1
|
Habib M, Zheng J, Chan CF, Yang Z, Wong ILK, Chow LMC, Lee MM, Chan MK. A Targeted and Protease-Activated Genetically Encoded Melittin-Containing Particle for the Treatment of Cutaneous and Visceral Leishmaniasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49148-49163. [PMID: 39240583 PMCID: PMC11420870 DOI: 10.1021/acsami.4c10426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Intracellular infections are difficult to treat, as pathogens can take advantage of intracellular hiding, evade the immune system, and persist and multiply in host cells. One such intracellular parasite, Leishmania, is the causative agent of leishmaniasis, a neglected tropical disease (NTD), which disproportionately affects the world's most economically disadvantaged. Existing treatments have relied mostly on chemotherapeutic compounds that are becoming increasingly ineffective due to drug resistance, while the development of new therapeutics has been challenging due to the variety of clinical manifestations caused by different Leishmania species. The antimicrobial peptide melittin has been shown to be effective in vitro against a broad spectrum of Leishmania, including species that cause the most common form, cutaneous leishmaniasis, and the most deadly, visceral leishmaniasis. However, melittin's high hemolytic and cytotoxic activity toward host cells has limited its potential for clinical translation. Herein, we report a design strategy for producing a melittin-containing antileishmanial agent that not only enhances melittin's leishmanicidal potency but also abrogates its hemolytic and cytotoxic activity. This therapeutic construct can be directly produced in bacteria, significantly reducing its production cost critical for a NTD therapeutic. The designed melittin-containing fusion crystal incorporates a bioresponsive cathepsin linker that enables it to specifically release melittin in the phagolysosome of infected macrophages. Significantly, this targeted approach has been demonstrated to be efficacious in treating macrophages infected with L. amazonensis and L. donovani in cell-based models and in the corresponding cutaneous and visceral mouse models.
Collapse
Affiliation(s)
- Madiha Habib
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jiale Zheng
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Chin-Fung Chan
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Zaofeng Yang
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Iris L. K. Wong
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Larry M. C. Chow
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Marianne M. Lee
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Michael K. Chan
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Nahanji MK, Mahboobian MM, Harchegani AL, Mohebali M, Fallah M, Nourian A, Motavallihaghi S, Maghsood AH. Enhancing the efficacy of fluconazole against Leishmania major: Formulation and evaluation of FLZ-nanoemulsions for topical delivery. Biomed Pharmacother 2024; 178:117109. [PMID: 39024835 DOI: 10.1016/j.biopha.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Cutaneous Leishmaniasis (CL) remains a significant public health concern, particularly in the tropical and subtropical regions. Present treatment options for CL such as Fluconazole (FLZ) face limitations, including low solubility and bioavailability. This study aimed to address these challenges by investigating the use of nano-emulsions (NEs) to enhance the efficacy of FLZ against Leishmania major(L.major). MATERIALS AND METHODS FLZ-NEs were formulated with oleic acid, Tween-20, and ethanol using low-energy emulsification at various surfactant/co-surfactant ratios. Subsequently, a comprehensive analysis was conducted to assess the physicochemical characteristics of the samples. This analysis encompassed stability, zeta potential, pH, viscosity, refractive index, and droplet size. We then studied the anti-parasitic properties of these optimized FLZ-NEs both in vitro and in vivo. RESULTS The selected nano-emulsion (NE) formulation (2 % oleic acid, 20 % Tween 20, 10 % ethyl alcohol) showcased desirable properties like small droplet size (10.51 ± 0.24 nm), low dispersity (0.19 ± 0.03), and zeta potential value (- 0.41 ± 0.17 mV), key for stability and targeted drug delivery. This optimal formulation translated into remarkable efficacy. In vitro, FLZ-NEs demonstrated a threefold increase in their ability to combat promastigotes and a remarkable thirtyfold increase in their ability to combat amastigotes. Additionally, they demonstrated a ninefold advantage in their ability to specifically target parasites within infected macrophages, thereby attacking the infection site. These promising in vitro results translated into improved outcomes in vivo. Compared to other chemicals studied, FLZ-NE-treated mice showed decreased disease severity, weight growth, and quicker ulcer healing. It was further supported by histopathological research, which showed reduced tissue damage linked to Leishmania infection. CONCLUSION These findings show the potential of nanotechnology-based drug delivery in improving anti-leishmanial treatment.
Collapse
Affiliation(s)
- Manizheh Kashi Nahanji
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Larki Harchegani
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Fallah
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Nourian
- Departement of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Seyedmousa Motavallihaghi
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Maghsood
- Department of Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Tambe S, Nag S, Pandya SR, Kumar R, Balakrishnan K, Kumar R, Kumar S, Amin P, Gupta PK. Revolutionizing Leishmaniasis Treatment with Cutting Edge Drug Delivery Systems and Nanovaccines: An Updated Review. ACS Infect Dis 2024; 10:1871-1889. [PMID: 38829047 DOI: 10.1021/acsinfecdis.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Leishmaniasis, one of the most overlooked tropical diseases, is a life-threatening illness caused by the parasite Leishmania donovani that is prevalent in underdeveloped nations. Over 350 million individuals in more than 90 different nations worldwide are at risk of contracting the disease, which has a current fatality rate of 50 000 mortalities each year. The administration of liposomal Amp B, pentavalent antimonials, and miltefosine are still considered integral components of the chemotherapy regimen. Antileishmanial medications fail to treat leishmaniasis because of their numerous drawbacks. These include inadequate effectiveness, toxicity, undesired side effects, drug resistance, treatment duration, and cost. Consequently, there is a need to overcome the limitations of conventional therapeutics. Nanotechnology has demonstrated promising outcomes in addressing these issues because of its small size and distinctive characteristics, such as enhanced bioavailability, lower toxicity, biodegradability, and targeted drug delivery. This review is an effort to highlight the recent progress in various nanodrug delivery systems (nDDSs) over the past five years for treating leishmaniasis. Although the preclinical outcomes of nDDSs have shown promising treatment for leishmaniasis, further research is needed for their clinical translation. Advancement in three primary priority domains─molecular diagnostics, clinical investigation, and knowledge dissemination and standardization─is imperative to propel the leishmaniasis field toward translational outcomes.
