1
|
Ban G, Chen Y, Liang Y, Wang X, Ding D, Liu R, Jia J, Zhao R, Wang C, Li N. Exploring the efficacy and constraints of platinum nanoparticles as adjuvant therapy in silicosis management. Drug Deliv 2025; 32:2445257. [PMID: 39803920 PMCID: PMC11730774 DOI: 10.1080/10717544.2024.2445257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment. Contemporary scholarly examinations have underscored the substantial antioxidative efficacy of platinum nanoparticles (PtNPs), postulating their utility as an adjunct therapeutic modality in silicosis management. The physicochemical interaction between PtNPs and silica demonstrates a propensity for adsorption, thereby facilitating the amelioration and subsequent pulmonary clearance of silica aggregates. In addition to their detoxifying attributes, PtNPs exhibit pronounced anti-inflammatory and antioxidative activities, which can neutralize ROS and inhibit macrophage-mediated inflammatory processes. Such attributes are instrumental in attenuating inflammatory responses and forestalling subsequent lung tissue damage. This discourse delineates the interplay between ROS and PtNPs, the pathogenesis of silicosis and its progression to pulmonary fibrosis, and critically evaluates the potential adjunct role of PtNPs in the therapeutic landscape of silicosis, alongside a contemplation of the inherent limitations associated with PtNPs application in this context.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yuanjie Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
- Clinical School, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, Tottori, Japan
| | - Xiaona Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dan Ding
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Rui Liu
- School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Ran Zhao
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Chenxia Wang
- Department of Respiratory Medicine, People’s Hospital of Huojia County, Xinxiang, China
| | - Na Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Karim S, Ting YP. Green synthesis of platinum and palladium nanoparticles from spent automotive catalyst leachate using bioreduction. CHEMOSPHERE 2025; 377:144340. [PMID: 40120559 DOI: 10.1016/j.chemosphere.2025.144340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Metal-bearing solid waste is considered a secondary source of precious metals. Spent automotive catalyst (SAC) contains significant quantities of platinum group metals (PGM). The biorecovery of these metals from SAC is gaining widespread attention due to its economic and environmental advantages. However, most of the studies focused on the bioextraction of these metals and ignored their separation and precipitation from leach liquor. The few studies that investigated their separation used model synthetic solutions instead of real waste to recover these metals. This study used the bioreduction pathway to recover Pt and Pd from SAC leach liquor. A Gram-negative, metallophillic, and heavy metal-resistant bacterium Cupriavidus metallidurans is used to biosynthesize Pt and Pd nanoparticles. C. metallidurans undergo bioreduction which is an enzymatically-assisted metal precipitation process to biofabricate the Pt and Pd nanoparticles intracellularly, on the cell surface, and extracellularly. The viable cells of C. metallidurans showed a bioreduction efficiency of 65 % and 52 % of Pt (II) and Pd (II), respectively, from SAC leachate. Overall, this study shows the potential and efficacy of the biorecovery of Pt and Pd and the green synthesis of Pt and Pd nanoparticles from metal-bearing solid waste.
Collapse
Affiliation(s)
- Salman Karim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
3
|
Erdemir-Cilasun G, Özerkan D, Kariper İA, Sert E, Korkut IN, Danışman-Kalındemirtaş F. Improved apoptosis and mitochondrial dysfunction: the potential of carmofur-platinum nanoparticles. Biomed Mater 2025; 20:035024. [PMID: 40216001 DOI: 10.1088/1748-605x/adcbfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Despite their impact on cancer therapy, limitations such as systemic toxicity and drug resistance are encountered with platinum-based drugs. This study explores the potential of combining PtIV-based NP with carmofur (Car) to address these issues. In this study, platinum nanoparticles (PtNPs) and Car-loaded PtNP (Car@PtNP) were synthesized and their cytotoxic and apoptotic effects on colorectal and breast cancer cells were evaluated. Following characterization of the synthesized NPs by dynamic light scattering, UV-VIS spectroscopy, FTIR, and STEM, it was found that the average size of PtNPs was 55.42 nm and the size increased to approximately 186.06 nm upon synthesis of Car@PtNP. MTT assays demonstrated that Car@PtNP exhibited higher levels of cellular toxicity than carmofur alone. While it significantly decreased cell viability in both colon and breast cancer cells, its toxicity to HUVEC cells was minimal. Treatment of MCF-7 and HCT116 cells with 50 µg ml-1of free Car resulted in cell viabilities of 65.2% and 76.93%, respectively, whereas the viability of cells treated with Car@PtNP decreased to 49.60% and 55.47%. Flow cytometric analysis confirmed that apoptosis was increased in healthy HCT116 cells treated with Car@PtNP, with a marked increase in both early and late apoptotic cell populations. Furthermore, these results were confirmed by Hoescht and Rhodamin123 immunofluorescence staining, and significant mitochondrial dysfunction and apoptotic morphological changes were observed in treated cells. The findings underscore the promise of Car@PtNP as a novel chemotherapeutic approach, integrating the benefits of PtIVcomplexes and Car to enhance antitumor efficacy while mitigating the drawbacks of conventional platinum-based therapies.
Collapse
Affiliation(s)
- Gökçe Erdemir-Cilasun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Dilşad Özerkan
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, 37150 Kastamonu, Turkey
| | - İshak Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, 38039 Kayseri, Turkey
| | - Esra Sert
- Department of Hematology, Istanbul Faculty of Medicine, Istanbul University, 34390 Istanbul, Turkey
| | - Işık Neslişah Korkut
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | | |
Collapse
|
4
|
Chaparro D, Goudeli E. Design of engineered nanoparticles for biomedical applications by computational modeling. NANOSCALE 2025; 17:9705-9737. [PMID: 40190149 DOI: 10.1039/d4nr05199h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Engineered nanoparticles exhibit superior physicochemical, antibacterial, optical, and sensing properties compared to their bulk counterparts, rendering them attractive for biomedical applications. However, given that nanoparticle properties are sensitive to their nanostructural characteristics and their chemical stability is largely affected by physiological conditions, nanoparticle behavior can be unpredictable in vivo, requiring careful surface modification to ensure biocompatibility, prevent rapid aggregation, and maintain functionality under biological environments. Therefore, understanding the mechanisms of nanoparticle formation and macroscopic behavior in physiological media is essential for the development of structure-property relationships and, their rational design for biomedical applications. Computational simulations provide insight into nanoscale phenomena and nanoparticle dynamics, expediting material discovery and innovation. This review provides an overview of the process design and characterization of metallic and metal oxide nanoparticles with an emphasis on atomistic and mesoscale simulations for their application in bionanomedicine.
Collapse
Affiliation(s)
- Diego Chaparro
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
| | - Eirini Goudeli
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
5
|
Oliveira MF, Moraes LC, Figueredo CC. Metal Nanoparticles Produced Using Autotrophs and Their Bioproducts: A Comparative Overview between Photosynthesizing Taxonomic Groups. ACS OMEGA 2025; 10:13763-13779. [PMID: 40256525 PMCID: PMC12004176 DOI: 10.1021/acsomega.4c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Metal nanoparticles (MNPs) exhibit unique properties influenced by their size, shape, and dispersion uniformity. They can be synthesized via chemical methods or green synthesis, commonly using plant or microorganism extracts as reducing and stabilizing agents. This eco-friendly approach is valued, but the literature is unclear about which taxonomic groups should be targeted to obtain certain types of MNPs. Given the ongoing growth of research in this area, this study offers a comparative overview that helps identify patterns and gaps in the current knowledge. This study reviewed 485 articles, describing 652 monometallic and 10 bimetallic nanoparticles synthesized using photosynthesizing organisms' extracts. Angiosperms and cyanobacteria were the most utilized groups. Silver and gold nanoparticles were the most studied MNPs. Gold nanoparticles' size varied with taxonomic groups, but they were smaller than the silver nanoparticles synthesized by the same group. Antimicrobial activity was the most common application, highlighting the potential of green-synthesized MNPs. This study provides valuable insights for optimizing sustainable nanoparticle production since knowledge about the specificities of different photosynthesizing taxa can be useful for directing efforts and enhancing the efficiency and precision of green-synthesized MNPs.
Collapse
Affiliation(s)
- Mateus Fernandes Oliveira
- Departamento de Botânica, Instituto
de Ciências Biológicas, Universidade
Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Leonardo César Moraes
- Departamento de Botânica, Instituto
de Ciências Biológicas, Universidade
Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cleber Cunha Figueredo
- Departamento de Botânica, Instituto
de Ciências Biológicas, Universidade
Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
6
|
Bełdzińska P, Zakrzewski M, Mruk I, Bogusławski M, Derewońko N, Bury K, Wyrzykowski D, Gołuński G, Rychłowski M, Piosik J. Size dependent impact of platinum nanoparticles on doxorubicin activity. Eur J Pharm Sci 2025; 209:107094. [PMID: 40187539 DOI: 10.1016/j.ejps.2025.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of death worldwide, with nearly 10 million fatalities yearly. Consequently, despite the search for new therapeutic approaches, the use of classical chemotherapy, remains one of the main treatment regimens. Therefore, we evaluate the use of platinum nanoparticles (PtNPs) of different sizes as potential modulators of doxorubicin (DOX) activity. In the presented research, we utilized a wide range of methods, including Spectroscopic measurements, Isothermal Titration Calorimetry, Dynamic Light Scattering, and Atomic Force Microscopy, as well as biological assays such as the Ames mutagenicity test on Salmonella enterica serovar Typhimurium TA98 and the alamarBlue cytotoxicity assay with Fluorescent Confocal Microscopy on non-cancerous HaCaT and cancerous MelJuSo cell lines, to investigate the interactions between PtNPs and DOX and the effect of diverse-sized nanoparticles on DOX activity. The obtained results indicate the presence of direct interactions, particularly highlighting differences related to particles size. We confirmed that DOX affects the aggregation of nanoparticles, while the nanoparticles induce DOX fluorescence quenching. In terms of biological aspects, PtNPs reduced the mutagenicity of DOX, and increased the survival of non-cancerous HaCaT cells. Furthermore, 70 nm PtNPs significantly increased DOX effects on cancerous MelJuSo cells by negatively affecting their morphology and culture density. To conclude, our research provided valuable insights into the interactions between PtNPs and DOX with particular emphasis on the nanoparticles' size influence highlighting nanoparticles' impact on DOX cytotoxicity providing a base for further research on the potential future modification in treatment approaches.
