Gu C, Zhou X, Chen D, Jiang T. Quantitative SERS sensing mediated by internal standard Raman signal from silica nanoparticles in flexible polymer matrix. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121304. [PMID: 35526441 DOI: 10.1016/j.saa.2022.121304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Attributed to poor signal uniformity and external interference, ultrasensitive surface-enhanced Raman spectroscopy (SERS) still faces difficulties in the reliable and quantitative detection of trace molecules. Here, a facile Ag/Si/sodium carboxy methyl cellulose (NaCMC) film with internal standard (IS) was promoted for quantitative determination of thiram. The effects of preparation conditions on SERS activity of the film were systematically investigated and then a flexible SERS substrate with high sensitivity and uniformity was fabricated. The enhancement factor was calculated to be 1.12 × 106 and SERS mapping was recorded with a relative standard deviation value of 19.8% by utilizing 4-mercaptobenzoic acid (4-MBA) as target molecule. Additionally, the dominant contribution of the IS from encapsulated Si nanoparticles (NPs) was confirmed in the quantitative assay of 4-MBA and thiram, facilitating attractive fitting coefficients (R2) as 0.991 and 0.998. Besides that, the proposed flexible film was conducted to scrub trace thiram from the surfaces of apple, orange, and cucumber, resulting in recoveries of 89%, 94%, and 91%. A smart and facile quantitative SERS substrate was developed here for monitoring trace biochemical molecules, verifying its potential utilizations in monitoring pesticide residues.
Collapse
Affiliation(s)
- Jinqi Fan
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Xinyu Fang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yongling Zhang
- GongQing Institute of Science and Technology, Gongqingcheng 332020, Jiangxi, PR China
| | - Lanxin Xu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Ziqi Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Xingfei Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Dong Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
6
|
Wu T, Li J, Zheng S, Yu Q, Qi K, Shao Y, Wang C, Tu J, Xiao R. Magnetic Nanotag-Based Colorimetric/SERS Dual-Readout Immunochromatography for Ultrasensitive Detection of Clenbuterol Hydrochloride and Ractopamine in Food Samples. BIOSENSORS 2022; 12:bios12090709. [PMID: 36140094 PMCID: PMC9496078 DOI: 10.3390/bios12090709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 12/29/2022]
Abstract
Direct and sensitive detection of multiple illegal additives in complex food samples is still a challenge in on-site detection. In this study, an ultrasensitive immunochromatographic assay (ICA) using magnetic Fe3O4@Au nanotags as a capture/detection difunctional tool was developed for the direct detection of β2-adrenoceptor agonists in real samples. The Fe3O4@Au tag is composed of a large magnetic core (~160 nm), a rough Au nanoshell, dense surface-modified Raman molecules, and antibodies, which cannot only effectively enrich targets from complex solutions to reduce the matrix effects of food samples and improve detection sensitivity, but also provide strong colorimetric/surface-enhanced Raman scattering (SERS) dual signals for ICA testing. The dual readout signals of the proposed ICA can meet the detection requirements in different environments. Specifically, the colorimetric signal allows for rapid visual detection of the analyte, and the SERS signal is used for the sensitive and quantitative detection modes. The proposed dual-signal ICA can achieve the simultaneous determination of two illegal additives, namely, clenbuterol hydrochloride and ractopamine. The detection limits for the two targets via colorimetric and SERS signals were down to ng mL−1 and pg mL−1 levels, respectively. Moreover, the proposed assay has demonstrated high accuracy and stability in real food samples.
