1
|
Roślak A, Doering J, Strzałka W, Makówka M, Jędrzejczak A, Kołodziejczyk Ł, Balcerzak J, Jóźwiak Ł, Piwoński I, Pawlak W. Formation and Mechano-Chemical Properties of Chromium Fluorides Originated from the Deposition of Carbon-Chromium Nanocomposite Coatings in the Reactive Atmosphere (Ar + CF 4) during Magnetron Sputtering. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5034. [PMID: 39459739 PMCID: PMC11509688 DOI: 10.3390/ma17205034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
The literature analysis did not indicate any studies on fluorination tests of carbon nanocomposite coatings doped with transition metals in a form of nanocrystalline metal carbide in amorphous carbon matrix (nc-MeC/a-C). As a model coating to investigate the effect of fluorination in a tetrafluoromethane (CF4) atmosphere, a nanocomposite carbon coating doped with chromium-forming nanocrystals of chromium carbides in a-C matrix (nc-CrC/a-C) produced by magnetron sputtering from graphite targets and using a Pulse-DC type medium frequency power supply was chosen. After the deposition of the gradient chromium carbonitride (CrCN) adhesive sublayer, the fluorination of the main coating was conducted in a reactive mode in an (Ar + CF4) atmosphere at various CF4 content. It was observed that the presence of CF4 in the atmosphere resulted in a reduced amount of chromium carbides formed in favor of chromium fluorides. Thus far, this is an observation that seems unnoticed by the carbon coatings researchers. Fluorine was assumed to bond much more readily to carbon than to chromium, due to the stability of tetrafluoromethane (CF4). The opposite seems to be true. The mechanical properties (nano-hardness and Young's modulus) and tribological properties in the 'pin-on-disc' friction pair are presented, along with the analysis of bonds occurring between chromium, carbon, and fluorine by means of X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Adam Roślak
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland; (A.R.); (M.M.); (A.J.)
| | - Józef Doering
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland; (A.R.); (M.M.); (A.J.)
| | - Wioletta Strzałka
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland; (A.R.); (M.M.); (A.J.)
| | - Marcin Makówka
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland; (A.R.); (M.M.); (A.J.)
| | - Anna Jędrzejczak
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland; (A.R.); (M.M.); (A.J.)
| | - Łukasz Kołodziejczyk
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland; (A.R.); (M.M.); (A.J.)
| | - Jacek Balcerzak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wolczanska St., 93-005 Lodz, Poland; (J.B.)
| | - Łukasz Jóźwiak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wolczanska St., 93-005 Lodz, Poland; (J.B.)
| | - Ireneusz Piwoński
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland
| | - Wojciech Pawlak
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland; (A.R.); (M.M.); (A.J.)
| |
Collapse
|
2
|
Abushahba F, Kylmäoja E, Areid N, Hupa L, Vallittu PK, Tuukkanen J, Närhi T. Osteoblast Attachment on Bioactive Glass Air Particle Abrasion-Induced Calcium Phosphate Coating. Bioengineering (Basel) 2024; 11:74. [PMID: 38247951 PMCID: PMC10813256 DOI: 10.3390/bioengineering11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Air particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against Streptococcus mutans. Square-shaped 10 mm diameter Ti substrates (n = 136) were SA by grit blasting with aluminum oxide particles, then acid-etching in an HCl-H2SO4 mixture. The SA substrates (n = 68) were used as non-coated controls (NC-SA). The test group (n = 68) was further subjected to APA using experimental zinc-containing BG (Zn4) and then mineralized in SBF for 14 d (Zn4-CaP). Surface roughness, contact angle, and surface free energy (SFE) were calculated on test and control surfaces. In addition, the topography and chemistry of substrate surfaces were also characterized. Osteoblastic cell viability and focal adhesion were also evaluated and compared to glass slides as an additional control. The antibacterial effect of Zn4-CaP was also assessed against S. mutans. After immersion in SBF, a mineralized zinc-containing Ca-P coating was formed on the SA substrates. The Zn4-CaP coating resulted in a significantly lower Ra surface roughness value (2.565 μm; p < 0.001), higher wettability (13.35°; p < 0.001), and higher total SFE (71.13; p < 0.001) compared to 3.695 μm, 77.19° and 40.43 for the NC-SA, respectively. APA using Zn4 can produce a zinc-containing calcium phosphate coating that demonstrates osteoblast cell viability and focal adhesion comparable to that on NC-SA or glass slides. Nevertheless, the coating had no antibacterial effect against S. mutans.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Libyan International Medical University (LIMU), Benghazi 339P+62Q, Libya