Collapse
Affiliation(s)
| | | | - Inez Mruk
- Laboratory of Biophysics, University of Gdańsk, Gdańsk, Poland.
| | | | - Natalia Derewońko
- Laboratory of Recombinant Vaccines, University of Gdansk, Gdansk, Poland.
| | - Katarzyna Bury
- Laboratory of Molecular Biology, University of Gdańsk, Gdańsk, Poland.
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, University of Gdansk, Gdansk, Poland.
| | | | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, University of Gdansk, Gdansk, Poland.
| | - Jacek Piosik
- Laboratory of Biophysics, University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
7
|
Pasieczna-Patkowska S, Cichy M, Flieger J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025; 30:684. [PMID: 39942788 PMCID: PMC11821210 DOI: 10.3390/molecules30030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The fundamental principle of Fourier Transform Infrared (FTIR) spectroscopy is based on the vibration and rotation of atoms, and it has become a universal and widely used spectral methodology for the detection of internal molecular structures in a diverse range of fields. A considerable number of review articles pertaining to the applications of FTIR spectroscopy have been published in recent years. Nevertheless, a comprehensive summary of the application of FTIR spectroscopy in nanoparticles' (NPs') green synthesis has yet to be presented. In the present paper, we propose a series of case studies that demonstrate the application of FTIR spectroscopy in the analysis of metal and metal oxide NPs that have been synthesized using green synthesis processes. Furthermore, a summary is presented of the position of functional group bands in FTIR spectra that are responsible for the reduction, capping and stabilization of NPs. In this review, we explore the advantages and limitations of FTIR and propose methodologies for overcoming these challenges. We also present potential solutions for the analysis of complex FTIR spectra. The present summary is intended to serve as a compendium of information for researchers engaged in the field of green synthesis of NPs, utilizing FTIR spectroscopy as a research tool.
Collapse
Affiliation(s)
- Sylwia Pasieczna-Patkowska
- Department of Chemical Technology, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland;
| | - Marcin Cichy
- Department of Chemical Technology, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
8
|
Waliaveettil FA, Jose J, Anila EI. PEGylated Platinum Nanoparticles: A Comprehensive Study of Their Analgesic and Anti-Inflammatory Effects. ACS APPLIED BIO MATERIALS 2025; 8:628-641. [PMID: 39746938 DOI: 10.1021/acsabm.4c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pain and inflammation are common symptoms of a majority of the diseases. Chronic pain and inflammation, as well as related dreadful disorders, remain difficult to control due to a lack of safe and effective medications. In this work, biocompatible platinum nanoparticles with significant analgesic and anti-inflammatory action were synthesized through a wet chemical method using polyethylene glycol-400 as a capping agent and sodium borohydride as a reducing agent. The average particle size of these Pt nanospheres was determined to be 3.26 nm using TEM analysis, and X-ray diffraction confirmed their face-centered cubic crystalline structure. Fourier transform infrared and UV-visible spectroscopy confirm that Pt-NPs are coated with the PEG-400 molecule. The significantly negative zeta potential value (-26.8 mV) indicates the stability of the produced nanoparticles. In vitro cytotoxicity studies on normal cell lines show nontoxic behavior with over 96% cell viability at 100 μg/mL of the test sample. In vitro assays of inhibition of protein denaturation and DPPH free radical scavenging elucidated the anti-inflammatory and antioxidant properties of PEGylated Pt NPs with promising EC50 values 57.99 and 9.324 μg/mL, respectively. In vivo animal trials confirmed that PEG-capped Pt-NPs are more effective than conventional medicines. The in vivo hot plate assay for the analgesic study shows a maximum response time of 14.5 ± 1.22 s (92.54% analgesia) at a dosage of 50 mg/kg and 13.8 ± 0.71 s (86.05% analgesia) at a dosage of 25 mg/kg after 180 and 240 min of administration, respectively. In the rat paw edema model for anti-inflammatory activity, the PEG-capped Pt NPs exhibit significant inhibitory action, with the maximum percentage of edema inhibition at a dosage of 50 mg/kg identical to that of the aspirin-based standard medication administered at a higher dosage of 100 mg/kg, resulting in 42% inhibition, suggesting a versatile solution for inflammation and persistent pain.
Collapse
Affiliation(s)
| | - Jiya Jose
- Division of Microbiology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Cochin, Kerala 683104, India
| | - E I Anila
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka, India 560029
| |
Collapse
|
9
|
Faderin E, Iorkula TH, Aworinde OR, Awoyemi RF, Awoyemi CT, Acheampong E, Chukwu JU, Agyemang P, Onaiwu GE, Ifijen IH. Platinum nanoparticles in cancer therapy: chemotherapeutic enhancement and ROS generation. Med Oncol 2025; 42:42. [PMID: 39789336 DOI: 10.1007/s12032-024-02598-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Platinum nanoparticles (PtNPs) offer significant promise in cancer therapy by enhancing the therapeutic effects of platinum-based chemotherapies like cisplatin. These nanoparticles improve tumor targeting, reduce off-target effects, and help overcome drug resistance. PtNPs exert their anti-cancer effects primarily through the generation of reactive oxygen species (ROS), which induce oxidative stress and apoptosis in cancer cells. Additionally, PtNPs interact with cellular signaling pathways such as PI3K/AKT and MAPK, sensitizing cancer cells to chemotherapy. Advances in PtNP synthesis focus on optimizing size, shape, and surface modifications to enhance biocompatibility and targeting. Functionalization with biomolecules allows selective tumor delivery, while smart release systems enable controlled drug release. In vivo studies have shown that PtNPs significantly inhibit tumor growth and metastasis. Ongoing clinical trials are evaluating their safety and efficacy. This review explores PtNPs' mechanisms of action, nanotechnology advancements, and challenges in biocompatibility, with a focus on their potential integration into cancer treatments.
Collapse
Affiliation(s)
- Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, 1 Hairpin Drive, Edwardsville, IL, 62026-001, USA
| | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo, Provo, UT, USA
| | - Omowunmi Rebecca Aworinde
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Christopher Taiwo Awoyemi
- Laboratory Department, Covenant University Medical Centre, Canaanland, KM 10, Idiroko Road, Ota, Ogun State, Nigeria
| | - Edward Acheampong
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Janefrances U Chukwu
- C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Stewart Hall, PO Box 6201, Morgantown, WV, 26506-6201, USA
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Gregory E Onaiwu
- Department of Physical Science (Chemistry Option), Benson Idahosa University, PMB 1100, Benin City, Edo State, Nigeria
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria, PMB 1049, Benin City, Edo State, Nigeria.
| |
Collapse
|
10
|
Mohammed PN, Hussen NH, Hasan AH, Salh HJH, Jamalis J, Ahmed S, Bhat AR, Kamal MA. A review on the role of nanoparticles for targeted brain drug delivery: synthesis, characterization, and applications. EXCLI JOURNAL 2025; 24:34-59. [PMID: 39967907 PMCID: PMC11830919 DOI: 10.17179/excli2024-7163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025]
Abstract
Unfortunately, nowadays, brain disorders, which include both neurological and mental disorders, are the main cause of years spent living with a disability worldwide. There are serious diseases with a high prevalence and a high mortality rate. However, the outmoded technical infrastructure makes their treatment difficult. The blood-brain barrier (BBB) serves as a protective mechanism for the central nervous system (CNS) and regulates its homeostatic processes. The brain is protected against injury and illness by an extremely complex system that precisely regulates the flow of ions, very few tiny molecules, and an even smaller number of macromolecules from the blood to the brain. Nevertheless, the BBB also considerably inhibits the delivery of medications to the brain, making it impossible to treat a variety of neurological diseases. Several strategies are now being studied to enhance the transport of drugs over the BBB. According to this research, nanoparticles are one of the most promising agents for brain disease treatment while many conventional drugs are also capable of crossing this barrier but there are amazing facts about nanoparticles in brain drug delivery. For example, 1. Precision Targeting: Through mechanisms such as receptor-mediated transport, ligand attachment, or the use of external stimuli (e.g., magnetic or thermal guidance), nanoparticles can deliver drugs specifically to diseased areas of the brain while minimizing exposure to healthy tissues. This targeted approach reduces side effects and enhances therapeutic outcomes. 2. Improved Drug Stability: Drugs can be encapsulated by nanoparticles, which keeps them stable and shields them from deterioration while being transported to the brain. 3. Therapeutic Payload: Nanoparticles possess a high surface-area-to-volume ratio, enabling them to encapsulate a substantial quantity of therapeutic agents relative to their size. This allows for enhanced drug delivery efficiency, maximizing therapeutic outcomes while potentially reducing the required dosage to achieve the desired effect. 4. Imaging Properties: Certain nanoparticles can also act as contrast agents for magnetic resonance imaging (MRI), allowing for the real-time visualization of drug distribution and administration in the brain. 5. Combination Therapy Possibility: Nanoparticles can be designed to co-deliver multiple medications or therapeutic agents, which could enhance synergistic effects. There have been in vivo studies where nanoparticles were successfully used for combination therapies, demonstrating potential for personalized treatments. One notable example is in cancer treatment, where nanoparticles have been designed to co-deliver multiple chemotherapeutic agents. In general, brain medication delivery by nanoparticles is a novel strategy that has the potential to revolutionize neurological disease therapy and enhance patient outcomes. The study furthermore includes a concise depiction of the structural and physiological characteristics of the BBB, and it also provides an overview of the nanoparticles that are most often used in medicine. A brief overview of the structural and physiochemical characteristics of the NPs, as well as the most popular nanoparticles used in medicine, is also included in the review.