Collapse
Affiliation(s)
- Ting Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Jiaxuan Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Shuai Zheng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chongwen Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| | - Rui Xiao
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| |
Collapse
|
7
|
Revnic RN, Știufiuc GF, Toma V, Onaciu A, Moldovan A, Țigu AB, Fischer-Fodor E, Tetean R, Burzo E, Știufiuc RI. Facile Microwave Assisted Synthesis of Silver Nanostars for Ultrasensitive Detection of Biological Analytes by SERS. Int J Mol Sci 2022; 23:8830. [PMID: 35955966 PMCID: PMC9369225 DOI: 10.3390/ijms23158830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 12/22/2022] Open
Abstract
We report a very simple, rapid and reproducible method for the fabrication of anisotropic silver nanostars (AgNS) that can be successfully used as highly efficient SERS substrates for different bioanalytes, even in the case of a near-infra-red (NIR) excitation laser. The nanostars have been synthesized using the chemical reduction of Ag+ ions by trisodium citrate. This is the first research reporting the synthesis of AgNS using only trisodium citrate as a reducing and stabilizing agent. The key elements of this original synthesis procedure are rapid hydrothermal synthesis of silver nanostars followed by a cooling down procedure by immersion in a water bath. The synthesis was performed in a sealed bottom flask homogenously heated and brought to a boil in a microwave oven. After 60 s, the colloidal solution was cooled down to room temperature by immersion in a water bath at 35 °C. The as-synthesized AgNS were washed by centrifugation and used for SERS analysis of test molecules (methylene blue) as well as biological analytes: pharmaceutical compounds with various Raman cross sections (doxorubicin, atenolol & metoprolol), cell lysates and amino acids (methionine & cysteine). UV-Vis absorption spectroscopy, (Scanning) Transmission Electron Microscopy ((S)TEM) and Atomic Force Microscopy (AFM) have been employed for investigating nanostars' physical properties.
Collapse
Affiliation(s)
- Radu Nicolae Revnic
- Department of Family Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Gabriela Fabiola Știufiuc
- Faculty of Physics, “Babes-Bolyai” University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Valentin Toma
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Alin Moldovan
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Adrian Bogdan Țigu
- Department of Translational Medicine, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Eva Fischer-Fodor
- Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Romulus Tetean
- Faculty of Physics, “Babes-Bolyai” University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Emil Burzo
- Faculty of Physics, “Babes-Bolyai” University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Rareș Ionuț Știufiuc
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Liquid Surface-Enhanced Raman Spectroscopy (SERS) Sensor-Based Au-Ag Colloidal Nanoparticles for Easy and Rapid Detection of Deltamethrin Pesticide in Brewed Tea. CRYSTALS 2021. [DOI: 10.3390/cryst12010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deltamethrin pesticides can cause inflammation, nephrotoxicity and hepatotoxicity as well as affect the activity of antioxidant enzymes in tissues. As a result of this concern, there is a rising focus on the development of fast and reliable pesticide residue testing to minimise potential risks to humans. The goal of this study is to use Au-Ag colloid nanoparticles as liquid surface-enhanced Raman spectroscopy (SERS) to improve the Raman signal in the detection of deltamethrin pesticide in a brewed tea. The liquid SERS system is fascinating to study due to its ease of use and its unlikeliness to cause several phenomena, such as photo-bleaching, combustion, sublimation and even photo-catalysis, which can interfere with the Raman signal, as shown in the SERS substrate. Our liquid SERS system is simpler than previous liquid SERS systems that have been reported. We performed the detection of pesticide analyte directly on brewed tea, without diluting it with ethanol or centrifuging it. Femtosecond laser-induced photo-reduction was employed to synthesise the liquid SERS of Au, Au-Ag, and Ag colloidal nanoparticles. The SERS was utilised to detect deltamethrin pesticide in brewed tea. The result showed that liquid SERS-based Ag NPs significantly enhance the Raman signal of pesticides compared with liquid SERS-based Au NPs and Au-Ag Nanoalloys. The maximum residue limits (MRLs) in tea in Indonesia are set at 10 ppm. Therefore, this method was also utilised to detect and improve, to 0.01 ppm, the deltamethrin pesticide Limit of Detection (LOD).