| | - Elina Kylmäoja
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Leena Hupa
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland;
| | - Pekka K. Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Timo Närhi
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| |
Collapse
|
3
|
Khlusov IA, Grenadyorov AS, Solovyev AA, Semenov VA, Zhulkov MO, Sirota DA, Chernyavskiy AM, Poveshchenko OV, Surovtseva MA, Kim II, Bondarenko NA, Semin VO. Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiO x-Coated Ti-6Al-4V Substrate. Int J Mol Sci 2023; 24:6675. [PMID: 37047649 PMCID: PMC10095527 DOI: 10.3390/ijms24076675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
This paper focuses on the surface modification of the Ti-6Al-4V alloy substrate via a-C:H:SiOx coating deposition. Research results concern the a-C:H:SiOx coating structure, investigated using transmission electron microscopy and in vitro endothelization to study the coating. Based on the analysis of the atomic radial distribution function, a model is proposed for the atomic short-range order structure of the a-C:H:SiOx coating, and chemical bonds (C-O, C-C, Si-C, Si-O, and Si-Si) are identified. It is shown that the a-C:H:SiOx coating does not possess prolonged cytotoxicity in relation to EA.hy926 endothelial cells. In vitro investigations showed that the adhesion, cell number, and nitric oxide production by EA.hy926 endothelial cells on the a-C:H:SiOx-coated Ti-6Al-4V substrate are significantly lower than those on the uncoated surface. The findings suggest that the a-C:H:SiOx coating can reduce the risk of endothelial cell hyperproliferation on implants and medical devices, including mechanical prosthetic heart valves, endovascular stents, and mechanical circulatory support devices.
Collapse
Affiliation(s)
- Igor A. Khlusov
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Tract, 634050 Tomsk, Russia
| | | | - Andrey A. Solovyev
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia
| | - Vyacheslav A. Semenov
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia
| | - Maksim O. Zhulkov
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Dmitry A. Sirota
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Aleksander M. Chernyavskiy
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Olga V. Poveshchenko
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of Institute of Cytology and Genetics SB RAS, 2, Timakov Str., 630060 Novosibirsk, Russia
| | - Maria A. Surovtseva
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of Institute of Cytology and Genetics SB RAS, 2, Timakov Str., 630060 Novosibirsk, Russia
| | - Irina I. Kim
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of Institute of Cytology and Genetics SB RAS, 2, Timakov Str., 630060 Novosibirsk, Russia
| | - Natalya A. Bondarenko
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of Institute of Cytology and Genetics SB RAS, 2, Timakov Str., 630060 Novosibirsk, Russia
| | - Viktor O. Semin
- Institute of Strength Physics and Materials Science SB RAS, 2/4, Akademichesky Ave., 634055 Tomsk, Russia
| |
Collapse
|
4
|
Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:183. [PMID: 36614523 PMCID: PMC9821663 DOI: 10.3390/ma16010183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
To fix the bone in orthopedics, it is almost always necessary to use implants. Metals provide the needed physical and mechanical properties for load-bearing applications. Although widely used as biomedical materials for the replacement of hard tissue, metallic implants still confront challenges, among which the foremost is their low biocompatibility. Some of them also suffer from excessive wear, low corrosion resistance, infections and shielding stress. To address these issues, various coatings have been applied to enhance their in vitro and in vivo performance. When merged with the beneficial properties of various bio-ceramic or polymer coatings remarkable bioactive, osteogenic, antibacterial, or biodegradable composite implants can be created. In this review, bioactive and high-performance coatings for metallic bone implants are systematically reviewed and their biocompatibility is discussed. Updates in coating materials and formulations for metallic implants, as well as their production routes, have been provided. The ways of improving the bioactive coating performance by incorporating bioactive moieties such as growth factors, osteogenic factors, immunomodulatory factors, antibiotics, or other drugs that are locally released in a controlled manner have also been addressed.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Margarita D. Apostolova