Collapse
Affiliation(s)
- Payam Nawzad Mohammed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region-Iraq, Iraq
| | - Narmin Hamaamin Hussen
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region-Iraq, Iraq
| | - Aso Hameed Hasan
- Department of Chemistry, College of Science, University of Garmian, Kalar 46021, Kurdistan Region-Iraq, Iraq
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia- 81310 Johor Bahru, Johor, Malaysia
| | - Hozan Jaza Hama Salh
- Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia- 81310 Johor Bahru, Johor, Malaysia
| | - Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai - 600014, India
| | - Ajmal R. Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur- 440033, India
| | - Mohammad Amjad Kamal
- Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Savar, Dhaka -1216, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Novel Global Community Educational Foundation, Australia
| |
Collapse
|
11
|
Bano N, Izhar SK, Gupta A, Zaheer MR, Roohi. Prospects of Plant Derived Bioactive Compounds as Nanoparticles for Biotechnological Applications. Recent Pat Biotechnol 2025; 19:113-127. [PMID: 38644720 DOI: 10.2174/0118722083301253240417114400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Nanoparticles bestow beneficial impacts on plants, specifically in increasing photosynthetic capacity and germination rate, pesticide delivery, managing pathogenicity and enhancing nutrient supply. The nanoparticles produced from the medicinal plant extracts are identified as an exceptional applicant in nanomedicine, cosmetics, and agriculture for the treatment of diseases as antimicrobial, antioxidant and anticancer agents, etc. Plant extracts actually have bioactive metabolites that provide therapeutic potential against a variety of diseases. Herein, we review the production of bioactive compounds from leaves, roots, seeds, flowers and stems. We further summarize the different methods for obtaining plant extracts and the green technologies for the synthesis of nanoparticles of plant derived bioactive compounds. Biotechnological aspects of these synthesized nanoparticles are also added here as highlights of this review. Overall, plant derived nanoparticles provide an alternative to conventional approaches for drug delivery as well and present exciting opportunities for future research on novel areas. We explore patent applications for novel plant-derived nanoparticle technologies, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Naushin Bano
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Syed Khalida Izhar
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | | | - Roohi
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| |
Collapse
|
12
|
Ajala O, Onwudiwe D, Ogunniyi S, Kurniawan SB, Esan O, Aremu OS. A Review of Different Synthesis Approaches to Nanoparticles: Bibliometric Profile. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2024; 11:1329-1368. [DOI: 10.18596/jotcsa.1389331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanomaterials are currently one of the most popular emerging materials used in different applications such as drug delivery, water treatment, cancer treatment, electronic, food preservations, and production of pesticide. This is due to their interesting features including size-dependent properties, lightweight, biocompatibility, amphiphilicity and biodegradability. They offer wide possibilities for modification and are used in multiple functions with enormous possibilities. Some of them are medically suitable which has opened new opportunities for medical improvement especially for human health. These characteristics also make nanomaterials one of the pioneers in green materials for various needs, especially in environmental engineering and energy sectors. In this review, several synthesis approaches for nanoparticles mainly physical, chemical, and biological have been discussed extensively. Furthermore, bibliometric analysis on the synthesis of nanoparticles was evaluated. About 117,162 publications were considered, of which 92% are journal publications. RSC Advances is the most published outlet on the synthesis of nanoparticles and China has the highest number of researchers engaged in the synthesis of nanoparticles. It was noted in the evaluation of synthesis approach that biological approach is the savest method but with a low yield, while the chemical approach offers a high yield with some level of hazardous effect. Also, the bibliometric analysis revealed that the field of nanotechnology is a trending and hot ground for research.
Collapse
|
13
|
Aminzai MT, Yildirim M, Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024; 280:126790. [PMID: 39217711 DOI: 10.1016/j.talanta.2024.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metallic nanoparticles (MNPs) have attracted great interest among scientists and researchers for years due to their unique optical, physiochemical, biological, and magnetic properties. As a result, MNPs have been widely utilized across a variety of scientific fields, including biomedicine, agriculture, electronics, food, cosmetics, and the environment. In this regard, the current review article offers a comprehensive overview of recent studies on the synthesis of MNPs (metal and metal oxide nanoparticles), outlining the benefits and drawbacks of chemical, physical, and biological methods. However, the biological synthesis of MNPs is of great importance considering the biocompatibility and biological activity of certain MNPs. A variety of characterization techniques, including X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, scanning electron microscopy, dynamic light scattering, atomic force microscopy, Fourier transform infrared spectroscopy, and others, have been discussed in depth to gain deeper insights into the unique structural and spectroscopic properties of MNPs. Furthermore, their unique properties and applications in the fields of medicine, agriculture, and the environment are summarized and deeply discussed. Finally, the main challenges and limitations of MNPs synthesis and applications, as well as their future prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, 33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
14
|
Monika P, Chandraprabha MN, Hari Krishna R, Vittal M, Likhitha C, Pooja N, Chaudhary V, C M. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnol Genet Eng Rev 2024; 40:3379-3407. [PMID: 36117472 DOI: 10.1080/02648725.2022.2122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 12/07/2022]
Abstract
Manufacturing new materials at the nanoscale level is a field that is rapidly expanding with widespread application in advanced science and MMT is effectively used for the technology. Nanoparticles (NP), the building blocks of nanotechnology, exhibit improved properties than the larger counterparts and can be prepared from a variety of metals, including silver, copper, gold, zinc, and others. Phytonanotechnology is gaining major attention as various clinical researches have focused on the excellent properties (physicochemical and biological) of nanoscale phytochemicals and its applications in biological systems. In recent developments, pomegranate (Punica granatum L.) has gained major attention due to the phenolic compounds like apigenin, caffeic acid, chlorogenic acid, cyanidin, ellagic acid, gallic acid, granatin A, granatin B, pelargonidin, punicalagin, punicalin and quercetin found in its peel. Pomegranate Peel Extract (PPE) that aid the synthesis of PPE mediated nanoparticles (PPE-MNPs) like PPE-MAuNPs, PPE-MAgNPs, PPE-MZnONPs, PPE-MCuNPs, PPE-MPtNPs and PPE-MFeNPs has yielded plethora of beneficial properties in both plants and humans. In the current review, we discuss in detail the recent advances in synthesis and characterization of various nanoparticles from PPE. Moreover, the multitude biological properties of PPE-MNPs make up the long list of clinical uses. In addition, we discuss the pharmacokinetics, current advantages, and limitations of PPE-MNPs which can further help in development of more efficient therapeutics. Despite some of the challenges, PPE-MNPs hold a lot of potential for drug delivery and are always a better choice. The convergence of science and engineering has created new hopes, in which phytomedicines will have more efficacy, bioavailability, and less toxicity.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - M N Chandraprabha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - R Hari Krishna
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
- Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Maanya Vittal
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - C Likhitha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - N Pooja
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Manjunatha C
- Department of Chemistry, RV College of Engineering, Bangalore, India
- Centre for Nanomaterials and Devices, RV College of Engineering, Bangalore, India
| |
Collapse
|
15
|
Jansman MMT, Norkute E, Jin W, Kempen PJ, Douka D, Thulstrup PW, Hosta-Rigau L. Nitric oxide-triggering activity of gold-, platinum- and cerium oxide-nanozymes from S-nitrosothiols and diazeniumdiolates. Colloids Surf B Biointerfaces 2024; 244:114161. [PMID: 39191113 DOI: 10.1016/j.colsurfb.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Cardiovascular diseases pose a significant global health challenge, contributing to high mortality rates and impacting overall well-being and quality of life. Nitric oxide (NO) plays a pivotal role as a vasodilator, regulating blood pressure and enhancing blood flow-crucial elements in preventing cardiovascular diseases, making it a prime therapeutic target. Herein, metal-based nanozymes (NZs) designed to induce NO release from both endogenous and exogenous NO-donors are investigated. Successful synthesis of gold, platinum (Pt) and cerium oxide NZs is achieved, with all three NZs demonstrating the ability to catalyze the NO release from various NO sources, namely S-nitrosothiols and diazeniumdiolates. Pt-NZs exhibit the strongest performance among the three NZ types. Further exploration involved investigating encapsulation and coating techniques using poly(lactic-co-glycolic acid) nanoparticles as experimental carriers for Pt-NZs. Both strategies showed efficiency in serving as platforms for Pt-NZs, successfully showing the ability to trigger NO release.
Collapse
Affiliation(s)
- Michelle Maria Theresia Jansman
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Evita Norkute
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Weiguang Jin
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Paul Joseph Kempen
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark; DTU Nanolab, National Center for Nano Fabrication and Characterization Technical University of Denmark, Ørsteds Plads, Building 347, Kgs. Lyngby 2800, Denmark
| | - Despoina Douka
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
16
|
Bhange M, Telange DR. Unlocking the Potential of Phyto Nanotherapeutics in Hepatocellular Carcinoma Treatment: A Review. J Hepatocell Carcinoma 2024; 11:2241-2256. [PMID: 39574434 PMCID: PMC11579138 DOI: 10.2147/jhc.s483619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/03/2024] [Indexed: 11/24/2024] Open
Abstract
Hepatocellular carcinoma is the fifth leading cancer in related diseases most commonly in men and women. The curative treatments of liver cancer are short-listed, associated with toxicities and therapeutically. Emerging nanotechnologies exhibited the possibility to treat or target liver cancer. Over the years, to phytosome solid lipid nanoparticles, gold, silver, liposomes, and phospholipid nanoparticles have been produced for liver cancer therapy, and some evidence of their effectiveness has been established. Ideas are limited to the laboratory scale, and in order to develop active targeting of nanomedicine for the clinical aspects, they must be extended to a larger scale. Thus, the current review focuses on previously and presently published research on the creation of phytosomal nanocarriers for the treatment of hepatocellular carcinoma. In hepatocellular carcinoma (HCC), phytosomal nanotherapeutics improve the targeted delivery and bioavailability of phytochemicals to tumor cells, thereby reducing systemic toxicity and increasing therapeutic efficacy. In order to address the intricate molecular processes implicated in HCC, this strategy is essential.