Collapse
|
9
|
Liang A, Zhi S, Liu Q, Li C, Jiang Z. A New Covalent Organic Framework of Dicyandiamide-Benzaldehyde Nanocatalytic Amplification SERS/RRS Aptamer Assay for Ultratrace Oxytetracycline with the Nanogold Indicator Reaction of Polyethylene Glycol 600. BIOSENSORS 2021; 11:458. [PMID: 34821674 PMCID: PMC8616007 DOI: 10.3390/bios11110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In this paper, dicyandiamide (Dd) and p-benzaldehyde (Bd) were heated at 180 °C for 3 h to prepare a new type of stable covalent organic framework (COF) DdBd nanosol with high catalysis. It was characterized by molecular spectroscopy and electron microscopy. The study found that DdBd had a strong catalytic effect on the new indicator reaction of polyethylene glycol 600 (PEG600)-chloroauric acid to form gold nanoparticles (AuNPs). AuNPs have strong resonance Rayleigh scattering (RRS) activity, and in the presence of Victoria Blue B (VBB) molecular probes, they also have a strong surface-enhanced Raman scattering (SERS) effect. Combined with a highly selective oxytetracycline (OTC) aptamer (Apt) reaction, new dual-mode scattering SERS/RRS methods were developed to quantitatively analyze ultratrace OTC. The linear range of RRS is 3.00 × 10-3 -6.00 × 10-2 nmol/L, the detection limit is 1.1 × 10-3 nmol/L, the linear range of SERS is 3.00 × 10-3-7.00 × 10-2 nmol/L, and the detection limit is 9.0 × 10-4 nmol/L. Using the SERS method to analyze OTC in soil samples, the relative standard deviation is 1.35-4.78%, and the recovery rate is 94.3-104.9%.
Collapse
Affiliation(s)
- Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Shengfu Zhi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Qiwen Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| |
Collapse
|
10
|
Moisoiu V, Iancu SD, Stefancu A, Moisoiu T, Pardini B, Dragomir MP, Crisan N, Avram L, Crisan D, Andras I, Fodor D, Leopold LF, Socaciu C, Bálint Z, Tomuleasa C, Elec F, Leopold N. SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids Surf B Biointerfaces 2021; 208:112064. [PMID: 34517219 DOI: 10.1016/j.colsurfb.2021.112064] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is emerging as a novel strategy for biofluid analysis. In this review, we delineate four experimental SERS protocols that are frequently used for the profiling of biofluids: 1) liquid SERS for the detection of purine metabolites; 2) iodide-modified liquid SERS for the detection of proteins; 3) dried SERS for the detection of both purine metabolites and proteins; 4) resonant Raman for the detection of carotenoids. To explain the selectivity of each experimental SERS protocol, we introduce a heuristic model for the chemisorption of analytes mediated by adsorbed ions (adions) onto the SERS substrate. Next, we show that the promising results of SERS liquid biopsy stem from the fact that the concentration levels of purine metabolites, proteins and carotenoids are informative of the cellular turnover rate, inflammation, and oxidative stress, respectively. These processes are perturbed in virtually every disease, from cancer to autoimmune maladies. Finally, we review recent SERS liquid biopsy studies and discuss future steps that are required for translating SERS in the clinical setting.
Collapse
Affiliation(s)
- Vlad Moisoiu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Tudor Moisoiu
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy; Italian Institute of Genomic Medicine (IIGM), 10060, Candiolo, Italy
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Nicolae Crisan
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Lucretia Avram
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; Department of Geriatrics, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Dana Crisan
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; 5th Internal Medicine Department, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Iulia Andras
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Daniela Fodor
- 2nd Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Loredana F Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; BIODIATECH Research Centre for Applied Biotechnology, SC Proplanta, 400478, Cluj-Napoca, Romania
| | - Zoltán Bálint
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124, Cluj-Napoca, Romania; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349, Cluj-Napoca, Romania
| | - Florin Elec
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania.
| |
Collapse
|
11
|
Esmaeilzadeh M, Dizajghorbani-Aghdam H, Malekfar R. Surface-Enhanced Raman scattering of methylene blue on titanium nitride nanoparticles synthesized by laser ablation in organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119721. [PMID: 33845389 DOI: 10.1016/j.saa.2021.119721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Suspensions of titanium nitride (TiN) nanoparticles (NPs) were prepared using nanosecond Ce:Nd:YAG pulsed laser ablation (λ = 1064 nm) of a TiN target immersed in various solvents such as Toluene (C6H5CH3), Acetonitrile (CH3CN), and N, N-dimethylformamide (C3H7NO). The synthesized NPs were characterized by applying a range of spectroscopic, structural, and compositional analysis techniques. The obtained TiN NPs in N, N-dimethylformamide (DMF-TiN NPs) solvent showed strong optical absorption in the near-infrared (NIR) range; Whereas, the obtained TiN NPs in toluene (T-TiN NPs) and acetonitrile (AN-TiN NPs) solvents were covered with a carbon matrix layer that quenched their surface plasmon resonance (SPR). The carbon matrix on the NPs was removed by thermal oxidation to obtain carbon-free TiN NPs. All the prepared carbon-free TiN NPs were employed as substrates for the surface-enhanced Raman scattering (SERS) spectroscopy of methylene blue (MB) molecules as a probe molecule adsorbed on the surface. All substrates indicated nearly the same order of enhancement factors (EFs) (~103) for MB.