- Medical and Biological Research Lab., “Roumen Tsanev” Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Grenadyorov A, Solovyev A, Oskomov K, Porokhova E, Brazovskii K, Gorokhova A, Nasibov T, Litvinova L, Khlusov I. In Vitro Biodegradation of a-C:H:SiO x Films on Ti-6Al-4V Alloy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4239. [PMID: 35744297 PMCID: PMC9231245 DOI: 10.3390/ma15124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
This paper focuses mainly on the in vitro study of a five-week biodegradation of a-C:H:SiOx films of different thickness, obtained by plasma-assisted chemical vapor deposition onto Ti-6Al-4V alloy substrate using its pulsed bipolar biasing. In vitro immersion of a-C:H:SiOx films in a solution of 0.9% NaCl was used. It is shown how the a-C:H:SiOx film thickness (0.5-3 µm) affects the surface morphology, adhesive strength, and Na+ and Cl- precipitation on the film surface from the NaCl solution. With increasing film thickness, the roughness indices are reducing a little. The adhesive strength of the a-C:H:SiOx films to metal substrate corresponds to quality HF1 (0.5 µm in thickness) and HF2-HF3 (1.5-3 µm in thickness) of the Rockwell hardness test (VDI 3198) that defines strong interfacial adhesion and is usually applied in practice. The morphometric analysis of the film surface shows that on a-C:H:SiOx-coated Ti-6Al-4V alloy surface, the area occupied by the grains of sodium chloride is lower than on the uncoated surface. The reduction in the ion precipitation from 0.9% NaCl onto the film surface depended on the elemental composition of the surface layer conditioned by the thickness growth of the a-C:H:SiOx film. Based on the results of energy dispersive X-ray spectroscopy, the multiple regression equations are suggested to explain the effect of the elemental composition of the a-C:H:SiOx film on the decreased Na+ and Cl- precipitation. As a result, the a-C:H:SiOx films successfully combine good adhesion strength and rare ion precipitation and thus are rather promising for medical applications on cardiovascular stents and/or friction parts of heart pumps.
Collapse
Affiliation(s)
- Alexander Grenadyorov
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia; (A.G.); (A.S.); (K.O.)
| | - Andrey Solovyev
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia; (A.G.); (A.S.); (K.O.)
| | - Konstantin Oskomov
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia; (A.G.); (A.S.); (K.O.)
| | - Ekaterina Porokhova
- Department of Morphology and General Pathology, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia; (E.P.); (A.G.); (T.N.)
| | - Konstantin Brazovskii
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 43-A, Lenin Ave., 634050 Tomsk, Russia;
| | - Anna Gorokhova
- Department of Morphology and General Pathology, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia; (E.P.); (A.G.); (T.N.)
| | - Temur Nasibov
- Department of Morphology and General Pathology, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia; (E.P.); (A.G.); (T.N.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 14A, Nevskii Str., 236016 Kaliningrad, Russia;
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia; (E.P.); (A.G.); (T.N.)
| |
Collapse
|
6
|
Amirtharaj Mosas KK, Chandrasekar AR, Dasan A, Pakseresht A, Galusek D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022; 8:323. [PMID: 35621621 PMCID: PMC9140433 DOI: 10.3390/gels8050323] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Metallic materials such as stainless steel (SS), titanium (Ti), magnesium (Mg) alloys, and cobalt-chromium (Co-Cr) alloys are widely used as biomaterials for implant applications. Metallic implants sometimes fail in surgeries due to inadequate biocompatibility, faster degradation rate (Mg-based alloys), inflammatory response, infections, inertness (SS, Ti, and Co-Cr alloys), lower corrosion resistance, elastic modulus mismatch, excessive wear, and shielding stress. Therefore, to address this problem, it is necessary to develop a method to improve the biofunctionalization of metallic implant surfaces by changing the materials' surface and morphology without altering the mechanical properties of metallic implants. Among various methods, surface modification on metallic surfaces by applying coatings is an effective way to improve implant material performance. In this review, we discuss the recent developments in ceramics, polymers, and metallic materials used for implant applications. Their biocompatibility is also discussed. The recent trends in coatings for biomedical implants, applications, and their future directions were also discussed in detail.