Collapse
Affiliation(s)
- Srushti Tambe
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Mumbai, Maharashtra 400019, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Shivani R Pandya
- Research and Development Cell & Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Kalpana Balakrishnan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, Tamil Nadu 637215, India
| | - Ranvijay Kumar
- University Centre for Research and Development and Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab 140413, India
| | - Sandeep Kumar
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140401, India
| | - Purnima Amin
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Mumbai, Maharashtra 400019, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002, India
| |
Collapse
|
4
|
Morgan RN, Aboshanab KM. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Sci OA 2024; 10:FSO935. [PMID: 38817383 PMCID: PMC11137799 DOI: 10.2144/fsoa-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 06/01/2024] Open
Abstract
In green biological synthesis, metal nanoparticles are produced by plants or microorganisms. Since it is ecologically friendly, economically viable and sustainable, this method is preferable to other traditional ones. For their continuous groundbreaking advancements and myriad physiochemical and biological benefits, nanotechnologies have influenced various aspects of scientific fields. Metal nanoparticles (MNPs) are the field anchor for their outstanding optical, electrical and chemical capabilities that outperform their regular-sized counterparts. This review discusses the most current biosynthesized metal nanoparticles synthesized by various organisms and their biological applications along with the key elements involved in MNP green synthesis. The review is displayed in a manner that will impart assertiveness, help the researchers to open questions, and highlight many points for conducting future research.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research & Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Khaled M Aboshanab
- Microbiology & Immunology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
5
|
Babaei M, Youssefi MR, Nasrabadi NT. In vitro evaluation of antileishmanial activity of Boswellia serrata essential oil nanoliposome. Vet Med Sci 2024; 10:e1400. [PMID: 38379363 PMCID: PMC10879719 DOI: 10.1002/vms3.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Leishmaniasis poses a significant health risk. OBJECTIVES This study aimed to evaluate the effects of Boswellia serrata (B. serrata) essential oil nanoliposomes on Leishmania tropica (L. tropica) in vitro. METHODS A mixture of B. serrata essential oil, phosphatidylcholine and Tween 80 were used to prepare B. serrata essential oil nanoliposomes, followed by drying, hydration and size characterisation. The promastigotes of L. tropica were cultured in Roswell Park Memorial Institute medium (RPMI-1640) containing streptomycin, penicillin and fetal bovine serum. Different concentrations of B. serrata essential and nanoliposomes were tested for their antileishmanial properties by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide tests (MTT). RESULTS Results of Dynamic Light Scattering (DLS) for B. serrata nanoliposomes indicate that they are successful at producing nanoliposomes with dimensions of 74.8 nm. At 1 μg/mL dose, B. serrata essence caused 17 ± 1.73% mortality, while B. serrata nanoliposomes induced 26 ± 1.15% mortality. B. serrata essence achieved a mortality of 55 ± 2.88% at 10 μg/mL, whereas B. serrata nanoliposomes demonstrated a mortality of 63.66±0.88% at 10 μg/mL. Furthermore, there was a significant difference between similar concentrations of B. serrata and B. serrata nanoliposomes. The LC50 of B. serrata essential oil is 7.26 μg/mL in the 95% confidence interval (12.13-5.25). The LC90 value of B. serrata essential oil is 129.37 μg/mL in the 95% confidence interval (50.07-852.58). The LC50 value of B. serrata nanoliposome is 4.20 μg/mL in the 95% confidence interval (6.13-3.10). LC90 value for B. serrata nanoliposome is calculated as 91.89 μg/mL in the 95% confidence interval (37.09-583.29). CONCLUSIONS In vitro experiments have shown that B. serrata oil and the nanoliposome suppress the proliferation of L. tropica promastigotes, which suggests it may be a promising option for treating leishmaniasis.
Collapse
Affiliation(s)
- Mohaddeseh Babaei
- Department of Veterinary Medicine, Babol BranchIslamic Azad UniversityBabolIran
| | | | | |
Collapse
|
6
|
Akbari M, Heli H, Oryan A, Hatam G. A novel outlook in the delivery of artemisinin: production and efficacy in experimental visceral leishmaniasis. Pathog Glob Health 2024; 118:40-46. [PMID: 37183476 PMCID: PMC10769112 DOI: 10.1080/20477724.2023.2212347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The visceral form of leishmaniasis (VL), due to infection by Leishmania infantum, is a neglected tropical disease. The accessible therapeutic options are limited. Artemisinin is an efficient antileishmanial product with poor biological availability that requires high repetition of therapeutic doses in VL. Solid lipid nanoparticles (SLNs) provide targeted delivery, increase bioavailability and reduce toxicity of the traditional therapeutic strategy. The spherical shape artemisinin-loaded SLNs were prepared in a particle diameter of 222.0 ± 14.0 nm. The SLNs showed no particular toxic effect on the parasites, whereas the native artemisinin demonstrated a significant toxicity rate of 31% in viability of the promastigotes at the 250 µg/ml concentration. The therapeutic efficacy of the artemisinin-loaded SLNs was demonstrated in the experimental VL, using the L. infantum-infected BALB/c mice, in the present study. The 10 and 20 mg/kg doses of artemisinin-loaded SLNs showed higher level of antileishmanial efficacy compared with the free artemisinin. There was a significant diminishing of the parasite burden in liver (84.7 ± 4.9%) and spleen (85.0 ± 3.1%) and hepatosplenomegaly by the artemisinin-loaded SLNs treated at 20 mg/kg compared to the free artemisinin. Therefore, the present study supports the superior efficacy of artemisinin-loaded SLNs over the free artemisinin and could be considered as a new therapeutic strategy in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Maryam Akbari
- Department of Parasitology and mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Heli
- Department of Nanomedicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Dourado D, Silva Medeiros T, do Nascimento Alencar É, Matos Sales E, Formiga FR. Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:37-50. [PMID: 38213574 PMCID: PMC10777206 DOI: 10.3762/bjnano.15.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Leishmaniasis is a neglected tropical disease that has affected more than 350 million people worldwide and can manifest itself in three different forms: cutaneous, mucocutaneous, or visceral. Furthermore, the current treatment options have drawbacks which compromise efficacy and patient compliance. To face this global health concern, new alternatives for the treatment of leishmaniasis have been explored. Curcumin, a polyphenol obtained from the rhizome of turmeric, exhibits leishmanicidal activity against different species of Leishmania spp. Although its mechanism of action has not yet been fully elucidated, its leishmanicidal potential may be associated with its antioxidant and anti-inflammatory properties. However, it has limitations that compromise its clinical use. Conversely, nanotechnology has been used as a tool for solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1-1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded nanocarriers intended for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Douglas Dourado
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
| | - Thayse Silva Medeiros
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59010180, Natal, RN, Brazil
| | - Éverton do Nascimento Alencar
- College of Pharmaceutical Sciences, Food and Nutrition. Federal University of Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil
| | | | - Fábio Rocha Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
- Faculty of Medical Sciences (FCM), University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| |
Collapse
|
8
|
Alsharedeh RH, Rezigue M, Bashatwah RM, Amawi H, Aljabali AAA, Obeid MA, Tambuwala MM. Nanomaterials as a Potential Target for Infectious Parasitic Agents. Curr Drug Deliv 2024; 21:828-851. [PMID: 36815647 DOI: 10.2174/1567201820666230223085403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023]
Abstract
Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.