Collapse
Affiliation(s)
- Marzieh Esmaeilzadeh
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran.
| | - Hossein Dizajghorbani-Aghdam
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran.
| | - Rasoul Malekfar
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran.
| |
Collapse
|
12
|
Yu F, Huang H, Shi J, Liang A, Jiang Z. A new gold nanoflower sol SERS method for trace iodine ion based on catalytic amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119738. [PMID: 33812234 DOI: 10.1016/j.saa.2021.119738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As one of the essential trace elements in metabolism, iodine is crucial to maintain the normal physiological functions. Therefore, based on health and environmental protection, it is very important to realize sensitive detection of iodide ion. Herein, we developed a simple, rapid and sensitive method for the determination of iodide ion. Trypsin was used as an ideal template for the synthesis of gold nanoflower sol (AuNFs) with anisotropic surface structure and good stability. It exhibits highly active surface enhanced Raman scattering (SERS) effect and can be used as facile SERS sol substrate. The TMBox generated by the catalytic oxidation reaction of TMB-chloramine T-iodide ion is used as the SERS probe. The enhanced SERS signal intensity is linearly related to the iodide ion with high sensitivity. In addition, TMB has fluorescence effect, and the colored TMBox can produce RRS signal due to polymerization. Based on this, a quad-mode detection method of SERS, RRS, fluorescence and colorimetry for quantitative detection of trace iodide ions was established, and this method can be applied to the detection of iodide ions in natural water and drinking water.
Collapse
Affiliation(s)
- Faxin Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Hanbing Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Jinling Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
13
|
Pandey A, Nikam AN, Padya BS, Kulkarni S, Fernandes G, Shreya AB, García MC, Caro C, Páez-Muñoz JM, Dhas N, García-Martín ML, Mehta T, Mutalik S. Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Zheng J, Yan J, Qi X, Zhang X, Li Y, Zou M. AgNPs and MIL-101(Fe) self-assembled nanometer materials improved the SERS detection sensitivity and reproducibility. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119396. [PMID: 33433376 DOI: 10.1016/j.saa.2020.119396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Recently, in the research of Surface-enhanced Raman scattering (SERS) technology, it is found that the preparation of enhanced substrate is particularly important. In this work, the most commonly used methods were used to synthesize AgNPs and MIL-101(Fe), and AgNPs/MIL-101(Fe) nanocomposite was obtained through self-assembly of the two substances. Four different probe molecules were detected with the self-assembled substrate and compared with the results of same probe molecules with AgNPs and MIL-101(Fe) as SERS substrate separately, it was found that AgNPs/ MIL-101 (Fe) nanocomposites had a strong enhancing effect as SERS substrate. The Enhancement Factor (EF) value of 10-6 mol/L Rhodamine 6G (R6G) was calculated as 2.09 × 109, and the Raman intensities of the peak relative standard deviation (RSD) of R6G Raman attribution was calculated as 7.55%. The time stability of the material was studied and it was found that the reduced Raman signal and poor reproducibility were due to the AgNPs placement time. AgNPs/ MIL-101 (Fe) nanocomposites were used as SERS substrate to detect Paraquat with a minimum concentration of 10-12 mol/L. The signal values of Paraquat Raman detected at 10-6 mol/L in different pH environments were relatively stable.
Collapse
Affiliation(s)
- Jieshuang Zheng
- Changchun University of Science and Technology, Changchun 130022, China
| | - Jinghui Yan
- Changchun University of Science and Technology, Changchun 130022, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Xiaohua Zhang
- China Inspection Laboratory Technologies Co. Ltd (CILT), No. A 3, Gaobeidian Road, Chaoyang District, Beijing 100123, China
| | - Yunhui Li
- Changchun University of Science and Technology, Changchun 130022, China.