Collapse
Affiliation(s)
- Manjusha Bhange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education & Research (DU), Wardha, Maharashtra, India
| | - Darshan R Telange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education & Research (DU), Wardha, Maharashtra, India
| |
Collapse
|
17
|
Marelli M, Perez Schmidt P, Nguyen XT, Pitzalis E, Poggini L, Ragona L, Pagano K, Aronica LA, Polito L, Evangelisti C. Photo-induced microfluidic production of ultrasmall platinum nanoparticles. NANOSCALE 2024; 16:19669-19674. [PMID: 39385674 DOI: 10.1039/d4nr02971b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We describe here the synthesis of ultrasmall Pt nanoparticles (NPs) obtained by a robust and reliable protocol using UV-Vis photoreduction of a platinum salt precursor, under continuous flow conditions. These ligand-free Pt NPs were rapidly dispersed onto a solid support or stabilized towards aggregation as a colloidal solution by the addition of an appropriate ligand in the reaction mixture. The proposed protocol exploits a microfluidic platform where the Pt4+ precursor is photo-reduced to small Pt0 NPs (1.3 nm) at room temperature in the presence of ethanol, without any additional reducing agent. We apply the protocol to prepare Pt NPs highly dispersed on carbon support (Pt/C) proven to be a very efficient heterogeneous catalyst for both the hydrosilylation of terminal alkynes and hydrogenation of nitroaromatic compounds, selected as model reactions. Furthermore, we exploit the versatility of this microfluidic approach to produce stabilized aqueous/ethanol colloidal solutions of Pt NPs, employing a ligand of choice (e.g., PVP or a thiol-ligand). These colloids offer long-term storage and further ligand modification. We showcase the synthesis of biocompatible glycol-stabilized Pt nanoparticles as an exemplary application.
Collapse
Affiliation(s)
- Marcello Marelli
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Patricia Perez Schmidt
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Xuan Trung Nguyen
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Emanuela Pitzalis
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Lorenzo Poggini
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Laura Ragona
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Corti 12, 20133 Milano, Italy
| | - Katiuscia Pagano
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Corti 12, 20133 Milano, Italy
| | - Laura Antonella Aronica
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Laura Polito
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Claudio Evangelisti
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
18
|
W FA, Jose J, E I A. Assessing anticancer properties of PEGylated platinum nanoparticles on human breast cancer cell lines using in-vitroassays. Biomed Phys Eng Express 2024; 10:065019. [PMID: 39260382 DOI: 10.1088/2057-1976/ad795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
This study describes the in-vitro cytotoxic effects of PEG-400 (Polyethylene glycol-400)-capped platinum nanoparticles (PEGylated Pt NPs) on both normal and cancer cell lines. Structural characterization was carried out using x-ray diffraction and Raman spectroscopy with an average crystallite size 5.7 nm, and morphological assessment using Scanning electron microscopy (SEM) revealed the presence of spherical platinum nanoparticles. The results of energy-dispersive x-ray spectroscopy (EDX) showed a higher percentage fraction of platinum content by weight, along with carbon and oxygen, which are expected from the capping agent, confirming the purity of the platinum sample. The dynamic light scattering experiment revealed an average hydrodynamic diameter of 353.6 nm for the PEGylated Pt NPs. The cytotoxicity profile of PEGylated Pt NPs was assessed on a normal cell line (L929) and a breast cancer cell line (MCF-7) using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results revealed an IC50of 79.18 μg ml-1on the cancer cell line and non-toxic behaviour on the normal cell line. In the dual staining apoptosis assay, it was observed that the mortality of cells cultured in conjunction with platinum nanoparticles intensified and the proliferative activity of MCF-7 cells gradually diminished over time in correlation with the increasing concentration of the PEGylated Pt NPs sample. Thein vitroDCFH-DA assay for oxidative stress assessment in nanoparticle-treated cells unveiled the mechanistic background of the anticancer activity of PEGylated platinum nanoparticles as ROS-assisted mitochondrial dysfunction.
Collapse
Affiliation(s)
- Felicia Aswathy W
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka- 560029, India
| | - Jiya Jose
- Division of Microbiology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Cochin, Kerala- 683104, India
| | - Anila E I
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka- 560029, India
| |
Collapse
|
19
|
Alven S, Gandidzanwa S, Ngalo B, Poswayo O, Madanhire T, Aderibigbe BA, Tshentu Z. Platinum Group Metals Nanoparticles in Breast Cancer Therapy. Pharmaceutics 2024; 16:1162. [PMID: 39339199 PMCID: PMC11434984 DOI: 10.3390/pharmaceutics16091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has emerged as a promising approach to cancer diagnosis, imaging, and therapy. Several preclinical studies have demonstrated that compounds and nanoparticles formulated from platinum group metals (PGMs) effectively treat breast cancer. PGMs are chemically stable, easy to functionalise, versatile, and tunable. They can target hypoxic microenvironments, catalyse the production of reactive oxygen species, and offer the potential for combination therapy. PGM nanoparticles can be incorporated with anticancer drugs to improve efficacy and can be attached to targeting moieties to enhance tumour-targeting efficiency. This review focuses on the therapeutic outcomes of platinum group metal nanoparticles (PGMNs) against various breast cancer cells and briefly discusses clinical trials of these nanoparticles in breast cancer treatment. It further illustrates the potential applications of PGMNs in breast cancer and presents opportunities for future PGM-based nanomaterial applications in combatting breast cancer.
Collapse
Affiliation(s)
- Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | | | - Basabele Ngalo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Olwethu Poswayo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Tatenda Madanhire
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
- Department of Chemistry, University of South Africa, Johannesburg 1710, South Africa
| | | | - Zenixole Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| |
Collapse
|
20
|
Pach A, Szot A, Fitzner K, Luty-Błocho M. Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems. MICROMACHINES 2024; 15:1119. [PMID: 39337779 PMCID: PMC11434062 DOI: 10.3390/mi15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The process of noble metal nanoparticle synthesis is complex and consists of at least two steps: slow nucleation and fast autocatalytic growth. The kinetics of these two processes depends on the reductant "power" and the addition of stabilizers, as well as other factors (e.g., temperature, pH, ionic strength). Knowing these parameters, it is possible to synthesize materials with appropriate physicochemical properties, which can be simply adjusted by the type of the used metal, particle morphology and surface property. This, in turn, affects the possibility of their applications in various areas of life, including medicine, catalysis, engineering, fuel cells, etc. However, in some cases, the standard route, i.e., the chemical reduction of a metal precursor carried out in the batch reactor, is not sufficient due to problems with temperature control, properties of reagents, unstable or dangerous intermediates and products, etc. Therefore, in this review, we focused on an alternative approach to their chemical synthesis provided by microreactor systems. The use of microreactors for the synthesis of noble metal nanomaterials (e.g., Ag, Au, Pt, Pd), obtained by chemical reduction, is analyzed, taking into account investigations carried out in recent years. A particular emphasis is placed on the processes in which the use of microreactors removed the limitations associated with synthesis in a batch reactor. Moreover, the opportunities and challenges related to the synthesis of noble nanomaterials in the microreactor system are underlined. This review discusses the advantages as well as the problems of nanoparticle synthesis in microreactors.
Collapse
Affiliation(s)
| | | | | | - Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. Adama Mickiewicza 30, 30-059 Krakow, Poland; (A.P.); (A.S.); (K.F.)