Collapse
Affiliation(s)
| | - Ashok Raja Chandrasekar
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; (A.D.); (A.P.)
| | - Arish Dasan
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; (A.D.); (A.P.)
| | - Amirhossein Pakseresht
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; (A.D.); (A.P.)
| | - Dušan Galusek
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; (A.D.); (A.P.)
- Joint Glass Centre of the IIC SAS, TnUAD, and FChFT STU, FunGlass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia
| |
Collapse
|
7
|
Riley PR, Joshi P, Azizi Machekposhti S, Sachan R, Narayan J, Narayan RJ. Enhanced Vapor Transmission Barrier Properties via Silicon-Incorporated Diamond-Like Carbon Coating. Polymers (Basel) 2021; 13:polym13203543. [PMID: 34685307 PMCID: PMC8537770 DOI: 10.3390/polym13203543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, we describe reducing the moisture vapor transmission through a commercial polymer bag material using a silicon-incorporated diamond-like carbon (Si-DLC) coating that was deposited using plasma-enhanced chemical vapor deposition. The structure of the Si-DLC coating was analyzed using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and electron energy loss spectroscopy. Moisture vapor transmission rate (MVTR) testing was used to understand the moisture transmission barrier properties of Si-DLC-coated polymer bag material; the MVTR values decreased from 10.10 g/m2 24 h for the as-received polymer bag material to 6.31 g/m2 24 h for the Si-DLC-coated polymer bag material. Water stability tests were conducted to understand the resistance of the Si-DLC coatings toward moisture; the results confirmed the stability of Si-DLC coatings in contact with water up to 100 °C for 4 h. A peel-off adhesion test using scotch tape indicated that the good adhesion of the Si-DLC film to the substrate was preserved in contact with water up to 100 °C for 4 h.
Collapse
Affiliation(s)
- Parand R. Riley
- Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7907, USA; (P.R.R.); (P.J.); (J.N.)
| | - Pratik Joshi
- Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7907, USA; (P.R.R.); (P.J.); (J.N.)
| | - Sina Azizi Machekposhti
- Joint Department of Biomedical Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7115, USA;
| | - Ritesh Sachan
- Department of Mechanical Engineering, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jagdish Narayan
- Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7907, USA; (P.R.R.); (P.J.); (J.N.)
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7115, USA;
- Correspondence:
| |
Collapse
|
8
|
Overview on the Antimicrobial Activity and Biocompatibility of Sputtered Carbon-Based Coatings. Processes (Basel) 2021. [DOI: 10.3390/pr9081428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to their outstanding properties, carbon-based structures have received much attention from the scientific community. Their applications are diverse and include use in coatings on self-lubricating systems for anti-wear situations, thin films deposited on prosthetic elements, catalysis structures, or water remediation devices. From these applications, the ones that require the most careful testing and improvement are biomedical applications. The biocompatibility and antibacterial issues of medical devices remain a concern, as several prostheses still fail after several years of implantation and biofilm formation remains a real risk to the success of a device. Sputtered deposition prevents the introduction of hazardous chemical elements during the preparation of coatings, and this technique is environmentally friendly. In addition, the mechanical properties of C-based coatings are remarkable. In this paper, the latest advances in sputtering methods and biocompatibility and antibacterial action for diamond-based carbon (DLC)-based coatings are reviewed and the greater outlook is then discussed.