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine, Beijing 100123, China.
| |
Collapse
|
15
|
Shi T, Liang P, Zhang X, Zhang D, Shu H, Huang J, Yu Z, Xu Y. Synergistic enhancement effect of MoO 3@Ag hybrid nanostructures for boosting selective detection sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118611. [PMID: 32619971 DOI: 10.1016/j.saa.2020.118611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
An ex situ method was used to synthesize noble metals and metal oxide composite materials, due to the selective adsorption properties of metal oxides, the adsorption of different probe molecules by this composite structure had been studied. In the ex situ approach, we use (3-aminopropyl) diethoxy methylsilane (ATES) as a coupling agent which is easy for noble metal nanoparticles deposited on metallic oxide nanomaterials. The Raman scattering (SERS) substrate of 1D MoO3 nanowires (MoO3-NWs) @Ag nanoparticles (Ag-NPs) hybrid surface had been fabricated. Several parameters are presented in the following which influences the morphology of self-assembly and SERS activity: (i) coupling agent of ATES, (ii) ATES content (iii) Ag-NPs content. The finite difference time domain (FDTD) method is to explain the enhancement mechanism distribution of the hybrid substrate. Different probe molecules (R6G, Methylene Blue, Crystal Violet, and 4-ATP) have been adsorbed for SERS tests. Improved principle component analysis (PCA) is adopted to obtain the minimum detection limit of probe molecules. Through the DFT calculation, different absorption strengths between the target molecules and the MoO3(010) surface have been illustrated, which is also the main reason for the selective enhancement effect of MoO3@Ag hybrid nanostructures. This paper might propose a method to prepare such enhancement substrate based on the selective absorption properties of oxide semiconductors.
Collapse
Affiliation(s)
- Tengda Shi
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Xiubing Zhang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - De Zhang
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, 430070 Wuhan, China
| | - Haibo Shu
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Jie Huang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Zhi Yu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, 430070 Wuhan, China
| | - YongQuan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
16
|
Thirumalairajan S, Girija K. Efficient and tunable shape selective synthesis of Ag/CeO 2 nanostructures modified highly stable SERS substrate for ultrasensitive detection of pesticides on the surface of an apple. NANOSCALE ADVANCES 2020; 2:3570-3581. [PMID: 36134266 PMCID: PMC9419775 DOI: 10.1039/d0na00390e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/27/2020] [Indexed: 06/14/2023]
Abstract
Detection of pesticide residues from fruits and vegetables is of significant importance to ensuring human health and environmental safety. An efficient and tunable shape-selective synthesis of Ag/CeO2 nanostructures as an active flexible SERS substrate for the detection of thiram on an apple surface via a paste, peel off, and paste again process was performed. The well-controlled formation of silver assembled CeO2 microspheres constituting nanospheres and nanospindles with an average size of approximately 56 and 32 nm with anisotropic structures has been confirmed through morphological and crystallographic analysis. Interestingly, CeO2 (111) was strongly anchored in the Ag (111) matrix, which provides a more adequate pathway for rapid ion-electron transportation, as observed from the structural and chemical composition analysis. The detection of thiram on the surface of an apple using our proposed nanospindle SERS active substrate achieves a wide detection range from 10-2 to 10-9 M with a correlation coefficient of 0.9929 and a low detection limit of 27 nM at S/N = 3. In addition, the charge transfer mechanism between the Ag/CeO2 nanostructures and thiram molecules has also been proposed. We believe that the present work could provide novel ways to develop SERS active substrates for highly efficient onsite detection of pesticides on fruits in the near future.