| |
Collapse
|
21
|
Li Y, Vulpe C, Lammers T, Pallares RM. Assessing inorganic nanoparticle toxicity through omics approaches. NANOSCALE 2024; 16:15928-15945. [PMID: 39145718 DOI: 10.1039/d4nr02328e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the last two decades, the development of nanotechnology has resulted in inorganic nanoparticles playing crucial roles in key industries, ranging from healthcare to energy technologies. For instance, gold and silver nanoparticles are widely used in rapid COVID-19 and flu tests, titania and zinc oxide nanoparticles are commonly found in cosmetic products, and superparamagnetic iron oxide nanoparticles have been clinically exploited as contrast agents and anti-anemia medicines. As a result, human exposure to nanomaterials is continuously increasing, raising concerns about their potential adverse health effects. Historically, the study of nanoparticle toxicity has largely relied on macroscopic observations obtained in different in vitro and in vivo models, resulting in readouts such as median lethal dose, biodistribution profile, and/or histopathological assessment. In recent years, omics methodologies, including transcriptomics, epigenomics, proteomics, metabolomics, and lipidomics, are increasingly used to characterize the biological interactions of nanomaterials, providing a better and broader understanding of their impact and mechanisms of toxicity. These approaches have been able to identify important genes and gene products that mediate toxicological effects, as well as endogenous functions and pathways dysregulated by nanoparticles. Omics methods improve our understanding of nanoparticle biology, and unravel mechanistic insights into nanomedicine-based therapies. This review aims to provide a deeper understanding and new perspectives of omics approaches to characterize the toxicity and biological interactions of inorganic nanoparticles, and improve the safety of nanoparticle applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
22
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
23
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
24
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|
25
|
Marvi PK, Ahmed SR, Das P, Ghosh R, Srinivasan S, Rajabzadeh AR. Prunella vulgaris-phytosynthesized platinum nanoparticles: Insights into nanozymatic activity for H 2O 2 and glutamate detection and antioxidant capacity. Talanta 2024; 274:125998. [PMID: 38574541 DOI: 10.1016/j.talanta.2024.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Artificial nanozymes (enzyme-mimics), specifically metallic nanomaterials, have garnered significant attention recently due to their reduced preparation cost and enhanced stability in a wide range of environments. The present investigation highlights, for the first time, a straightforward green synthesis of biogenic platinum nanoparticles (PtNPs) from a natural resource, namely Prunella vulgaris (Pr). To demonstrate the effectiveness of the phytochemical extract as an effective reducing agent, the PtNPs were characterized by various techniques such as UV-vis spectroscopy, High-resolution Transmission electron microscopy (HR-TEM), zeta-potential analysis, Fourier-transform infrared spectroscopy (FTIR), and Energy dispersive spectroscopy (EDS). The formation of PtNPs with narrow size distribution was verified. Surface decoration of PtNPs was demonstrated with multitudinous functional groups springing from the herbal extract. To demonstrate their use as viable nanozymes, the peroxidase-like activity of Pr/PtNPs was evaluated through a colorimetric assay. Highly sensitive visual detection of H2O2 with discrete linear ranges and a low detection limit of 3.43 μM was demonstrated. Additionally, peroxidase-like catalytic activity was leveraged to develop a colorimetric platform to quantify glutamate biomarker levels with a high degree of selectivity, the limit of detection (LOD) being 7.00 μM. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test was used to explore the scavenging nature of the PtNPs via the degradation of DPPH. Overall, the colorimetric assay developed using the Pr/PtNP nanozymes in this work could be used in a broad spectrum of applications, ranging from biomedicine and food science to environmental monitoring.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Raja Ghosh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
26
|
Kashyap A, Kumari M, Singh A, Mukherjee K, Maity D. Current development of theragnostic nanoparticles for women's cancer treatment. Biomed Mater 2024; 19:042001. [PMID: 38471150 DOI: 10.1088/1748-605x/ad3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical industry, nanoparticles (NPs-exclusively small particles with size ranging from 1-100 nanometres) are recently employed as powerful tools due to their huge potential in sophisticated and enhanced cancer theragnostic (i.e. therapeutics and diagnostics). Cancer is a life-threatening disease caused by carcinogenic agents and mutation in cells, leading to uncontrolled cell growth and harming the body's normal functioning while affecting several factors like low levels of reactive oxygen species, hyperactive antiapoptotic mRNA expression, reduced proapoptotic mRNA expression, damaged DNA repair, and so on. NPs are extensively used in early cancer diagnosis and are functionalized to target receptors overexpressing cancer cells for effective cancer treatment. This review focuses explicitly on how NPs alone and combined with imaging techniques and advanced treatment techniques have been researched against 'women's cancer' such as breast, ovarian, and cervical cancer which are substantially occurring in women. NPs, in combination with numerous imaging techniques (like PET, SPECT, MRI, etc) have been widely explored for cancer imaging and understanding tumor characteristics. Moreover, NPs in combination with various advanced cancer therapeutics (like magnetic hyperthermia, pH responsiveness, photothermal therapy, etc), have been stated to be more targeted and effective therapeutic strategies with negligible side effects. Furthermore, this review will further help to improve treatment outcomes and patient quality of life based on the theragnostic application-based studies of NPs in women's cancer treatment.
Collapse
Affiliation(s)
- Ananya Kashyap
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Madhubala Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Arnika Singh
- Department of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, IN 46202, United States of America
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, IN 46202, United States of America
| |
Collapse
|
27
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
28
|
Faisal S, Tariq MH, Abdullah, Zafar S, Un Nisa Z, Ullah R, Ur Rahman A, Bari A, Ullah K, Khan RU. Bio synthesis, comprehensive characterization, and multifaceted therapeutic applications of BSA-Resveratrol coated platinum nanoparticles. Sci Rep 2024; 14:7875. [PMID: 38570564 PMCID: PMC10991511 DOI: 10.1038/s41598-024-57787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
This study examines the manufacturing, characterization, and biological evaluation of platinum nanoparticles, which were synthesized by Enterobacter cloacae and coated with Bovine Serum Albumin (BSA) and Resveratrol (RSV). The formation of PtNPs was confirmed with the change of color from dark yellow to black, which was due to the bioreduction of platinum chloride by E. cloacae. BSA and RSV functionalization enhanced these nanoparticles' biocompatibility and therapeutic potential. TGA, SEM, XRD, and FTIR were employed for characterization, where PtNPs and drug conjugation-related functional groups were studied by FTIR. XRD confirmed the crystalline nature of PtNPs and Pt-BSA-RSV NPs, while TGA and SEM showed thermal stability and post-drug coating morphological changes. Designed composite was also found to be biocompatible in nature in hemolytic testing, indicating their potential in Biomedical applications. After confirmation of PtNPs based nanocaompsite synthesis, they were examined for anti-bacterial, anti-oxidant, anti-inflammatory, and anti-cancer properties. Pt-BSA-RSV NPs showed higher concentration-dependent DPPH scavenging activity, which measured antioxidant capability. Enzyme inhibition tests demonstrated considerable anti-inflammatory activity against COX-2 and 15-LOX enzymes. In in vitro anticancer studies, Pt-BSA-RSV NPs effectively killed human ovarian cancer cells. This phenomenon was demonstrated to be facilitated by the acidic environment of cancer, as the drug release assay confirmed the release of RSV from the NP formulation in the acidic environment. Finally, Molecular docking also demonstrated that RSV has strong potential as an anti-oxidant, antibacterial, anti-inflammatory, and anticancer agent. Overall, in silico and in vitro investigations in the current study showed good medicinal applications for designed nanocomposites, however, further in-vivo experiments must be conducted to validate our findings.
Collapse
Affiliation(s)
- Shah Faisal
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, 24460, Pakistan.
| | - Muhammad Hamza Tariq
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Abdullah
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, Poland
| | - Sania Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Zaib Un Nisa
- Department of Chemistry, Abdul Wali Khan University Mardan, Gardan Campus, Mardan, 23200, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anees Ur Rahman
- Department of Health and Biological Science, Abasyn University, Peshawar, 25000, Pakistan
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khair Ullah
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Chinese Academy of Sciences, Beijing, 100049, China
| | - Rahat Ullah Khan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
29
|
Bishoyi AK, Mandhata CP, Sahoo CR, Paidesetty SK, Padhy RN. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1347-1375. [PMID: 37712972 DOI: 10.1007/s00210-023-02719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The Oscillatoria sp., a blue-green alga or cyanobacterium, consists of about 305 species distributed globally. Cyanobacteria are prokaryotes possessing several secondary metabolites that have industrial and biomedical applications. Particularly, the published reviews on Oscillatoria sp. have not recorded any pharmacology, or possible details, while the detailed chemical structures of the alga are reported in the literature. Hence, this study considers pertinent pharmacological activities of the plethora of bioactive components of Oscillatoria sp. Furthermore, the metallic nanoparticles produced with Oscillatoria sp. were documented for plausible antibacterial, antifungal, antioxidant, anticancer, and cytotoxic effects against several cultured human cell lines. The antimicrobial activities of solvent extracts of Oscillatoria sp. and the biotic activities of its derivatives, pyridine, acridine, fatty acids, and triazine were structurally described in detail. To understand the connotations with research gaps and provide some pertinent prospective suggestions for further research on cyanobacteria as potent sources of pharmaceutical utilities, attempts were documented. The compounds of Oscillatoria sp. are a potent source of secondary metabolites that inhibit the cancer cell lines, in vitro. It could be expected that by holistic exploitation, the natural Oscillatoria products, as the source of chemical varieties and comparatively more potent inhibitors, would be explored against pharmacological activities with the integument of SARs.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
30
|
Lansangan C, Khoobchandani M, Jain R, Rudensky S, Perry CC, Patil R. Designing Gold Nanoparticles for Precise Glioma Treatment: Challenges and Alternatives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1153. [PMID: 38473623 DOI: 10.3390/ma17051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a glioma and the most aggressive type of brain tumor with a dismal average survival time, despite the standard of care. One promising alternative therapy is boron neutron capture therapy (BNCT), which is a noninvasive therapy for treating locally invasive malignant tumors, such as glioma. BNCT involves boron-10 isotope capturing neutrons to form boron-11, which then releases radiation directly into tumor cells with minimal damage to healthy tissues. This therapy lacks clinically approved targeted blood-brain-barrier-permeating delivery vehicles for the central nervous system (CNS) entry of therapeutic boron-10. Gold nanoparticles (GNPs) are selective and effective drug-delivery vehicles because of their desirable properties, facile synthesis, and biocompatibility. This review discusses biomedical/therapeutic applications of GNPs as a drug delivery vehicle, with an emphasis on their potential for carrying therapeutic drugs, imaging agents, and GBM-targeting antibodies/peptides for treating glioma. The constraints of GNP therapeutic efficacy and biosafety are discussed.
Collapse
Affiliation(s)
- Cedric Lansangan
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Menka Khoobchandani
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Ruchit Jain
- Department of Surgery, Government Medical College, Miraj 416410, India
| | - Serge Rudensky
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Christopher C Perry
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Rameshwar Patil
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| |
Collapse
|
31
|
Dowbysz A, Samsonowicz M, Kukfisz B, Koperniak P. Recent Developments of Nano Flame Retardants for Unsaturated Polyester Resin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:852. [PMID: 38399103 PMCID: PMC10890331 DOI: 10.3390/ma17040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
For many years, efforts have been made to reduce the flammability of unsaturated polyester resins (UPRs), which are often used in the rail, shipbuilding, and construction industries. Without modification, they often fail to meet fire safety standards. Despite a rich history of flame retardants (FRs) applied to UPRs, researchers seek new solutions that will provide lower flammability and smoke density, as well as attaining a lower environmental impact from the composites. The objective of the study is to highlight the most important recent research on promising nano FRs in order to promote their further development. Mechanisms of action of several groups of nano FRs, such as clay-based, carbon-based, transition metal compounds, layered double hydroxides, polyhedral oligomeric silsesquioxanes, and others, including bio-based, have been studied. Particular emphasis has been laid on nano FRs applied to UPRs, and their influences on thermal stability, flammability, and mechanical properties. Moreover, the environmental impact and toxicity of nano FRs have been discussed. Results have proved that nano FRs applied at low loadings may significantly improve thermal stability, with a simultaneous increase or only a slight decrease in mechanical properties. However, attention on related environmental issues has highlighted the necessity of carefully selecting novel nano FRs.