Collapse
|
9
|
Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng 2021; 5:021508. [PMID: 34104846 PMCID: PMC8172248 DOI: 10.1063/5.0037298] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary in-stent restenosis and late stent thrombosis are the two major inadequacies of vascular stents that limit its long-term efficacy. Although restenosis has been successfully inhibited through the use of the current clinical drug-eluting stent which releases antiproliferative drugs, problems of late-stent thrombosis remain a concern due to polymer hypersensitivity and delayed re-endothelialization. Thus, the field of coronary stenting demands devices having enhanced compatibility and effectiveness to endothelial cells. Nanotechnology allows for efficient modulation of surface roughness, chemistry, feature size, and drug/biologics loading, to attain the desired biological response. Hence, surface topographical modification at the nanoscale is a plausible strategy to improve stent performance by utilizing novel design schemes that incorporate nanofeatures via the use of nanostructures, particles, or fibers, with or without the use of drugs/biologics. The main intent of this review is to deliberate on the impact of nanotechnology approaches for stent design and development and the recent advancements in this field on vascular stent performance.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Vijayakumar Maniyal
- Department of Cardiology, Amrita Institute of Medical Science
and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Cochin
682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| |
Collapse
|
10
|
Šalandová M, van Hengel IAJ, Apachitei I, Zadpoor AA, van der Eerden BCJ, Fratila‐Apachitei LE. Inorganic Agents for Enhanced Angiogenesis of Orthopedic Biomaterials. Adv Healthc Mater 2021; 10:e2002254. [PMID: 34036754 PMCID: PMC11469191 DOI: 10.1002/adhm.202002254] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/30/2021] [Indexed: 01/02/2023]
Abstract
Aseptic loosening of a permanent prosthesis remains one of the most common reasons for bone implant failure. To improve the fixation between implant and bone tissue as well as enhance blood vessel formation, bioactive agents are incorporated into the surface of the biomaterial. This study reviews and compares five bioactive elements (copper, magnesium, silicon, strontium, and zinc) with respect to their effect on the angiogenic behavior of endothelial cells (ECs) when incorporated on the surface of biomaterials. Moreover, it provides an overview of the state-of-the-art methodologies used for the in vitro assessment of the angiogenic properties of these elements. Two databases are searched using keywords containing ECs and copper, magnesium, silicon, strontium, and zinc. After applying the defined inclusion and exclusion criteria, 59 articles are retained for the final assessment. An overview of the angiogenic properties of five bioactive elements and the methods used for assessment of their in vitro angiogenic potential is presented. The findings show that silicon and strontium can effectively enhance osseointegration through the simultaneous promotion of both angiogenesis and osteogenesis. Therefore, their integration onto the surface of biomaterials can ultimately decrease the incidence of implant failure due to aseptic loosening.
Collapse
Affiliation(s)
- Monika Šalandová
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Ingmar A. J. van Hengel
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Iulian Apachitei
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Bram C. J. van der Eerden
- Department of Internal MedicineErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Lidy E. Fratila‐Apachitei
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
11
|
Bhaskar N, Sulyaeva V, Gatapova E, Kaichev V, Rogilo D, Khomyakov M, Kosinova M, Basu B. SiC xN yO z Coatings Enhance Endothelialization and Bactericidal activity and Reduce Blood Cell Activation. ACS Biomater Sci Eng 2020; 6:5571-5587. [PMID: 33320557 DOI: 10.1021/acsbiomaterials.0c00472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For biomedical applications, a number of ceramic coatings have been investigated, but the interactions with the components of living system remain unexplored for oxycarbonitride coatings. While addressing this aspect, the present study aims to provide an understanding of the biocompatibility of novel SiCxNyOz coatings that could validate the hypothesis that such coatings may not only enhance the cell-material interaction by re-endothelialization but also can help to reduce bacterial adhesion and activation of blood cells. This work reports the physicochemical properties, hemocompatibility, endothelialization, and antibacterial properties of novel amorphous SiCxNyOz coatings deposited on commercial pure titanium (Ti) by radiofrequency (RF) magnetron sputtering at varied nitrogen (N2) flow rates. A comparison is made with diamond-like carbon (DLC) coatings, which are clinically used. The surface roughness, surface wettability, nanoscale hardness, and surface energy of SiCxNyOz coatings were found to be dependent on the nitrogen (N2) flow rate. Importantly, the as-deposited SiCxNyOz coatings exhibited much better nanoscale hardness and scratch resistance than DLC coatings. Furthermore, Raman spectroscopy analysis of the SiCxNyOz coating deposited on Ti showed a change in the graphitic/disordered carbon content. Cytocompatibility and hemocompatibility properties of the as-deposited SiCxNyOz coating were evaluated using the Mus musculus lymphoid endothelial cell line (SVEC4-10) and rabbit blood in vitro. WST-1 assay analysis showed that these coatings, when compared to DLC, exhibited a better proliferation of endothelial cells, which can potentially result in improved surface endothelialization. Furthermore, qualitative and quantitative analyses of immunofluorescence images revealed a dense cellular layer of SVEC4-10 on SiCxNyOz coatings, deposited at 15 and 30 sccm nitrogen flow rates. As far as compatibility with rabbit blood is concerned, the hemolysis of the SiCxNyOz coatings was less than 4%, with slightly lower values for coatings deposited without N2 flow. The SiCxNyOz coatings support less platelet adhesion and aggregation, with no signature of morphological deformation, as compared to the uncoated titanium substrate or DLC coatings. Furthermore, SiCxNyOz coatings were also found to be effectively extending the blood coagulation time for a period of 60 min. The antimicrobial study of as-deposited SiCxNyOz coatings on E. coli and S. aureus bacteria revealed the effective inhibition of bacterial proliferation after 24 h of culture. An attempt has been made to explain the cyto- and hemocompatibility properties with antimicrobial efficacy of coatings in terms of the variation in the coating composition and surface energy. Taken together, we conclude that SiC1.3N0.76O0.87 coating having a roughness of 17 nm and a surface free energy of 54.0 ± 0.7 mN/m can exhibit the best combination of hardness, elastic modulus, scratch resistance, cytocompatibility, hemocompatibility, and bactericidal properties.