Collapse
Affiliation(s)
- S Thirumalairajan
- Department of Nano Science and Technology, Tamilnadu Agricultural University Coimbatore-41003 India +91 422 661 1949 +91 422 661 1569
| | - K Girija
- Department of Physics, Dr N.G.P. Arts and Science College Coimbatore-641 048 India
| |
Collapse
|
17
|
Li H, Wang Y, Li Y, Qiao Y, Liu L, Wang Q, Che G. High-sensitive molecularly imprinted sensor with multilayer nanocomposite for 2,6-dichlorophenol detection based on surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117784. [PMID: 31740121 DOI: 10.1016/j.saa.2019.117784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
This study describes the preparation of a novel multilayer sensor based on molecularly imprinted polymers (MIPs) for the detection of trace-level chlorophenols by surface-enhanced Raman scattering (SERS). Composites of SiO2/reduced graphene oxide/gold (SiO2/rGO/Au, SGA) are chosen as the SERS substrates. The fabricated composites are able to enhance the SERS sensitivity, and the addition of MIPs improves the selectivity of traditional SERS substrates. Furthermore, the sensor's detection sensitivity and selectivity are improved by including two functional monomers, namely methacrylic acid (MAA) and acrylamide (AM) containing different functional groups. Finally, in to more effectively balance the selectivity of MIPs shell and the sensitivity of SERS detection, the prepared substrates are surface-modified with polydopamine (pDA) and prepared by atom transfer radical polymerization (ATRP). It is confirmed that the prepared SGA-MIPs exhibits relatively good sensitivity and selectivity in the detection of chlorophenols. Importantly, all the investigations are conducted in environmentally friendly aqueous solution, which enables scaling-up without causing pollution.
Collapse
Affiliation(s)
- Hongji Li
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China; College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yan Wang
- College of Chemistry, Jilin Normal University, Siping 136000, PR China
| | - Yue Li
- College of Chemistry, Jilin Normal University, Siping 136000, PR China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Lihui Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Qingwei Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Guangbo Che
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
18
|
Zhang X, Liu B, Hu C, Chen S, Liu X, Liu J, Chen F, Chen J, Xie F. A facile method in removal of PVP ligands from silver nanowires for high performance and reusable SERS substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117733. [PMID: 31753654 DOI: 10.1016/j.saa.2019.117733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Silver nanowires (i.e., AgNWs) can act as effective surface-enhanced Raman spectroscopy (i.e., SERS) substrates to detect small molecules. However, a lot of prepared AgNWs were often wrapped by polyvinylpyrrolidone (i.e., PVP) thin film to form an insulating layer to produce ill-defined AgNWs-PVP-AgNWs interface, limiting the plasmonic coupling among the stacked AgNWs. Herein, we reported a facile method in removal of PVP ligands from AgNWs for high performance and reusable SERS substrate. Sodium borohydride (NaBH4) was used to completely remove the PVP ligands from the surface of AgNWs and produce a clean AgNWs-AgNWs interface that effectively enhances the localized surface plasmon resonance (i.e., LSPR) was produced, greatly improving the SERS activity of the AgNWs thin film. The SERS detection of rhodamine 6G (i.e., R6G) used with PVP AgNWs and without PVP AgNWs is 1.0 × 10-9 and 1.0 × 10-15 M, and the average enhancement factor (EF) is about 0.86 × 104 and 9.35 × 104, respectively. Moreover, the recyclable behavior of the AgNWs with several analyte molecules is much more interesting than that of the PVP@AgNWs. The SERS detection of AgNWs for R6G, the 3-mercaptopropionic acid (i.e., 3-MPA) and melamine with good recyclability in nanomolar and millimolar concentration can be easily detected.
Collapse
Affiliation(s)
- Xingying Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Ben Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China.
| | - Shaoyun Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Xueqing Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Jiyan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Fang Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fangyan Xie
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
19
|
Lin H, Zhou J, Wu Q, Hung TM, Chen W, Yu Y, Chang JTC, Pan J, Qiu S, Chen R. Human blood test based on surface-enhanced Raman spectroscopy technology using different excitation light for nasopharyngeal cancer detection. IET Nanobiotechnol 2019; 13:942-945. [PMID: 31811763 DOI: 10.1049/iet-nbt.2019.0221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), a kind of squamous cell carcinoma, occurs in the top and the side wall of nasopharyngeal, which harms human health and life. In this study, a novel blood test (SERS) was carried out for 30 NPC patients and 30 normal ones. Using multi-variate statistical analysis for spectral data, the diagnostic sensitivities of 89.3% (50/56) and 85.7% (48/56) can be achieved for 633 and 785 nm exciting wavelength, respectively. Also corresponding specificities are 71.4% (41/56) and 78.6% (44/56), respectively. These results demonstrated that the two kinds of excitation wavelength all have the feasibility of obtaining high-quality SERS spectra to differentiate cancer from normal samples. Furthermore, the performance of the SERS test with 785 nm wavelength excitation is nearly equal to the SERS experimental effect under 633 nm wavelength excitation for NPC detection.