Collapse
Affiliation(s)
- Adriana Dowbysz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland;
| | - Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland;
| | - Bożena Kukfisz
- Institute of Safety Engineering, Fire University, Slowackiego Street 52/54, 01-629 Warsaw, Poland;
| | - Piotr Koperniak
- Lukasiewicz Research Network—Institute of Aviation, 110/114 Krakowska Avenue, 02-256 Warsaw, Poland;
| |
Collapse
|
32
|
Mutalik C, Nivedita, Sneka C, Krisnawati DI, Yougbaré S, Hsu CC, Kuo TR. Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. Int J Mol Sci 2024; 25:1926. [PMID: 38339204 PMCID: PMC10856345 DOI: 10.3390/ijms25031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nanomaterials are widely used in various fields, and ongoing research is focused on developing safe and sustainable nanomaterials. Using zebrafish as a model organism for studying the potentially toxic effects of nanomaterials highlights the importance of developing safe and sustainable nanomaterials. Studies conducted on nanomaterials and their toxicity and potential risks to human and environmental health are vital in biomedical sciences. In the present review, we discuss the potential toxicity of nanomaterials (inorganic and organic) and exposure risks based on size, shape, and concentration. The review further explores various types of nanomaterials and their impacts on zebrafish at different levels, indicating that exposure to nanomaterials can lead to developmental defects, changes in gene expressions, and various toxicities. The review also covers the importance of considering natural organic matter and chorion membranes in standardized nanotoxicity testing. While some nanomaterials are biologically compatible, metal and semiconductor nanomaterials that enter the water environment can increase toxicity to aquatic creatures and can potentially accumulate in the human body. Further investigations are necessary to assess the safety of nanomaterials and their impacts on the environment and human health.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Nivedita
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Chandrasekaran Sneka
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
33
|
de Jesus RA, de Assis GC, Oliveira RJD, Costa JAS, da Silva CMP, Iqbal HM, Ferreira LFR. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications. NANO-STRUCTURES & NANO-OBJECTS 2024; 37:101071. [DOI: 10.1016/j.nanoso.2023.101071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
34
|
Mollania H, Oloomi-Buygi M, Mollania N. Catalytic and anti-cancer properties of platinum, gold, silver, and bimetallic Au-Ag nanoparticles synthesized by Bacillus sp. bacteria. J Biotechnol 2024; 379:33-45. [PMID: 38049076 DOI: 10.1016/j.jbiotec.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Metallic nanoparticles play a significant role in the catalysis of chemical processes, besides, bimetallic nanoparticles with abundant active sites can reduce metallic nanoparticles toxicity in addition to increasing their catalytic performances. In this work, the platinum, gold, and silver nanoparticles are bio-synthesized using a native bacterium (GFCr-4). Also, the Au-Ag and Au@Ag bimetallic nanoparticles with alloy and core-shell structures, respectively, are biologically synthesized. To improve the synthesis, the effects of various factors like pH, temperature, electron donor, and ionic liquids were investigated. The as-synthesized nanoparticles were characterized with different techniques. The microscope images and dynamic light scattering (DLS) analysis confirm the uniform distribution of as-synthesized nanoparticles with average sizes of 25, 30, 47, 77, and 86 nm obtained for Ag, Au, Pt, Au-Ag alloy, and Au@Ag core-shell, respectively. The catalytic performances of as-synthesized nanoparticles were investigated. The Au-Ag alloy nanoparticles exhibit better catalytic performance than the as-synthesized metallic Au nanoparticles, according to the Gewald reaction. According to the photocatalytic study, the yield can be increased by up to 92% by using PtNPs in the presence of a green LED. Additionally, for the first time, PtNPs were utilized as an effective catalyst in a peroxyoxalate chemiluminescence (POCL) system in the presence of nuclear fast red (NFR) as a novel fluorophore. In addition, the results of the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that the synthesized eco-friendly nanoparticles have a low effect on the lethality of 3T3 normal cells whereas MCF-7 cancer cells were inhibited up to 77.3% after treatment by PtNPs nanoparticles.
Collapse
Affiliation(s)
- Hamid Mollania
- Ferdowsi University of Mashhad, Department of Electrical Engineering, Mashhad, Iran
| | - Majid Oloomi-Buygi
- Ferdowsi University of Mashhad, Department of Electrical Engineering, Mashhad, Iran.
| | - Nasrin Mollania
- Hakim Sabzevari University, Faculty of Basic Sciences, Department of Biology, Sabzevar, Iran.
| |
Collapse
|
35
|
Asghar N, Hussain A, Nguyen DA, Ali S, Hussain I, Junejo A, Ali A. Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. J Nanobiotechnology 2024; 22:26. [PMID: 38200605 PMCID: PMC10777661 DOI: 10.1186/s12951-023-02151-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024] Open
Abstract
Environmental pollution is a major issue that requires effective solutions. Nanomaterials (NMs) have emerged as promising candidates for pollution remediation due to their unique properties. This review paper provides a systematic analysis of the potential of NMs for environmental pollution remediation compared to conventional techniques. It elaborates on several aspects, including conventional and advanced techniques for removing pollutants, classification of NMs (organic, inorganic, and composite base). The efficiency of NMs in remediation of pollutants depends on their dispersion and retention, with each type of NM having different advantages and disadvantages. Various synthesis pathways for NMs, including traditional synthesis (chemical and physical) and biological synthesis pathways, mechanisms of reaction for pollutants removal using NMs, such as adsorption, filtration, disinfection, photocatalysis, and oxidation, also are evaluated. Additionally, this review presents suggestions for future investigation strategies to improve the efficacy of NMs in environmental remediation. The research so far provides strong evidence that NMs could effectively remove contaminants and may be valuable assets for various industrial purposes. However, further research and development are necessary to fully realize this potential, such as exploring new synthesis pathways and improving the dispersion and retention of NMs in the environment. Furthermore, there is a need to compare the efficacy of different types of NMs for remediating specific pollutants. Overall, this review highlights the immense potential of NMs for mitigating environmental pollutants and calls for more research in this direction.
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Alamdar Hussain
- Department of Botany, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Salar Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Ishtiaque Hussain
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
- Department of Environmental Science, Quaid-i-Azam University of Islamabad, Islamabad, 15320, Pakistan
| | - Aurangzeb Junejo
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Attarad Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
- Directorate of Quality Enhancement Cell, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
| |
Collapse
|
36
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
37
|
Lan H, Jamil M, Ke G, Dong N. The role of nanoparticles and nanomaterials in cancer diagnosis and treatment: a comprehensive review. Am J Cancer Res 2023; 13:5751-5784. [PMID: 38187049 PMCID: PMC10767363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer's pathological processes are complex and present several challenges for current chemotherapy methods. These challenges include cytotoxicity, multidrug resistance, the proliferation of cancer stem cells, and a lack of specificity. To address these issues, researchers have turned to nanomaterials, which possess distinct optical, magnetic, and electrical properties due to their size range of 1-100 nm. Nanomaterials have been engineered to improve cancer treatment by mitigating cytotoxicity, enhancing specificity, increasing drug payload capacity, and improving drug bioavailability. Despite a growing corpus of research on this subject, there has been limited progress in permitting nanodrugs for medical use. The advent of nanotechnology, particularly advances in intelligent nanomaterials, has transformed the field of cancer diagnosis and therapy. Nanoparticles' large surface area allows them to successfully encapsulate a large number of molecules. Nanoparticles can be functionalized with various bio-based substrates like RNA, DNA, aptamers, and antibodies, enhancing their theranostic capabilities. Biologically derived nanomaterials offer economical, easily producible, and less toxic alternatives to conventionally manufactured ones. This review offers a comprehensive overview of cancer theranostics methodologies, focusing on intelligent nanomaterials such as metal, polymeric, and carbon-based nanoparticles. I have also critically discussed their benefits and challenges in cancer therapy and diagnostics. Utilizing intelligent nanomaterials holds promise for advancing cancer theranostics, and improving tumor detection and treatment. Further research should optimize nanocarriers for targeted drug delivery and explore enhanced permeability, cytotoxicity, and retention effects.
Collapse
Affiliation(s)
- Hongwen Lan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Gaotan Ke
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
38
|
Sánchez-Cachero A, Jiménez-Moreno M, Fariñas NR, Martín-Doimeadios RCR. Critical evaluation of key parameters in single particle ICP-MS data processing for the correct determination of platinum nanoparticles in complex environmental and biological matrices. Mikrochim Acta 2023; 190:476. [PMID: 37993653 DOI: 10.1007/s00604-023-06032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/04/2023] [Indexed: 11/24/2023]
Abstract
There is an urgent need for the harmonization of critical parameters in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) and they have been deeply studied and optimized in the present work using platinum nanoparticles (PtNPs) as a representative case of study. Special attention has been paid to data processing in order to achieve an adequate discrimination between signals. Thus, a comparison between four different algorithms has been performed and the method for transport efficiency calculation has also been thorougly evaluated (finding the use of a well-characterized solution of the same targeted analyte (30 nm PtNPs) as adequate). The best results have been obtained after the application of a deconvolution approach for the data processing and using 5 ms as dwell time and 40,000 data points for data acquisition. Under the optimized conditions, a correct discrimination between NP events and background signal up to 100 or 750 ng L-1 of added ionic Pt was reached for 30 and 50 nm PtNPs, respectively. The suitability of the developed method for the characterization of PtNPs in relevant environmental (water samples) and biological (cell culture media) matrices has also been demonstrated.