Collapse
Affiliation(s)
- Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| |
Collapse
|
9
|
Swami R, Aggarwal K. The Prospects of Phytomedicines and Nanomedicines to Treat Leishmaniasis: A Comprehensive Review. Curr Drug Res Rev 2024; 16:308-318. [PMID: 37489778 DOI: 10.2174/2589977515666230725105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023]
Abstract
The global shift in lifestyle has prompted health agencies to redirect their focus from poverty-related diseases to the emergence of lifestyle diseases prevalent in privileged regions. As a result, these diseases have been labeled as "neglected diseases," receiving limited research attention, funding, and resources. Neglected Tropical Diseases (NTDs) encompass a diverse group of vector-borne protozoal diseases that are prevalent in tropical areas worldwide. Among these NTDs is leishmaniasis, a disease that affects populations globally and manifests as skin abnormalities, internal organ involvement, and mucous-related abnormalities. Due to the lack of effective and safe medicines and vaccines, it is crucial to explore alternative resources. Phytomedicine, which comprises therapeutic herbal constituents with anti-leishmanial properties, holds promise but is limited by its poor physicochemical properties. The emerging field of nanomedicine has shown remarkable potential in revitalizing the anti-leishmanial efficacy of these phytoconstituents. In this investigation, we aim to highlight and discuss key plant constituents in combination with nanotechnology that have been explored in the fight against leishmaniasis.
Collapse
Affiliation(s)
- Rajan Swami
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Keshav Aggarwal
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Valiallahi A, Vazifeh Z, Gatabi ZR, Davoudi M, Gatabi IR. PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Curr Med Chem 2024; 31:6371-6392. [PMID: 37612875 DOI: 10.2174/0929867331666230823094737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
Collapse
Affiliation(s)
- Alaleh Valiallahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Vazifeh
- Department of Biotechnology, Shahed University, Tehran, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Davoudi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
de Carvalho Moreira LMC, de Sousa Silva ABA, de Araújo Medeiros K, Oshiro Júnior JA, da Silva DTC, de Lima Damasceno BPG. Effectiveness In Vivo and In Vitro of Polymeric Nanoparticles as a Drug Release System in the Treatment of Leishmaniasis. Curr Med Chem 2024; 31:286-307. [PMID: 36683370 DOI: 10.2174/0929867330666230120163543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 01/24/2023]
Abstract
Leishmaniasis is a neglected disease caused by the parasite of the genus Leishmania. Current treatment regimens are obsolete and cause several side effects, promoting poor patient compliance, in addition to the vast majority already having the potential for resistance. Therefore, polymeric nanoparticles emerge as one of the viable alternatives to overcome existing limitations, through passive or active vectorization. This review aims to summarize the latest studies of polymeric nanoparticles as an alternative treatment for leishmaniasis. In the first section, the main pharmacokinetic and pharmacodynamic challenges of current drugs are reported. The second section details how nanoparticles with and without functionalization are efficient in the treatment of leishmaniasis, discussing the characteristics of the polymer in the formulation. In this way, polymeric nanoparticles can improve the physicochemical properties of leishmanicidal drugs, improving solubility and stability, as well as improve the release of these drugs, directly or indirectly reaching monocytes/macrophages. 64.28% drugs were focused on the treatment of visceral leishmaniasis, and 28.57% on cutaneous leishmaniasis. The most chosen polymers in the literature are chitosan (35.71%) and PLGA (35.71%), the others represented 14.30% drugs, with all able to manage the drug release and increase the in vitro and/or in vivo efficacy of the original molecule. However, there are several barriers for these nanoformulations to cross laboratory research and is necessary more in-depth studies about the metabolites and degradation pathways of the polymers used in the formulations and plasma proteomics studies.
Collapse
Affiliation(s)
- Lívia Maria Coelho de Carvalho Moreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| | | | - Kaline de Araújo Medeiros
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| | - João Augusto Oshiro Júnior
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| | - Dayanne Tomaz Casimiro da Silva
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| |
Collapse
|
12
|
Mazón-Ortiz G, Cerda-Mejía G, Gutiérrez Morales E, Diéguez-Santana K, Ruso JM, González-Díaz H. Trends in Nanoparticles for Leishmania Treatment: A Bibliometric and Network Analysis. Diseases 2023; 11:153. [PMID: 37987264 PMCID: PMC10660713 DOI: 10.3390/diseases11040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Leishmaniasis is a neglected tropical illness with a wide variety of clinical signs ranging from visceral to cutaneous symptoms, resulting in millions of new cases and thousands of fatalities reported annually. This article provides a bibliometric analysis of the main authors' contributions, institutions, and nations in terms of productivity, citations, and bibliographic linkages to the application of nanoparticles (NPs) for the treatment of leishmania. The study is based on a sample of 524 Scopus documents from 1991 to 2022. Utilising the Bibliometrix R-Tool version 4.0 and VOSviewer software, version 1.6.17 the analysis was developed. We identified crucial subjects associated with the application of NPs in the field of antileishmanial development (NPs and drug formulation for leishmaniasis treatment, animal models, and experiments). We selected research topics that were out of date and oversaturated. Simultaneously, we proposed developing subjects based on multiple analyses of the corpus of published scientific literature (title, abstract, and keywords). Finally, the technique used contributed to the development of a broader and more specific "big picture" of nanomedicine research in antileishmanial studies for future projects.