Collapse
Affiliation(s)
- Huijing Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Jiahui Zhou
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Qiong Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Tsung-Min Hung
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Weiwei Chen
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Yun Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Jianji Pan
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, People's Republic of China
| | - Sufang Qiu
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, People's Republic of China.
| | - Rong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
20
|
Dizajghorbani Aghdam H, Moemen Bellah S, Malekfar R. Surface-enhanced Raman scattering studies of Cu/Cu 2O Core-shell NPs obtained by laser ablation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117379. [PMID: 31323492 DOI: 10.1016/j.saa.2019.117379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
In order to perform SERS (surface-enhanced Raman scattering) measurements, spherical Cu/Cu2O core-shell NPs with a rather rough rugged surface and well-defined crystallographic structures were fabricated using nanosecond Ce: Nd YAG pulsed laser ablation in liquid (PLAL). Raman, Fourier transform infrared (FTIR) spectroscopy and TEM imaging of the prepared NPs reveal the existence of additional minority CuO phase, not determined earlier through XRD patterns. The SERS activity of Cu/Cu2O core-shell NPs substrates was investigated by using crystal violet (CV) and methylene blue (MB) as the analyte molecules under 532 nm excitation wavelength irradiation. The effect of localized surface plasmon resonance (LSPR) from Cu core contributing to the electromagnetic enhancement and Cu2O shell with a rough surface which itself contributes to chemical enhancement with adsorbed analyte molecule is due to a high overall SERS enhancement. The intensities of the totally and non-totally symmetric modes were used to calculate the degree of charge-transfer. The results demonstrate that the LSPR enhancement dominates charge-transfer resonance contribution in SERS of Cu/Cu2O-CV and Cu/Cu2O -MB systems. The reproducibility of the prepared SERS substrates was investigated and the SERS signals intensity variation was <28%.
Collapse
Affiliation(s)
- H Dizajghorbani Aghdam
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran
| | - S Moemen Bellah
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran; Department of Process Modelling and Control, Faculty of Engineering, Iran Polymer and Petrochemical Institute, Tehran, Islamic Republic of Iran
| | - R Malekfar
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Islamic Republic of Iran.
| |
Collapse
|
21
|
Blinzler BJ, Larsson R, Gaska K, Kádár R. A Mechanics Based Surface Image Interpretation Method for Multifunctional Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1578. [PMID: 31703339 PMCID: PMC6915548 DOI: 10.3390/nano9111578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022]
Abstract
Graphene nanosheets and thicker graphite nanoplatelets are being used as reinforcement in polymeric materials to improve the material properties or induce new functional properties. By improving dispersion, de-agglomerating the particles, and ensuring the desired orientation of the nano-structures in the matrix, the microstructure can be tailored to obtain specific material properties. A novel surface image assisted modeling framework is proposed to understand functional properties of the graphene enhanced polymer. The effective thermal and mechanical responses are assessed based on computational homogenization. For the mechanical response, the 2-D nanoplatelets are modeled as internal interfaces that store energy for membrane actions. The effective thermal response is obtained similarly, where 2-D nanoplatelets are represented using regions of high conductivity. Using the homogenization simulation, macroscopic stiffness properties and thermal conductivity properties are modeled and then compared to the experimental data. The proposed surface image assisted modeling yields reasonable effective mechanical and thermal properties, where the Kapitza effect plays an important part in effective thermal properties.
Collapse
Affiliation(s)
- Brina J. Blinzler
- Division of Material and Computational Mechanics, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden;
| | - Ragnar Larsson
- Division of Material and Computational Mechanics, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden;
| | - Karolina Gaska
- Division of Engineering Materials, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden or (K.G.); (R.K.)
| | - Roland Kádár
- Division of Engineering Materials, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden or (K.G.); (R.K.)
