1
|
Solomonov I, Locatelli I, Tortorella S, Unni M, Aharoni SL, Alchera E, Locatelli E, Maturi M, Venegoni C, Lucianò R, Salonia A, Corti A, Curnis F, Grasso V, Malamal G, Jose J, Comes Franchini M, Sagi I, Alfano M. Contrast enhanced photoacoustic detection of fibrillar collagen in the near infrared region-I. NANOSCALE ADVANCES 2024; 6:3655-3667. [PMID: 38989511 PMCID: PMC11232541 DOI: 10.1039/d4na00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
Fibrillar collagen accumulation emerges as a promising biomarker in several diseases, such as desmoplastic tumors and unstable atherosclerotic plaque. Gold nanorods (GNRs) hold great potential as contrast agents in high-resolution, biomedically safe, and non-invasive photoacoustic imaging (PAI). This study presents the design and characterization of a specialized imaging tool which exploits GNR assisted targeted photoacoustic imaging that is tailored for the identification of fibrillar collagen. In addition to the photoacoustic characterization of collagen in the NIR 1 and 2 regions, we demonstrate the detailed steps of conjugating a decoy to GNRs. This study serves as a proof of concept, that demonstrates that conjugated collagenase-1 (MMP-1) generates a distinct and collagen-specific photoacoustic signal, facilitating real-time visualization in the wavelength range of 700-970 nm (NIR I). As most of the reported studies utilized the endogenous contrast of collagen in the NIR II wavelength that has major limitations to perform in vivo deep tissue imaging, the approach that we are proposing is unique and it highlights the promise of MMP-1 decoy-functionalized GNRs as novel contrast agents for photoacoustic imaging of collagen in the NIR 1 region. To our knowledge this is the first time functionalized GNRs are optimized for the detection of fibrillar collagen and utilized in the field of non-invasive photoacoustic imaging that can facilitate a better prognosis of desmoplastic tumors and broken atherosclerotic plaques.
Collapse
Affiliation(s)
- Inna Solomonov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Manu Unni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Shay-Lee Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Hospital and Scientific Institute Milan Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
- Vita-Salute San Raffaele University Milan Italy
| | - Angelo Corti
- Vita-Salute San Raffaele University Milan Italy
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute Milan Italy
| | - Flavio Curnis
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute Milan Italy
| | - Valeria Grasso
- FUJIFILM Visualsonics Inc. Amsterdam the Netherlands
- Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel Kiel Germany
| | | | - Jithin Jose
- FUJIFILM Visualsonics Inc. Amsterdam the Netherlands
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| |
Collapse
|
2
|
Qin H, Chen F, Du J, Yang X, Huang Y, Zhu K, Yue C, Fang Z, Guo K. Thiocyanate promoted difunctionalization and cyclization of unsaturated C-C bonds to construct 1-sulfur-2-nitrogen-functionalized alkenes and 2-thiocyanate indolines. Org Biomol Chem 2024; 22:1213-1218. [PMID: 38226967 DOI: 10.1039/d3ob01864d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
An unprecedented one-pot route to achieve highly regioselective 1-sulfur-functionalized 2-nitrogen-functionalized alkenes and 2-thiocyanate indolines from unsymmetrical ynamides (readily and generally available amides) using the commercially available inexpensive iodobenzene diacetate (PIDA) as the oxidant and potassium thiocyanate (KSCN) as the thiocyanate (SCN) source has been developed. The interconversion of thiocyanate (SCN) and isothiocyanate (NCS) groups simultaneously forms C-N and C-S bonds in this metal-free approach, while introducing important functional groups into homemade alkynes. A radical-chain mechanism, involving competing kinetically controlled chain transfer at the S atom and sterically-controlled chain transfer at the N atom of the thiocyanogen molecule in this mild approach, is proposed.
Collapse
Affiliation(s)
- Hong Qin
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
| | - Feng Chen
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
| | - Jinze Du
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
| | - Xiaobing Yang
- Institute of Nanjing Advanced Biomaterials & Processing Equipment, Nanjing, 210031, P. R. China
| | - Yiping Huang
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Kai Zhu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Changhai Yue
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Zheng Fang
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
| | - Kai Guo
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
| |
Collapse
|
3
|
Ma Z, Miao X, Song Y, Yu Y, Wu K, Liu S, Fei T, Zhang T. Construction of Dual-Channel Water Transport in Mesoporous Silica Low Humidity Sensors to Achieve High Sensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303251. [PMID: 37376823 DOI: 10.1002/smll.202303251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/13/2023] [Indexed: 06/29/2023]
Abstract
In this paper, strong hydrophilic poly(ionic liquid)s (PILs) are selectively grafted on different positions (mesoporous channels and outer surface) of mesoporous silica via thiol-ene click chemical reaction. The purposes of selective grafting are on the one hand, to explore the differences of adsorption and transportation of water molecules in mesoporous channels and on the outer surface, and on the other hand, to combine the two approaches (intra-pore grafting and external surface grafting) to reasonably design SiO2 @PILs low humidity sensing film with synergetic function to achieve high sensitivity. The results of low relativehumidity (RH) sensing test show that the sensing performance of humidity sensor based on mesoporous silica grafted with PILs in the channels is better than that of humidity sensor based on mesoporous silica grafted with PILs on the outer surface. Compared with water molecules transport single channel, the construction of dual-channel water transport significantly improves the sensitivity of the low humidity sensor, and the response of the sensor is up to 4112% in the range of 7-33% RH. Moreover, the existence of micropores and the formation of dual-channel water transport affect the adsorption/desorption behaviors of the sensor under different humidity ranges, especially below 11% RH.