Collapse
Affiliation(s)
- Gabriel Mazón-Ortiz
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Galo Cerda-Mejía
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eberto Gutiérrez Morales
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
| | - Karel Diéguez-Santana
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Wood Engineering Department, University of Bio-Bio, Concepcion 4030000, Chile
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Basque Center for Biophysics CSIC-UPVEH, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
13
|
Abdullah, Hussain T, Faisal S, Rizwan M, Almostafa MM, Younis NS, Yahya G. Zingiber officinale rhizome extracts mediated ni nanoparticles and its promising biomedical and environmental applications. BMC Complement Med Ther 2023; 23:349. [PMID: 37789322 PMCID: PMC10546789 DOI: 10.1186/s12906-023-04182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Zingiber officinale, generally known as ginger, contains bioactive phytochemicals, including gingerols and shogaols, that may function as reducing agents and stabilizers for the formation of nickel nanoparticles (Ni-NPs). Ginger extract-mediated nickel nanoparticles were synthesized using an eco-friendly method, and their antibacterial, antioxidant, antiparasitic, antidiabetic, anticancer, dye degrading, and biocompatibility properties were investigated. METHODS UV-visible spectroscopy, fourier transform infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy were used to validate and characterize the synthesis of Ni-NPs. Agar well diffusion assay, alpha-amylase and glucosidase inhibitory assay, free radical scavenging assay, biocompatibility assay, and MTT assay were used to analyse the biomedical importance of Ni-NPs. RESULTS SEM micrograph examinations revealed almost aggregates of Ni-NPs; certain particles were monodispersed and spherical, with an average grain size of 74.85 ± 2.5 nm. Ni-NPs have successfully inhibited the growth of Pseudomonas aeruginosa, Escherichia coli, and Proteus vulgaris by inducing membrane damage, as shown by the absorbance at 260 nm (A260). DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals were successfully scavenged by Ni-NPs at an inhibition rate of 69.35 ± 0.81% at 800 µg/mL. A dose-dependent cytotoxicity of Ni-NPs was observed against amastigote and promastigote forms of Leishmania tropica, with significant mortality rates of 94.23 ± 1.10 and 92.27 ± 1.20% at 1.0 mg/mL, respectively. Biocompatibility studies revealed the biosafe nature of Ni-NPs by showing RBC hemolysis up to 1.53 ± 0.81% at 400 µg/mL, which is considered safe according to the American Society for Materials and Testing (ASTM). Furthermore, Ni-NPs showed antidiabetic activity by inhibiting α-amylase and α-glucosidase enzymes at an inhibition rate of 22.70 ± 0.16% and 31.23 ± 0.64% at 200 µg/mL, respectively. Ni-NPs have shown significant cytotoxic activity by inhibiting MCF-7 cancerous cells up to 68.82 ± 1.82% at a concentration of 400 µg/mL. The IC50 for Ni-NPs was almost 190 µg/mL. Ni-NPs also degraded crystal violet dye up to 86.1% at 2 h of exposure. CONCLUSIONS In conclusion, Zingiber officinale extract was found successful in producing stable nanoparticles. Ni-NPs have shown substantial biomedical activities, and as a result, we believe these nanoparticles have potential as a powerful therapeutic agent for use in nanomedicine.
Collapse
Affiliation(s)
- Abdullah
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland.
- Joint Doctoral School, Silesian University of Technology, Academika 2a, Gliwice, 44-100, Poland.
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shah Faisal
- Institube of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, 24460, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, 19000, Pakistan
| | - Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Alhofuf, 31982, Al-Ahsa, Saudi Arabia
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Al Sharqia, 44519, Egypt
| |
Collapse
|
14
|
Essid R, Ayed A, Djebali K, Saad H, Srasra M, Othmani Y, Fares N, Jallouli S, Abid I, Alothman MR, Limam F, Tabbene O. Anti-Candida and Anti-Leishmanial Activities of Encapsulated Cinnamomum verum Essential Oil in Chitosan Nanoparticles. Molecules 2023; 28:5681. [PMID: 37570651 PMCID: PMC10419485 DOI: 10.3390/molecules28155681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.
Collapse
Affiliation(s)
- Rym Essid
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Ameni Ayed
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Kais Djebali
- Valorization of Useful Material Laboratory (LVMU), National Research Center in Material Sciences (CNRSM) Technopôle Borj Cedria, BP 73, Soliman 8027, Tunisia
| | - Houda Saad
- Centre National en Recherche en Sciences des Matériaux, “CNRSM” Technopole Borj-Cedria-Route Touristique Soliman, BP-273, Soliman 8027, Tunisia
| | - Mondher Srasra
- Centre National en Recherche en Sciences des Matériaux, “CNRSM” Technopole Borj-Cedria-Route Touristique Soliman, BP-273, Soliman 8027, Tunisia
| | - Yasmine Othmani
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Selim Jallouli
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Monerah Rashed Alothman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ferid Limam
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Olfa Tabbene
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
15
|
Król G, Fortunka K, Majchrzak M, Piktel E, Paprocka P, Mańkowska A, Lesiak A, Karasiński M, Strzelecka A, Durnaś B, Bucki R. Metallic Nanoparticles and Core-Shell Nanosystems in the Treatment, Diagnosis, and Prevention of Parasitic Diseases. Pathogens 2023; 12:838. [PMID: 37375528 DOI: 10.3390/pathogens12060838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The usage of nanotechnology in the fight against parasitic diseases is in the early stages of development, but it brings hopes that this new field will provide a solution to target the early stages of parasitosis, compensate for the lack of vaccines for most parasitic diseases, and also provide new treatment options for diseases in which parasites show increased resistance to current drugs. The huge physicochemical diversity of nanomaterials developed so far, mainly for antibacterial and anti-cancer therapies, requires additional studies to determine their antiparasitic potential. When designing metallic nanoparticles (MeNPs) and specific nanosystems, such as complexes of MeNPs, with the shell of attached drugs, several physicochemical properties need to be considered. The most important are: size, shape, surface charge, type of surfactants that control their dispersion, and shell molecules that should assure specific molecular interaction with targeted molecules of parasites' cells. Therefore, it can be expected that the development of antiparasitic drugs using strategies provided by nanotechnology and the use of nanomaterials for diagnostic purposes will soon provide new and effective methods of antiparasitic therapy and effective diagnostic tools that will improve the prevention and reduce the morbidity and mortality caused by these diseases.
Collapse
Affiliation(s)
- Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Kamila Fortunka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Michał Majchrzak
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Angelika Mańkowska
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Agata Lesiak
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Agnieszka Strzelecka
- Department of Public Health , Institute of Health Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Robert Bucki
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
16
|
AlGabbani Q. Nanotechnology: A promising strategy for the control of parasitic infections. Exp Parasitol 2023:108548. [PMID: 37196702 DOI: 10.1016/j.exppara.2023.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Annually 3.5 billion people are affected by the parasitic infections that results around 200,000 deaths per annum. Major diseases occur due to the neglected tropical parasites. Variety of methods have been used to treat the parasitic infections but now these methods have become ineffective due to the development of resistance in the parasites and some other side effects of traditional treatment methods. Previous methods include use of chemotherapeutic agents and ethnobotanicals for the treatment of parasites. Parasites have developed resistance against the chemotherapeutic agents. A major problem related to Ethnobotanicals is the unequal availability of drug at the target site which is responsible for the low efficacy of drug. Nanotechnology technology involves the manipulation of matter on a nanoscale level and has the potential to enhance the efficacy and safety of existing drugs, develop new treatments, and improve diagnostic methods for parasitic infections. Nanoparticles can be designed to selectively target parasites while minimizing toxicity to the host, and they can also be used to improve drug delivery and increase drug stability. Some important nanotechnology-based tools for parasitic control include nanoparticle-based drug delivery, nanoparticle diagnostics, nanoparticle vaccines, nanoparticle insecticides. Nanotechnology has the potential to revolutionize the field of parasitic control by providing new methods for detection, prevention and treatment of parasitic infections. This review discusses the current state of nanotechnology-based approaches for controlling parasitic infections and highlights their potential to revolutionize the field of parasitology.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| |
Collapse
|
17
|
García DJ, Fernández-Culma M, Upegui YA, Ríos-Vásquez LA, Quiñones W, Ocampo-Cardona R, Echeverri F, Vélez ID, Robledo SM. Nanoemulsions for increased penetrability and sustained release of leishmanicidal compounds. Arch Pharm (Weinheim) 2023:e2300108. [PMID: 37068175 DOI: 10.1002/ardp.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Abstract
In the last decade, the World Health Organization has driven the development of drugs for topical use in patients with cutaneous leishmaniasis (CL), the most prevalent clinical form of leishmaniasis, a neglected tropical disease. The chemicals C6 I, TC1, and TC2 were reported as promising antileishmanial drugs. We aimed to develop a topical nanoformulation that enhances the advantageous effect of C6 I, TC1, and TC2, guaranteeing higher stability and bioavailability of the pharmacologically active components through the topical route. Nanoemulsions were prepared by ultrasonication based on oleic acid (0.5 g). A relation of Tween®-80/ethanol (1:3) and water was obtained; physicochemical characterization of all formulations was performed, and the preliminary stability and transdermal penetration of these nanoemulsions were also investigated. Newtonian-type fluids with high load capacity, 147-273 nm globule size, and -15 to -18 mV zeta potential were obtained with differential permeability rates in the first pig ear skin assay, first-order kinetics-release model for C6 I, and Weibull for TC1 and TC2. The nanoemulsion showed good stability, high encapsulation efficiency, and higher leishmanicidal activity against Leishmania braziliensis with lower cytotoxicity in U937 macrophages. In conclusion, nanoemulsions of ethanol-oleic acid/Tween®-80 increase the activity of compounds with leishmanicidal activity by increasing their penetration and sustained release.