| |
Collapse
|
22
|
Xu D, Kang W, Zhang S, Yang W, Jiang H, Lei Y, Chen J. Fractal theory and controllable preparation of centimeter level silver nanowire arrays and their application in melamine detection as SERS substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117184. [PMID: 31158773 DOI: 10.1016/j.saa.2019.117184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/23/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Silver nanowire arrays as surface-enhanced Raman scattering (SERS) substrates were prepared by a solid-state ionics method under the direct current electric field (DCEF) and used to rapidly detect melamine in aqueous solutions. The arrangement density and surface roughness of the prepared silver nanowire arrays are significantly different upon a change in the impressed current intensity. The growth mechanism of silver nanowire arrays was associated with the apical growth advantage and the irregular electrode interface. When the current intensity was 4 μA and 10 μA, the fractal dimension of silver nanowire arrays was 1.66 and 1.49, the diameters of nanowires ranged from 90 to 130 nm and 90 to 170 nm, and many densely arranged and regularly arranged silver nanoparticles lie in the prepared nanowire arrays, respectively. The result shows that there were more silver nanostructures and surface roughness under 4 μA DCEF. The Raman signal intensity of melamine molecule shows that the prepared SERS substrate exhibited a high sensitivity. The proposed method allow us detect melamine with a limit of 10-15 mol/L and 10-12 mol/L, which are lower than the safety limit estimated by the US food and Drug Administration. With its facile material synthesis, simple detection procedure and low detection concentration, this silver nanowire arrays with high surface roughness indicates a strong potential detection technique in the field of food safety.
Collapse
Affiliation(s)
- Dapeng Xu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China.
| | - Weigang Kang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Song Zhang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Wei Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Hengze Jiang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Yaping Lei
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Jian Chen
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China.
| |
Collapse
|
23
|
Nowicka AB, Czaplicka M, Kowalska AA, Szymborski T, Kamińska A. Flexible PET/ITO/Ag SERS Platform for Label-Free Detection of Pesticides. BIOSENSORS 2019; 9:E111. [PMID: 31546934 PMCID: PMC6784364 DOI: 10.3390/bios9030111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
Abstract
We show a new type of elastic surface-enhanced Raman spectroscopy (SERS) platform made of poly(ethylene terephthalate) (PET) covered with a layer of indium tin oxide (ITO). This composite is subjected to dielectric barrier discharge (DBD) that develops the active surface of the PET/ITO foil. To enhance the Raman signal, a modified composite was covered with a thin layer of silver using the physical vapor deposition (PVD) technique. The SERS platform was used for measurements of para-mercaptobenzoic acid (p-MBA) and popular pesticides, i.e., Thiram and Carbaryl. The detection and identification of pesticides on the surface of fruits and vegetables is a crucial issue due to extensive use of those chemical substances for plant fungicide and insecticide protection. Therefore, the developed PET/ITO/Ag SERS platform was dedicated to quantitative analysis of selected pesticides, i.e., Thiram and Carbaryl from fruits. The presented SERS platform exhibits excellent enhancement and reproducibility of the Raman signal, which enables the trace analysis of these pesticides in the range up to their maximum residues limit. Based on the constructed calibration curves, the pesticide concentrations from the skin of apples was estimated as 2.5 µg/mL and 0.012 µg/mL for Thiram and Carbaryl, respectively. Additionally, the PET/ITO/Ag SERS platform satisfies other spectroscopic properties required for trace pesticide analysis e.g., ease, cost-effective method of preparation, and specially designed physical properties, especially flexibility and transparency, that broaden the sampling versatility to irregular surfaces.
Collapse
Affiliation(s)
- Ariadna B Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Aneta A Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
24
|
Tunable Silver Nanoparticle Arrays by Hot Embossing and Sputter Deposition for Surface-Enhanced Raman Scattering. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has attracted a lot of attention over the past 30 years. Due to its extreme sensitivity and label-free detection capability, it has shown great potential in areas such as analytical chemistry, biochemistry, and environmental science. However, the major challenge is to manufacture large-scale highly SERS active substrates with high controllability, good reproducibility, and low cost. In this study, we report a novel method to fabricate uniform silver nanoparticle arrays with tunable particle sizes and interparticle gaps. Using hot embossing and sputtering techniques, we were able to batch produce the silver nanoparticle arrays SERS active substrate with consistent quality and low cost. We showed that the proposed SERS active substrate has good uniformity and high reproducibility. Experimental results show that the SERS enhancement factor is affected by silver nanoparticles size and interparticle gaps. Furthermore, the enhancement factor of the SERS signal obtained from Rhodamine 6G (R6G) probe molecules was as high as 1.12 × 107. Therefore, the developed method is very promising for use in many SERS applications.
Collapse
|