Collapse
Affiliation(s)
- Zhiyan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoya Miao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yaping Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yunlong Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Ke Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Sen Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
4
|
Honda M, Zhang Y, Goto M. Isothiocyanate-functionalized silica as an efficient heterogeneous catalyst for carotenoid isomerization. Food Chem 2023; 410:135388. [PMID: 36621332 DOI: 10.1016/j.foodchem.2023.135388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Daily consumption of carotenoids is associated with multiple health benefits, but their bioavailability is generally extremely low. In this context, the Z-isomerization is receiving attention as a method for increasing carotenoid bioavailability because this approach is superior to conventional physical approaches. Here we investigated the feasibility of using isothiocyanate-functionalized silica (Si-NCS) as a heterogeneous catalyst for carotenoid isomerization. We found that this catalyst promoted Z-isomerization of (all-E)-carotenoids with high efficiency, e.g., when lycopene and astaxanthin solutions were incubated at 50 °C with 10 mg/mL Si-NCS, their total Z-isomer ratios increased by approximately 80 and 50 %, respectively. Furthermore, the Z-isomerization was successfully performed continuously by introducing carotenoid solution into a column packed with Si-NCS. Materials rich in carotenoid Z-isomers have not been used in practical applications due to high production cost and quality limitations (e.g., low Z-isomer ratio). The use of Si-NCS has sufficient potential to solve both these issues.
Collapse
Affiliation(s)
- Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan.
| | - Yelin Zhang
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Department of Materials Process Engineering, Nagoya University, Furo-cho, Nagoya, Aichi 464-8603, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Nagoya, Aichi 464-8603, Japan; Super Critical Technology Centre Co. Ltd., Hanowari, Ooaza Izumi, Kuwana-shi, Mie 511-0838, Japan
| |
Collapse
|
5
|
Ahmadi S, Dadashpour M, Abri A, Zarghami N. Long-term proliferation and delayed senescence of bone marrow-derived human mesenchymal stem cells on metformin co-embedded HA/Gel electrospun composite nanofibers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Targeted delivery system using silica nanoparticles coated with chitosan and AS1411 for combination therapy of doxorubicin and antimiR-21. Carbohydr Polym 2021; 266:118111. [PMID: 34044928 DOI: 10.1016/j.carbpol.2021.118111] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Herein, a novel targeted delivery system was developed for intracellular co-delivery of doxorubicin (DOX) as a chemotherapeutic drug, antimiR-21 as an oncogenic antagomiR. In this system, DOX was loaded into mesoporous silica nanoparticles (MSNs) and chitosan was applied to cover the surface of MSNs. AS1411 aptamer as targeting nucleolin and antimiR-21 were electrostatically attached onto the surface of the chitosan-coated MSNs and formed the final nanocomplex (AACS nanocomplex). The study of drug release was based on DOX release under pH 7.4 and 5.5. Cellular toxicity and cellular uptake assessments of AACS nanocomplex were carried out in nucleolin positive (C26, MCF-7, and 4T1) and nucleolin negative (CHO) cell lines using MTT assay and flow cytometry analysis, respectively. Also, Anti-tumor efficacy of AACS nanocomplex was evaluated in C26 tumor-bearing mice. Overall, the results show that the combination therapy of DOX and antimiR-21, using AACS nanocomplex, could combat the cancer cell growth rate.