Collapse
Affiliation(s)
- Darlyn J García
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Yulieth A Upegui
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | | | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Iván D Vélez
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sara M Robledo
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
18
|
Registre C, Soares RDOA, Rubio KTS, Santos ODH, Carneiro SP. A Systematic Review of Drug-Carrying Nanosystems Used in the Treatment of Leishmaniasis. ACS Infect Dis 2023; 9:423-449. [PMID: 36795604 DOI: 10.1021/acsinfecdis.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Leishmaniasis is an infectious disease responsible for a huge rate of morbidity and mortality in humans. Chemotherapy consists of the use of pentavalent antimonial, amphotericin B, pentamidine, miltefosine, and paromomycin. However, these drugs are associated with some drawbacks such as high toxicity, administration by parenteral route, and most seriously the resistance of some strains of the parasite to them. Several strategies have been used to increase the therapeutic index and reduce the toxic effects of these drugs. Among them, the use of nanosystems that have great potential as a site-specific drug delivery system stands out. This review aims to compile results from studies that were carried out using first- and second-line antileishmanial drug-carrying nanosystems. The articles referred to here were published between 2011 and 2021. This study shows the promise of effective applicability of drug-carrying nanosystems in the field of antileishmanial therapeutics, with the perspective of providing better patient adherence to treatment, increased therapeutic efficacy, reduced toxicity of conventional drugs, as well as the potential to efficiently improve the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Rodrigo D O A Soares
- Immunopathology Laboratory, Research Center in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina T S Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Orlando D H Santos
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone P Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| |
Collapse
|
19
|
Xekouki K, Lagopati N, Demetzos C, Gazouli M, Pippa N. A mini review for lipid-based nanovaccines: from their design to their applications. J Liposome Res 2023:1-20. [PMID: 36856671 DOI: 10.1080/08982104.2023.2170408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Nanovaccines have shown to be effective, and this is the reason they are preferred than conventional vaccines. The scope of this review is to describe the role, mechanisms, and advantages of nano vaccines based on lipids, and present the most important types, their physicochemical characteristics, as well as their challenges. The most important categories of lipid nano-vaccines are liposomal nano vaccines and (virus-lipid nanoparticles (NPs)/virosomes. Examples of vaccine formulations from each category are presented and analyzed below, focusing on their structure and physicochemical characteristics. In all cases, a nanoscale platform is used, enriched with adjuvants, antigens, and other helping agents to trigger immune response process and achieve cell targeting, and eventually immunity against the desired disease. The exact mechanism of action of each vaccine is not always completely known or understood. Physicochemical characteristics, such as particle size, morphology/shape, and zeta potential are also mentioned as they seem to affect the properties and mechanism of action of the vaccine formulation.
Collapse
Affiliation(s)
- Katerina Xekouki
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Abpeikar Z, Safaei M, Akbar Alizadeh A, Goodarzi A, Hatam G. The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis. Int J Pharm 2023; 633:122615. [PMID: 36657555 DOI: 10.1016/j.ijpharm.2023.122615] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Cutaneous leishmaniasis (CL) is a global public health issue. Conventional treatments have substantial costs, side effects, and parasite resistance. Due to easy application and inexpensive cost, topical treatment is the optimal approach for CL. It could be used alone or with systemic treatments. Electrospun fibers as drug release systems in treating skin lesions have various advantages such as adjustable drug release rate, maintaining appropriate humidity and temperature, gas exchange, plasticity at the lesion site, similarity with the skin extracellular matrix (ECM) and drug delivery with high efficiency. Hydrogels are valuable scaffolds in the treatment of skin lesions. The important features of hydrogels include preserving unstable drugs from degradation, absorption of wound secretions, high biocompatibility, improving the re-epithelialization of the wound and preventing the formation of scars. One of the issues in local drug delivery systems for the skin is the low permeability of drugs in the skin. Polymeric scaffolds that are designed as microneedle patches can penetrate the skin and overcome this challenge. Also, drug delivery using nanocarriers increases the effectiveness of drugs in lower and more tolerable doses and reduces the toxicity of drugs. The application of cell therapy in the treatment of parasitic and infectious diseases has been widely investigated. The complexity of leishmaniasis treatment requires identifying new treatment options like cell therapy to overcome the disease. Topics investigated in this study include drug delivery systems based on tissue engineering scaffolds, nanotechnology and cell therapy-based studies to reduce the complications of CL.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohsen Safaei
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Monzote L, González D, Blanco O, Fraga J, Capó V, Herrera A, Montalvo AM. Imported cases of cutaneous leishmaniasis in Cuba, 2017: role of human movement. Trop Dis Travel Med Vaccines 2022; 8:15. [PMID: 35773710 PMCID: PMC9248147 DOI: 10.1186/s40794-022-00171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Leishmaniasis is a vector-borne disease caused by several species from genus Leishmania. An increase in the number of cases related to human movement has been informed in the last years. Due to the increase of suspicious leishmaniasis cases arriving in Cuba during 2017, a general analysis is presented herein. Methods Clinical samples were collected from 5 patients suspicious of leishmaniasis, received from January to December 2017 at the Institute of Tropical Medicine Pedro Kourí, Cuba. Skin lesion samples were analyzed using different diagnostic assays: direct smear, histological examination, and molecular analysis for species identification. Epidemiological and demographic data were requested from each case and analyzed. Treatment and follow up of patient was also performed. Results Five cases were confirmed as Leishmania infection according to microscopic observation and molecular methods results. PCR-18S, PCR-N/RFLP and PCR-F/RFLP identified the following species: L. panamensis (2 cases), L. braziliensis (1 case), L.panamensis/L.guyanensis (1 case), L. mexicana complex (1 case). In treated patients, drugs were well tolerated, cure were documented and no relapse have been currently reported (3 years later). Conclusions Clinical characteristics, demographic data, and epidemiological features of infection for each case evidence the potential risk related with travel to endemic areas of leishmaniasis. Keyworks Cutaneous leishmaniasis, Epidemiology, Imported cases.