Collapse
Affiliation(s)
- Armando Sánchez-Cachero
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - María Jiménez-Moreno
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Nuria Rodríguez Fariñas
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Rosa Carmen Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain.
| |
Collapse
|
39
|
Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci 2023; 24:15397. [PMID: 37895077 PMCID: PMC10607471 DOI: 10.3390/ijms242015397] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| |
Collapse
|
40
|
Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2586. [PMID: 37764615 PMCID: PMC10537803 DOI: 10.3390/nano13182586] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Nanoparticle deposition on various substrates has gained significant attention due to the potential applications of nanoparticles in various fields. This review paper comprehensively analyzes different nanoparticle deposition techniques on ceramic, polymeric, and metallic substrates. The deposition techniques covered include electron gun evaporation, physical vapor deposition, plasma enriched chemical vapor deposition (PECVD), electrochemical deposition, chemical vapor deposition, electrophoretic deposition, laser metal deposition, and atomic layer deposition (ALD), thermophoretic deposition, supercritical deposition, spin coating, and dip coating. Additionally, the sustainability aspects of these deposition techniques are discussed, along with their potential applications in anti-icing, antibacterial power, and filtration systems. Finally, the review explores the importance of deposition purities in achieving optimal nanomaterial performance. This comprehensive review aims to provide valuable insights into state-of-the-art techniques and applications in the field of nanomaterial deposition.
Collapse
Affiliation(s)
- Daniel Escorcia-Díaz
- Nanotechnology Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (D.E.-D.); (S.G.-M.)
| | - Sebastián García-Mora
- Nanotechnology Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (D.E.-D.); (S.G.-M.)
| | - Leidy Rendón-Castrillón
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Margarita Ramírez-Carmona
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Carlos Ocampo-López
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| |
Collapse
|
41
|
Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and perspectives. NANOSCALE 2023; 15:14284-14300. [PMID: 37584343 DOI: 10.1039/d3nr03016d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inflammation is a complex process of the body in response to pathogen infections or dysregulated metabolism, involving the recruitment and activation of immune system components. Repeated dangerous stimuli or uncontrolled immune effector mechanisms can result in tissue injury. Reactive Oxygen Species (ROS) play key roles in physiological cell signaling as well as in the destruction of internalized pathogens. However, aberrant ROS production and release have deleterious effects on the surrounding environment, making ROS regulation a priority to reduce inflammation. Most of the current anti-inflammatory therapies rely on drugs that impair the release of pro-inflammatory mediators. Nevertheless, increasing the enzymatic activity to reduce ROS levels could be an alternative or complementary therapeutic approach to decrease inflammation. Nanozymes are nanomaterials with high catalytic activity that mimic natural enzymes, allowing biochemical reactions to take place. Such functional particles typically show different and regenerable oxidation states or catalytically reactive surfaces offering long-term activity and stability. In this scenario, platinum-based nanozymes (PtNZs) exhibit broad and efficient catalytic functionalities and can reduce inflammation mainly through ROS scavenging, e.g. by catalase and superoxide dismutase reactions. Dose-dependent biocompatibility and immune compatibility of PtNZs have been shown in different cells and tissues, both in vitro and in vivo. Size/shape/surface engineering of the nanozymes could also potentiate their efficacy to act at different sites and/or steps of the inflammation process, such as cytokine removal or specific targeting of activated leukocytes. In the present review, we analyze key inflammation triggering processes and the effects of platinum nanozymes under exemplificative inflammatory conditions. We further discuss potential platinum nanozyme design and improvements to modulate and expand their anti-inflammatory action.
Collapse
Affiliation(s)
- Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
42
|
Đurasović I, Štefanić G, Dražić G, Peter R, Klencsár Z, Marciuš M, Jurkin T, Ivanda M, Stichleutner S, Gotić M. Microwave-Assisted Synthesis of Pt/SnO 2 for the Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2481. [PMID: 37686989 PMCID: PMC10489642 DOI: 10.3390/nano13172481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
In this study, we present a new approach for the synthesis of Pt/SnO2 catalysts using microwave radiation. Pt(IV) and Sn(IV) inorganic precursors (H2PtCl6 and SnCl4) and ammonia were used, which allowed the controlled formation of platinum particles on the anisotropic SnO2 support. The synthesized Pt/SnO2 samples are mesoporous and exhibit a reversible physisorption isotherm of type IV. The XRD patterns confirmed the presence of platinum maxima in all Pt/SnO2 samples. The Williamson-Hall diagram showed SnO2 anisotropy with crystallite sizes of ~10 nm along the c-axis (< 00l >) and ~5 nm along the a-axis (< h00 >). SEM analysis revealed anisotropic, urchin-like SnO2 particles. XPS results indicated relatively low average oxidation states of platinum, close to Pt metal. 119Sn Mössbauer spectroscopy indicated electronic interactions between Pt and SnO2 particles. The synthesized samples were used for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of excess NaBH4. The catalytic activity of the Pt/SnO2 samples for the reduction of 4-NP to 4-AP was optimized by varying the synthesis parameters and Pt loading. The optimal platinum loading for the reduction of 4-NP to 4-AP on the anisotropic SnO2 support is 5 mol% with an apparent rate constant k = 0.59 × 10-2 s-1. The Pt/SnO2 sample showed exceptional reusability and retained an efficiency of 81.4% after ten cycles.
Collapse
Affiliation(s)
- Izabela Đurasović
- Laboratory for Molecular Physics and Synthesis of New Materials, Division of Materials Physics, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (I.Đ.); (G.Š.); (M.I.)
| | - Goran Štefanić
- Laboratory for Molecular Physics and Synthesis of New Materials, Division of Materials Physics, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (I.Đ.); (G.Š.); (M.I.)
| | - Goran Dražić
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia;
| | - Robert Peter
- Department of Physics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Zoltán Klencsár
- Nuclear Analysis and Radiography Department, Centre for Energy Research, 1121 Budapest, Hungary; (Z.K.); (S.S.)
| | - Marijan Marciuš
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia;
| | - Tanja Jurkin
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia;
| | - Mile Ivanda
- Laboratory for Molecular Physics and Synthesis of New Materials, Division of Materials Physics, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (I.Đ.); (G.Š.); (M.I.)
| | - Sándor Stichleutner
- Nuclear Analysis and Radiography Department, Centre for Energy Research, 1121 Budapest, Hungary; (Z.K.); (S.S.)
| | - Marijan Gotić
- Laboratory for Molecular Physics and Synthesis of New Materials, Division of Materials Physics, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (I.Đ.); (G.Š.); (M.I.)
| |
Collapse
|
43
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
44
|
Cheng Q, Liu G, Yin X. Facile construction of drugs loaded lipid-coated calcium carbonate as a promising pH-Dependent drug delivery system for thyroid cancer treatment. Heliyon 2023; 9:e18413. [PMID: 37809709 PMCID: PMC10558296 DOI: 10.1016/j.heliyon.2023.e18413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 10/10/2023] Open
Abstract
To develop innovative drug delivery carriers for controllable release and cancer-targeted delivery of therapeutic agents to accomplish efficient cancer chemotherapy. Herein we effectively fabricated CaCO3 primarily loaded biotin (BT) and directly the self-assembly of oxaliplatin (Pt (IV)) prodrugs form in liposomes. The acquired BT-Pt (IV)@PEG/CaCO3 with outstanding biological stability displays rapid pH-mediated degradations, thus allowing the effective pH-responsive delivery of BT. In vitro, anticancer assays proved that BT-Pt (IV)@PEG/CaCO3 effectively kills the thyroid cancer cells (B-CPAP and FTC-133). The biochemical staining assays investigated the morphological changes of thyroid cancer after treatment with nanoparticles. The DNA fragmentation of the cells was assessed by utilizing the comet assay. BT-Pt (IV)@PEG/CaCO3 increased ROS levels and caused mitochondrial membrane potential and DNA damage, which resulted in apoptosis. Due to its versatile drug-loading capability, this research demonstrates that CaCO3 liposomal formulation is a biocompatible and reliable substrate for establishing pH-mediated drug delivery methods and promising for possible therapeutic application.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, and Institute, Shenyang-110042, China
| | - Guangxuan Liu
- Department of Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, and Institute, Shenyang-110042, China
| | - Xiaojing Yin
- Department of Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, and Institute, Shenyang-110042, China
| |
Collapse
|
45
|
Yerpude ST, Potbhare AK, Bhilkar P, Rai AR, Singh RP, Abdala AA, Adhikari R, Sharma R, Chaudhary RG. Biomedical,clinical and environmental applications of platinum-based nanohybrids: An updated review. ENVIRONMENTAL RESEARCH 2023; 231:116148. [PMID: 37211181 DOI: 10.1016/j.envres.2023.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Platinum nanoparticles (Pt NPs) have numerous applications in various sectors, including pharmacology, nanomedicine, cancer therapy, radiotherapy, biotechnology and environment mitigation like removal of toxic metals from wastewater, photocatalytic degradation of toxic compounds, adsorption, and water splitting. The multifaceted applications of Pt NPs because of their ultra-fine structures, large surface area, tuned porosity, coordination-binding, and excellent physiochemical properties. The various types of nanohybrids (NHs) of Pt NPs can be fabricated by doping with different metal/metal oxide/polymer-based materials. There are several methods to synthesize platinum-based NHs, but biological processes are admirable because of green, economical, sustainable, and non-toxic. Due to the robust physicochemical and biological characteristics of platinum NPs, they are widely employed as nanocatalyst, antioxidant, antipathogenic, and anticancer agents. Indeed, Pt-based NHs are the subject of keen interest and substantial research area for biomedical and clinical applications. Hence, this review systematically studies antimicrobial, biological, and environmental applications of platinum and platinum-based NHs, predominantly for treating cancer and photo-thermal therapy. Applications of Pt NPs in nanomedicine and nano-diagnosis are also highlighted. Pt NPs-related nanotoxicity and the potential and opportunity for future nano-therapeutics based on Pt NPs are also discussed.
Collapse
Affiliation(s)
- Sachin T Yerpude
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Pavan Bhilkar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Alok R Rai
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Raghvendra P Singh
- Department of Research & Development, Azoth Biotech Pvt. Ltd., Noida, 201306, India.
| | - Ahmed A Abdala
- Chemical Engineering Program, Texas A and M University at Qatar POB, 23784, Doha, Qatar.