Collapse
|
7
|
Lu X, Sun D, Zhang X, Hu H, Kong L, Rookes JE, Xie J, Cahill DM. Stimulation of photosynthesis and enhancement of growth and yield in Arabidopsis thaliana treated with amine-functionalized mesoporous silica nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:566-577. [PMID: 33065377 DOI: 10.1016/j.plaphy.2020.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) of 50 nm diameter particle size with a pore size of approximately 14.7 nm were functionalized with amino groups (Am-MSNs) and the effects of exposure to these positively charged Am-MSNs on each of the life cycle stages of Arabidopsis thaliana were investigated. After growth in half strength MS medium amended with Am-MSNs (0-100 μg/mL) for 7 and 14 days, seed germination rate and seedling growth were significantly increased compared with untreated controls. The seedlings were then transferred to soil and irrigated with Am-MSNs solutions every 3 days until seed harvesting. After four weeks growth in soil, Am-MSNs treated plants showed up-regulation of chlorophyll and carotenoid synthesis-related genes, an increase in the content of photosynthetic pigments and an amplification of plant photosynthetic capacity. All these changes in plants were closely correlated with greater vegetative growth and higher seed yield. In all the experiments, 20 and 50 μg/mL of Am-MSNs were found to be more effective with respect to other treatments, while Am-MSNs at the highest level of 100 μg/mL did not result in oxidative stress or cell membrane damage in the exposed plants. To the best of our knowledge, this is the first report evaluating both physiological and molecular responses following exposure to plants of these specific Am-MSNs throughout their whole life cycle. Overall, these findings indicate that following exposure Am-MSNs play a major role in the increase in seed germination, biomass, photosynthetic pigments, photosynthetic capacity and seed yield in A. thaliana.
Collapse
Affiliation(s)
- Xinhua Lu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, 524091, China; Deakin University, School of Life and Environmental Sciences, Geelong Campus at Waurn Ponds, Victoria, 3216, Australia
| | - Dequan Sun
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, 524091, China
| | - Xiumei Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, 524091, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, 524091, China
| | - Lingxue Kong
- Deakin University, Institute for Frontier Materials, Geelong Campus at Waurn Ponds, Victoria, 3216, Australia
| | - James E Rookes
- Deakin University, School of Life and Environmental Sciences, Geelong Campus at Waurn Ponds, Victoria, 3216, Australia
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, 524091, China.
| | - David M Cahill
- Deakin University, School of Life and Environmental Sciences, Geelong Campus at Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
8
|
M. Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics 2020; 12:E751. [PMID: 32785148 PMCID: PMC7465701 DOI: 10.3390/pharmaceutics12080751] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Transmucosal drug delivery includes the administration of drugs via various mucous membranes, such as gastrointestinal, nasal, ocular, and vaginal mucosa. The use of nanoparticles in transmucosal drug delivery has several advantages, including the protection of drugs against the harsh environment of the mucosal lumens and surfaces, increased drug residence time, and enhanced drug absorption. Due to their relatively simple synthetic methods for preparation, safety profile, and possibilities of surface functionalisation, silica nanoparticles are highly promising for transmucosal drug delivery. This review provides a description of silica nanoparticles and outlines the preparation methods for various core and surface-functionalised silica nanoparticles. The relationship between the functionalities of silica nanoparticles and their interactions with various mucous membranes are critically analysed. Applications of silica nanoparticles in transmucosal drug delivery are also discussed.
Collapse
Affiliation(s)
- Twana Mohammed M. Ways
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
- College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | | |
Collapse
|
9
|
Salinas Y, Kneidinger M, Fornaguera C, Borrós S, Brüggemann O, Teasdale I. Dual stimuli-responsive polyphosphazene-based molecular gates for controlled drug delivery in lung cancer cells. RSC Adv 2020; 10:27305-27314. [PMID: 35516962 PMCID: PMC9055533 DOI: 10.1039/d0ra03210g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
A switchable silane derived stimuli-responsive bottle-brush polyphosphazene (PPz) was prepared and attached to the surface of mesoporous silica nanoparticles (MSNs). The hybrid polymer with PEG-like Jeffamine® M-2005 side-arms undergo conformational changes in response to both pH and temperature due to its amphiphilic substituents and protonatable main-chain, hence were investigated as a gatekeeper. Safranin O as control fluorophore or the anticancer drug camptothecin (CPT) were encapsulated in the PPz-coated MSNs. At temperatures below the lower critical solution temperature (LCST), the swollen conformation of PPz efficiently blocked the cargo within the pores. However, above the LCST, the PPz collapsed, allowing release of the payload. Additionally, protonation of the polymer backbone at lower pH values was observed to enhance opening of the pores from the surface of the MSNs and therefore the release of the dye. In vitro studies demonstrated the ability of these nanoparticles loaded with the drug camptothecin to be endocytosed in both models of tumor (A549) and healthy epithelial (BEAS-2B) lung cells. Their accumulation and the release of the chemotherapeutic drug, co-localized within lysosomes, was faster and higher for tumor than for healthy cells, further, the biocompatibility of PPz-gated nanosystem without drug was demonstrated. Tailored dual responsive polyphosphazenes thus represent novel and promising candidates in the construction of future gated mesoporous silica nanocarriers designs for lung cancer-directed treatment.
Collapse
Affiliation(s)
- Yolanda Salinas
- Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
- Linz Institute of Technology (LIT), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
| | - Michael Kneidinger
- Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Via Augusta 390 Barcelona 08017 Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Via Augusta 390 Barcelona 08017 Spain
| | - Oliver Brüggemann
- Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
- Linz Institute of Technology (LIT), Johannes Kepler University Linz (JKU) Altenberger Strasse 69 4040 Linz Austria
| |
Collapse
|