Collapse
|
22
|
Development of Ag-ZnO/AgO Nanocomposites Effectives for Leishmania braziliensis Treatment. Pharmaceutics 2022; 14:pharmaceutics14122642. [PMID: 36559136 PMCID: PMC9785243 DOI: 10.3390/pharmaceutics14122642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Tegumentary leishmaniasis (TL) is caused by parasites of the genus Leishmania. Leishmania braziliensis (L.b) is one of the most clinically relevant pathogens that affects the skin and mucosa, causing single or multiple disfiguring and life-threatening injuries. Even so, the few treatment options for patients have significant toxicity, high dropout rates, high cost, and the emergence of resistant strains, which implies the need for studies to promote new and better treatments to combat the disease. Zinc oxide nanocrystals are microbicidal and immunomodulatory agents. Here, we develop new Ag-ZnO/xAgO nanocomposites (NCPs) with three different percentages of silver oxide (AgO) nanocrystals (x = 49%, 65%, and 68%) that could act as an option for tegumentary leishmaniasis treatment. Our findings showed that 65% and 68% of AgO inhibit the extra and intracellular replication of L.b. and present a high selectivity index. Ag-ZnO/65%AgO NCPs modulate activation, expression of surface receptors, and cytokine production by human peripheral blood mononuclear cells toward a proinflammatory phenotype. These results point to new Ag-ZnO/AgO nanocomposites as a promising option for L. braziliensis treatment.
Collapse
|
23
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
24
|
Cutaneous/Mucocutaneous Leishmaniasis Treatment for Wound Healing: Classical versus New Treatment Approaches. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (ML) show clinical spectra that can range from a localized lesion (with a spontaneous healing process) to cases that progress to a generalized systemic disease with a risk of death. The treatment of leishmaniasis is complex since most of the available drugs show high toxicity. The development of an effective topical drug formulation for CL and ML treatment offers advantages as it will improve patient’s compliance to the therapy given the possibility for self-administration, as well as overcoming the first pass metabolism and the high costs of currently available alternatives. The most common dosage forms include solid formulations, such as membranes and semi-solid formulations (e.g., ointments, creams, gels, and pastes). Topical treatment has been used as a new route of administration for conventional drugs against leishmaniasis and its combinations, as well as to exploit new substances. In this review, we discuss the advantages and limitations of using topical drug delivery for the treatment of these two forms of leishmaniasis and the relevance of combining this approach with other pharmaceutical dosage forms. Emphasis will also be given to the use of nanomaterials for site-specific delivery.
Collapse
|
25
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Zein R, Alghoraibi I, Soukkarieh C, Alahmad A. Investigation of Cytotoxicity of Biosynthesized Colloidal Nanosilver against Local Leishmania tropica: In Vitro Study. MATERIALS 2022; 15:ma15144880. [PMID: 35888346 PMCID: PMC9318884 DOI: 10.3390/ma15144880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022]
Abstract
Leishmaniasis is one of the biggest health problems in the world. Traditional therapeutic methods still depend on a small range of products, mostly chemically. However, the treatment with these drugs is expensive and can cause serious adverse effects, and they have inconsistent effectiveness due to the resistance of parasites to these drugs. The treatment of leishmanial disease has always been a challenge for researchers. The development of nanoscale metals such as silver has attracted significant attention in the field of medicine. The unique characteristic features of silver nanoparticles (AgNPs) make them effective antileishmanial agents. In recent years, green nanotechnology has provided the development of green nanoparticle-based treatment methods for Leishmaniasis. Although there are many studies based on green nanoparticles against Leishmania parasites, this is the first study on the antileishmanial effect of biosynthesized AgNPs using an aqueous extract of Eucalyptus camaldulensis leaves (AEECL) as a reducing agent of silver ions. Different parameters such as AgNO3 concentration, AEECL concentration, and reaction time were studied to investigate the optimum factors for the preparation of stable and small-sized silver nanoparticles. The spherical shape of colloidal nanosilver (CN-Ag) was confirmed by atomic force microscope (AFM) and scanning electron microscope (SEM) images with sizes of 27 and 12 nm, respectively. A high density of nanoparticles with a small size of 10 nm has been confirmed from dynamic light scattering (DLS) analysis. The zeta potential value of 23 mV indicated that colloidal silver nanoparticles were stable. The nano-tracker analysis (NTA) showed the Brownian motion of silver nanoparticles with a hydrodynamic diameter of 31 nm. The antioxidant property of CN-Ag was determined using the stable radical 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. In this study, a significant cytotoxic effect of biosynthesized CN-Ag has been shown against Leishmania tropica parasites at low concentrations (1.25, 2.5, and 3.75 µg/mL). These results could be used as a future alternative drug or could be a supportive treatment for Leishmaniasis.
Collapse
Affiliation(s)
- Raghad Zein
- Physics Department, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria;
- Correspondence: (R.Z.); (A.A.)
| | - Ibrahim Alghoraibi
- Physics Department, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria;
- Department of Basic and Supporting Sciences, Faculty of Pharmacy, Arab International University, Daraa P.O. Box 30621, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria;
| | - Abdalrahim Alahmad
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany
- Correspondence: (R.Z.); (A.A.)