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India.
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| |
Collapse
|
46
|
Pelinescu D, Anastasescu M, Bratan V, Maraloiu VA, Negrila C, Mitrea D, Calderon-Moreno J, Preda S, Gîfu IC, Stan A, Ionescu R, Stoica I, Anastasescu C, Zaharescu M, Balint I. Antibacterial Activity of PVA Hydrogels Embedding Oxide Nanostructures Sensitized by Noble Metals and Ruthenium Dye. Gels 2023; 9:650. [PMID: 37623105 PMCID: PMC10454060 DOI: 10.3390/gels9080650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Nanostructured oxides (SiO2, TiO2) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (1O2) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Additionally, electrokinetic potential measurements were conducted. Crystallinity data and elemental analysis of the investigated systems were obtained through X-ray diffraction and X-ray fluorescence analyses, while the chemical state of the elements was determined using XPS. The engineered materials, both as simple powders and embedded in the hydrogel, were evaluated for their ability to generate reactive oxygen species (ROS) under visible and simulated solar light irradiation to establish a correlation with their antibacterial activity against Staphylococcus aureus. The generation of singlet oxygen (1O2) by the samples under visible light exposure can be of significant importance for their potential use in biomedical applications.
Collapse
Affiliation(s)
- Diana Pelinescu
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Veronica Bratan
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Valentin-Adrian Maraloiu
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Ilfov, Romania; (V.-A.M.); (C.N.)
| | - Catalin Negrila
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Ilfov, Romania; (V.-A.M.); (C.N.)
| | - Daiana Mitrea
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Jose Calderon-Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Silviu Preda
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Ioana Catalina Gîfu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Adrian Stan
- Techir Cosmetics SRL, Plantelor Str., 907015 Agigea, Romania;
| | - Robertina Ionescu
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Ileana Stoica
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Crina Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Maria Zaharescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Ioan Balint
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| |
Collapse
|
47
|
GONZÁLEZ-FLORES D, ESPINO J, PARIENTE JA. Antioxidant potential of nanomaterials. Turk J Biol 2023; 47:218-235. [PMID: 38152621 PMCID: PMC10751091 DOI: 10.55730/1300-0152.2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/31/2023] [Accepted: 08/10/2023] [Indexed: 12/29/2023] Open
Abstract
Background/aim The novel field of nanomaterials allows infinite possibilities in order to create antioxidant therapies. The present review is aimed to describe the state of art concerning on nanomaterials and their effects on reactive oxygen species (ROS) production. A wide range of nanoparticles has been designed for this purpose, and each one possesses some particular characteristics which allow these significant antioxidant results. Several in vivo and in vitro works state the ability of these nanoparticles to mimic the redox systems of the cells, and thus, the potential role of nanoparticles as antioxidant treatment for several diseases. Materials and methods This paper was written after a review of the articles published on the field, using the "PubMed" and "Research Gate" databases. Results The main types of nanoparticles are listed and explained below, offering a global vision of the field with great interest for research. Antitumor chemo- and radiotherapies have been found to improve efficacy by enhancing the selectivity of cytocidal effects and minimizing systemic adverse effects when such materials are used. Furthermore, catalytic nanomaterials can execute energy-free antioxidant cycles that scavenge the most harmful reactive oxygen species via SOD- and catalase-like activities. Conclusion This unique method is projected to result in significant gains in the long run. However, due to a lack of understanding of potential adverse body reactions to these novel strategies, caution must be exercised. Analyzing the biocompatibility of these nanomaterials carefully, particularly in terms of biokinetics and the problems that could arise from long-term retention of nonbiodegradable inorganic nanomaterials, is required.
Collapse
Affiliation(s)
- David GONZÁLEZ-FLORES
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, Badajoz,
Spain
| | - Javier ESPINO
- Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz,
Spain
| | - José Antonio PARIENTE
- Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz,
Spain
| |
Collapse
|
48
|
Wiecka Z, Cota I, Tylkowski B, Regel-Rosocka M. Recovery of platinum group metals from spent automotive converters and their conversion into efficient recyclable nanocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90168-90179. [PMID: 36517612 PMCID: PMC10439850 DOI: 10.1007/s11356-022-24593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The study reported in this article has shown for the first time that strongly acidic solutions (pH < 0.5) obtained after hydrometallurgical treatment of spent automotive converters (SAC) may be valuable secondary sources of platinum group metal (PGM) nanoparticles (NPs). The PGM precipitation strongly depended on the solution pH; the yield of the precipitated PGM NPs increased considerably from 40% to almost 100% when the pH was adjusted to 7-8. To improve the NPs stability, commercial TiO2 was used as support to obtain efficient recyclable PGM@TiO2 catalysts. The size of the PGM NPs was smaller than 5 nm, while the diameter of the supported particles varied from 10 to 50 nm. The size and dispersion of PGM NPs on the support strongly depended on the pH of the medium: at pH < 0.5, the Pt and Pd NPs were significantly smaller than the NPs obtained at pH 7-8. Also, in the case of Pt@TiO2 and Rh@TiO2, the NPs were well dispersed on the support in contrast to the large agglomerates of Pd@TiO2. The PGM@TiO2 showed catalytic properties in the reduction of 4-nitrophenol to 4-aminophenol, particularly, at pH above 11. The highest conversion of 98% was obtained with 1% Pd@TiO2 at pH 14 after only 15 min. The catalyst was easily separated from the reaction mixture and reused in 7 consecutive cycles without significant loss of activity. The PGM@TiO2 synthesized from the real solution showed a similar catalytic activity (70% conversion at pH 14) as that obtained from model solution.
Collapse
Affiliation(s)
- Zuzanna Wiecka
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965, Poznań, Poland
| | - Iuliana Cota
- Eurecat, Chemical Technology Unit, Carrer de Marcel-lí Domingo, 43007, Tarragona, Spain
| | - Bartosz Tylkowski
- Eurecat, Chemical Technology Unit, Carrer de Marcel-lí Domingo, 43007, Tarragona, Spain
| | - Magdalena Regel-Rosocka
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965, Poznań, Poland.
| |
Collapse
|
49
|
Algethami JS, Amna T, S Alqarni L, Alshahrani AA, Alhamami MAM, Seliem AF, Al-Dhuwayin BHA, Hassan MS. Production of Ceramics/Metal Oxide Nanofibers via Electrospinning: New Insights into the Photocatalytic and Bactericidal Mechanisms. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5148. [PMID: 37512422 PMCID: PMC10386518 DOI: 10.3390/ma16145148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Environmental pollution is steadily rising and is having a negative influence on all living things, especially human beings. The advancement of nanoscience in recent decades has provided potential to address this issue. Functional metal oxide nanoparticles/nanofibers have been having a pull-on effect in the biological and environmental domains of nanobiotechnology. Current work, for the first time, is focusing on the electrospinning production of Zr0.5Sn0.5TiO3/SnO2 ceramic nanofibers that may be utilized to battle lethal infections swiftly and inexpensively. By using characterizations like XRD, FT-IR, FESEM, TEM, PL, and UV-Vis-DRS, the composition, structure, morphology, and optical absorption of samples were determined. The minimum inhibitory concentration (MIC) approach was used to investigate the antibacterial activity. Notably, this research indicated that nanofibers exert antibacterial action against both Gram-positive and Gram-negative bacteria with a MIC of 25 µg/mL. Furthermore, negatively charged E. coli was drawn to positively charged metal ions of Zr0.5Sn0.5TiO3/SnO2, which showed a robust inhibitory effect against E. coli. It was interesting to discover that, compared to pure TiO2, Zr0.5Sn0.5TiO3/SnO2 nanofibers revealed increased photocatalytic activity and exceptional cyclability to the photodegradation of Rhodamine B. The composite completely degrades dye in 30 min with 100% efficacy and excellent (97%) reusability. The synergetic effects of Zr0.5Sn0.5TiO3 and SnO2 may be responsible for increased photocatalytic and bactericidal activity.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
| | - Touseef Amna
- Department of Biology, College of Science, Al-Baha University, Albaha 65799, Saudi Arabia
| | - Laila S Alqarni
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Aisha A Alshahrani
- Department of Chemistry, College of Science, Al-Baha University, Albaha 65799, Saudi Arabia
| | - Mohsen A M Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Amal F Seliem
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Badria H A Al-Dhuwayin
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - M Shamshi Hassan
- Department of Chemistry, College of Science, Al-Baha University, Albaha 65799, Saudi Arabia
| |
Collapse
|
50
|
Moetasam Zorab M, Mohammadjani N, Ashengroph M, Alavi M. Biosynthesis of Quantum Dots and Their Therapeutic Applications in the Diagnosis and Treatment of Cancer and SARS-CoV-2. Adv Pharm Bull 2023; 13:411-422. [PMID: 37646053 PMCID: PMC10460808 DOI: 10.34172/apb.2023.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 09/01/2023] Open
Abstract
Quantum dots (QDs) are semiconductor materials that range from 2 nm to 10 nm. These nanomaterials (NMs) are smaller and have more unique properties compared to conventional nanoparticles (NPs). One of the unique properties of QDs is their special optoelectronic properties, making it possible to apply these NMs in bioimaging. Different size and shape QDs, which are used in various fields such as bioimaging, biosensing, cancer therapy, and drug delivery, have so far been produced by chemical methods. However, chemical synthesis provides expensive routes and causes serious environmental and health issues. Therefore, various biological systems such as bacteria, fungi, yeasts, algae, and plants are considered as potent eco-friendly green nanofactories for the biosynthesis of QDs, which are both economic and environmentally safe. The review aims to provide a descriptive overview of the various microbial agents for the synthesis of QDs and their biomedical applications for the diagnosis and treatment of cancer and SARS-CoV-2.
Collapse
Affiliation(s)
| | - Navid Mohammadjani
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| |
Collapse
|