Collapse
Affiliation(s)
- Nitu Bhaskar
- Materials Research Center, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Veronica Sulyaeva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Elizaveta Gatapova
- Kutateladze Institute of Thermophysics SB RAS, 1, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasilii Kaichev
- Boreskov Institute of Catalysis SB RAS, 5, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Dmitry Rogilo
- Rzhanov Institute of Semiconductor Physics SB RAS, 13, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim Khomyakov
- Institute of Laser Physics SB RAS, 15B, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Bikramjit Basu
- Materials Research Center, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
12
|
Argon and oxygen plasma treatment increases hydrophilicity and reduces adhesion of silicon-incorporated diamond-like coatings. Biointerphases 2020; 15:041007. [PMID: 32736477 DOI: 10.1116/6.0000356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the structure, adhesion, and cell viability characteristics of silicon-incorporated diamond-like carbon (Si-DLC) coatings on fused silica substrates were investigated. The effects of argon and oxygen postprocessing plasma treatments on the Si-DLC coatings were also studied. The contact angle results showed that the Si-DLC coatings were more hydrophilic than the uncoated surfaces, and postprocessing plasma treatment increased the hydrophilicity of the Si-DLC coatings. Atomic force microscopy and profilometry confirmed that postprocessing plasma treatment increased the thickness and roughness of the Si-DLC coatings. The results of microscratch testing indicated that the plasma treatments reduced the adhesion of the coatings. The x-ray photoelectron spectroscopy (XPS) showed the presence of carbon, oxygen, and silicon in the Si-DLC coatings before and after the plasma treatments. These results show that the postprocessing plasma treatment significantly reduced the atomic percentage of the carbon in the Si-DLC coatings. XPS also confirmed the presence of carbon in the form of sp3(C-C), sp2(C=C), C-O, and C=O bonds in the Si-DLC coatings; it showed that postprocessing treatments significantly increased the percentage of oxygen in the Si-DLC coatings. Fourier transform infrared spectroscopy (FTIR) analysis showed features associated with C-OH stretching, C-H bending, as well as Si-CH2 and C-H bending in the Si-DLC coating. The XPS and FTIR results confirmed that the plasma treatment caused dissociation of the sp2 and sp3 bonds and formation of C-OH bonds. The contact angle data indicated that postprocessing treatment increased the hydrophilicity of the Si-DLC coating. Similar to the uncoated substrates, L929 cells showed no change in cell viability when cultured on Si-DLC coatings. These results of the study indicate the suitability of Si-DLC coatings as inert coatings for medical and biotechnology applications.
Collapse
|
13
|
Mihailescu IN. Synthesis and Modification of Nanostructured Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:nano9101427. [PMID: 31600908 PMCID: PMC6835704 DOI: 10.3390/nano9101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The idea of nanomaterials, nanoscience, and nanotechnologies was formulated by Richard Feynman in 1959 in his famous lecture "There's Plenty of Room at the Bottom" [...].
Collapse
Affiliation(s)
- Ion N Mihailescu
- Lasers Department, Laser-Surface-Plasma Interactions Laboratory, National Institute for Lasers, Plasma, and Radiation Physics (INFLPR), Strada Atomistilor, nr. 409, P.O. Box MG-36, RO-077125 Magurele, Ilfov, Romania.
| |
Collapse
|