| |
Collapse
|
27
|
De Matteis V, Cascione M, Leporatti S. Impact of Nanomaterials in Biological Systems and Applications in Nanomedicine Field. NANOMATERIALS 2022; 12:nano12101775. [PMID: 35630997 PMCID: PMC9143611 DOI: 10.3390/nano12101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy;
- Correspondence:
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | - Stefano Leporatti
- CNR Nanotec—Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
28
|
Bajwa HUR, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, Aleem MT, Abbas A, Almutairi MM, Alshammari FA, Alraey Y, Alouffi A. Nanoparticles: Synthesis and Their Role as Potential Drug Candidates for the Treatment of Parasitic Diseases. Life (Basel) 2022; 12:life12050750. [PMID: 35629416 PMCID: PMC9145985 DOI: 10.3390/life12050750] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Protozoa, helminths and ectoparasites are the major groups of parasites distributed worldwide. Currently, these parasites are treated with chemotherapeutic antiprotozoal drugs, anti-helminthic and anti-ectoparasitic agents, but, with the passage of time, resistance to these drugs has developed due to overuse. In this scenario, nanoparticles are proving to be a major breakthrough in the treatment and control of parasitic diseases. In the last decade, there has been enormous development in the field of nanomedicine for parasitic control. Gold and silver nanoparticles have shown promising results in the treatments of various types of parasitic infections. These nanoparticles are synthesized through the use of various conventional and molecular technologies and have shown great efficacy. They work in different ways, that include damaging the parasite membrane, DNA (Deoxyribonucleic acid) disruption, protein synthesis inhibition and free-radical formation. These agents are effective against intracellular parasites as well. Other nanoparticles, such as iron, nickel, zinc and platinum, have also shown good results in the treatment and control of parasitic infections. It is hoped that this research subject will become the future of modern drug development. This review summarizes the methods that are used to synthesize nanoparticles and their possible mechanisms of action against parasites.
Collapse
Affiliation(s)
| | - Muhammad Kasib Khan
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Zaheer Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Ankara University, Ankara 06100, Turkey;
| | - Tauseef ur Rehman
- Department of Parasitology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (T.u.R.); (A.A.)
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Asghar Abbas
- Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture Multan, Multan 60650, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Arar Northern Border University, Arar 73211, Saudi Arabia;
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62217, Saudi Arabia;
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
- Correspondence: (T.u.R.); (A.A.)
| |
Collapse
|
29
|
Assolini JP, Carloto ACM, Bortoleti BTDS, Gonçalves MD, Tomiotto Pellissier F, Feuser PE, Cordeiro AP, Hermes de Araújo PH, Sayer C, Miranda Sapla MM, Pavanelli WR. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. Eur J Pharmacol 2022; 923:174934. [PMID: 35367420 DOI: 10.1016/j.ejphar.2022.174934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Leishmaniasis is a neglected tropical disease that has a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths notified every year. The severity of the disease and its various clinical forms are determined by the species of the causative agent, Leishmania, as well as the host's immune response. Major challenges still exist in the diagnosis and treatment of leishmaniasis, and there is no vaccine available to prevent this disease in humans. Nanotechnology has emerged as a promising tool in a variety of fields. In this review, we highlight the main and most recent advances in nanomedicine to improve the diagnosis and treatment, as well as for the development of vaccines, for leishmaniasis. Nanomaterials are nanometric in size and can be produced by a variety of materials, including lipids, polymers, ceramics, and metals, with varying structures and morphologies. Nanotechnology can be used as biosensors to detect antibodies or antigens, thus improving the sensitivity and specificity of such immunological and molecular diagnostic tests. While in treatment, nanomaterials can act as drug carriers or, be used directly, to reduce any toxic effects of drug compounds to the host and to be more selective towards the parasite. Furthermore, preclinical studies show that different nanomaterials can carry different Leishmania antigens, or even act as adjuvants to improve a Th1 immune response in an attempt to produce an effective vaccine.
Collapse
Affiliation(s)
- João Paulo Assolini
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil; Universidade Alto Vale do Rio Peixe, Caçador, SC, Brazil.
| | | | | | | | | | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil.
| |
Collapse
|
30
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
31
|
AlSawaftah NM, Awad NS, Pitt WG, Husseini GA. pH-Responsive Nanocarriers in Cancer Therapy. Polymers (Basel) 2022; 14:polym14050936. [PMID: 35267759 PMCID: PMC8912405 DOI: 10.3390/polym14050936] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
A number of promising nano-sized particles (nanoparticles) have been developed to conquer the limitations of conventional chemotherapy. One of the most promising methods is stimuli-responsive nanoparticles because they enable the safe delivery of the drugs while controlling their release at the tumor sites. Different intrinsic and extrinsic stimuli can be used to trigger drug release such as temperature, redox, ultrasound, magnetic field, and pH. The intracellular pH of solid tumors is maintained below the extracellular pH. Thus, pH-sensitive nanoparticles are highly efficient in delivering drugs to tumors compared to conventional nanoparticles. This review provides a survey of the different strategies used to develop pH-sensitive nanoparticles used in cancer therapy.
Collapse
Affiliation(s)
- Nour M. AlSawaftah
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates; (N.M.A.); (N.S.A.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Nahid S. Awad
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates; (N.M.A.); (N.S.A.)
| | - William G. Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA;
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates; (N.M.A.); (N.S.A.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Correspondence:
| |
Collapse
|
32
|
Guerra RO, do Carmo Neto JR, de Albuquerque Martins T, Farnesi-de-Assunção TS, Junior VR, de Oliveira CJF, Silva ACA, da Silva MV. Metallic Nanoparticles: A New Frontier in the Fight Against Leishmaniasis. Curr Med Chem 2022; 29:4547-4573. [DOI: 10.2174/0929867329666220225111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Leishmaniasis is a cutaneous, mucocutaneous, or visceral parasitic disease caused by protozoa of the Leishmania genus. According to the World Health Organization, Leishmaniasis causes approximately 20–40 thousand deaths annually, and Brazil, India, and some countries in Africa are the most affected by this neglected disease. In addition to parasite’s ability to evade the host’s immune system, the incidence of vectors, the genetics of different hosts, and the large number of deaths are mainly due to failures in conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutics with more effective and safer actions has become one of the main challenges for researchers studying leishmaniasis. Among the many research and tested options, metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have been shown to be one of the most promising therapeutic tool because they are easily prepared and chemically modified, have a broad spectrum of action, low toxicity, and can generate reactive oxygen species and other immune responses that favor their use against different species of Leishmania. This review explores the progress of the use of metallic nanoparticles as a new tool in the treatment of leishmaniasis, as well as discusses the gaps in knowledge that need to be addressed to consolidate a safe, effective, and definitive therapeutic intervention against these infections.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Tarcísio de Albuquerque Martins
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
33
|
Duraisamy SS, Vijayakumar N, Rajendran J, Venkatesan A, Kartha B, Kandasamy SP, Nicoletti M, Alharbi NS, Kadaikunnan S, Khaled JM, Govindarajan M. Facile synthesis of silver nanoparticles using the Simarouba glauca leaf extract and their impact on biological outcomes: A novel perspective for nano-drug development. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Khan AU, Jamshaid H, ud Din F, Zeb A, Khan GM. Designing, optimization and characterization of Trifluralin transfersomal gel to passively target cutaneous leishmaniasis. J Pharm Sci 2022; 111:1798-1811. [DOI: 10.1016/j.xphs.2022.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/09/2023]
|
35
|
Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022; 137:1-19. [PMID: 34687954 PMCID: PMC8678319 DOI: 10.1016/j.actbio.2021.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
B cells play multiple roles in immune responses related to autoimmune diseases as well as different types of cancers. As such, strategies focused on B cell targeting attracted wide interest and developed intensively. There are several common mechanisms various B cell targeting therapies have relied on, including direct B cell depletion, modulation of B cell antigen receptor (BCR) signaling, targeting B cell survival factors, targeting the B cell and T cell costimulation, and immune checkpoint blockade. Nanocarriers, used as drug delivery vehicles, possess numerous advantages to low molecular weight drugs, reducing drug toxicity, enhancing blood circulation time, as well as augmenting targeting efficacy and improving therapeutic effect. Herein, we review the commonly used targets involved in B cell targeting approaches and the utilization of various nanocarriers as B cell-targeted delivery vehicles. STATEMENT OF SIGNIFICANCE: As B cells are engaged significantly in the development of many kinds of diseases, utilization of nanomedicines in B cell depletion therapies have been rapidly developed. Although numerous studies focused on B cell targeting have already been done, there are still various potential receptors awaiting further investigation. This review summarizes the most relevant studies that utilized nanotechnologies associated with different B cell depletion approaches, providing a useful tool for selection of receptors, agents and/or nanocarriers matching specific diseases. Along with uncovering new targets in the function map of B cells, there will be a growing number of candidates that can benefit from nanoscale drug delivery.
Collapse
Affiliation(s)
- Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
36
|
Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules 2021; 12:31. [PMID: 35053179 PMCID: PMC8773616 DOI: 10.3390/biom12010031] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Nanotechnology is a fast-expanding and multidisciplinary field with many applications in science and technology [...].
Collapse
Affiliation(s)
- Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Eure et Loir Campus, Université d’Orléans, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
37
|
Ferreira MA, de Almeida Júnior RF, Onofre TS, Casadei BR, Farias KJS, Severino P, de Oliveira Franco CF, Raffin FN, de Lima e Moura TFA, de Melo Barbosa R. Annatto Oil Loaded Nanostructured Lipid Carriers: A Potential New Treatment for Cutaneous Leishmaniasis. Pharmaceutics 2021; 13:1912. [PMID: 34834327 PMCID: PMC8618414 DOI: 10.3390/pharmaceutics13111912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Annatto (Bixa orellana L.) is extensively used as food pigment worldwide. Recently, several studies have found it to have healing and antioxidant properties, as well as effective action against leishmaniasis. Therefore, the purpose of this study was to incorporate the oil obtained from annatto seeds into a nanostructured lipid carrier (NLC) and evaluate its physicochemical properties and biological activity against Leishmania major. Nanoparticles were prepared by the fusion-emulsification and ultrasonication method, with the components Synperonic™ PE (PL) as the surfactant, cetyl palmitate (CP) or myristyl myristate (MM) as solid lipids, annatto oil (AO) (2% and 4%, w/w) as liquid lipid and active ingredient, and ultra-pure water. Physicochemical and biological characterizations were carried out to describe the NLCs, including particle size, polydispersity index (PDI), and zeta potential (ZP) by dynamic light scattering (DLS), encapsulation efficiency (EE%), thermal behavior, X-ray diffraction (XRD), transmission electron microscopy (TEM), Electron Paramagnetic Resonance (EPR), cytotoxicity on BALB/c 3T3 fibroblasts and immortalized human keratinocyte cells, and anti-leishmaniasis activity in vitro. Nanoparticles presented an average diameter of ~200 nm (confirmed by TEM results), a PDI of less than 0.30, ZP between -12.6 and -31.2 mV, and more than 50% of AO encapsulated in NLCs. Thermal analyses demonstrated that the systems were stable at high temperatures with a decrease in crystalline structure due to the presence of AOs (confirmed by XRD). In vitro, the anti-leishmania test displayed good activity in encapsulating AO against L. major. The results indicate that the oily fraction of Bixa orellana L. in NLC systems should be evaluated as a potential therapeutic agent against leishmaniasis.
Collapse
Affiliation(s)
- Marianna Araújo Ferreira
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| | | | - Thiago Souza Onofre
- Biochemistry and Molecular Biology Department, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil;
| | - Bruna Renata Casadei
- Institute of Physics, University of São Paulo, USP, São Paulo 05508-090, Brazil;
| | | | - Patricia Severino
- Institute of Technology and Research (ITP), Aracaju 49010-390, Brazil;
| | | | - Fernanda Nervo Raffin
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| | | | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| |
Collapse
|
38
|
Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. Biomed Pharmacother 2021; 141:111920. [PMID: 34328115 DOI: 10.1016/j.biopha.2021.111920] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The study of tropical diseases like leishmaniasis, a parasitic disease, has not received much attention even though it is the second-largest infectious disease after malaria. As per the WHO report, a total of 0.7-1.0 million new leishmaniasis cases, which are spread by 23 Leishmania species in more than 98 countries, are estimated with an alarming 26,000-65,000 death toll every year. Lack of potential vaccines along with the cost and toxicity of amphotericin B (AmB), the most common drug for the treatment of leishmaniasis, has raised the interest significantly for new formulations and drug delivery systems including nanoparticle-based delivery as anti-leishmanial agents. The size, shape, and high surface area to volume ratio of different NPs make them ideal for many biological applications. The delivery of drugs through liposome, polymeric, and solid-lipid NPs provides the advantage of high biocomatibilty of the carrier with reduced toxicity. Importantly, NP-based delivery has shown improved efficacy due to targeted delivery of the payload and synergistic action of NP and payload on the target. This review analyses the advantage of NP-based delivery over standard chemotherapy and natural product-based delivery system. The role of different physicochemical properties of a nanoscale delivery system is discussed. Further, different ways of nanoformulation delivery ranging from liposome, niosomes, polymeric, metallic, solid-lipid NPs were updated along with the possible mechanisms of action against the parasite. The status of current nano-vaccines and the future potential of NP-based vaccine are elaborated here.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vishnu Kant
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Utpal Mohan
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India; National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
39
|
Pereira MB, Sydor BG, Memare KG, Verzignassi Silveira TG, Alessi Aristides SM, Dalmarco EM, Vieira Teixeira JJ, Campana Lonardoni MV, Demarchi IG. In vivo efficacy of meglumine antimoniate-loaded nanoparticles for cutaneous leishmaniasis: a systematic review. Nanomedicine (Lond) 2021; 16:1505-1518. [PMID: 34189952 DOI: 10.2217/nnm-2021-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background: Nanotechnology is a promising strategy to improve existing antileishmanial agents. Objective: To explore the evidence of encapsulated meglumine antimoniate for cutaneous leishmaniasis treatment in animal models. Materials & methods: The studies were recovered from PubMed, Scopus, EMBASE, LILACS, WoS and Google according to eligibility criteria following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population, Intervention, Comparison, Outcomes and Study design (PICOS) strategy. Study appraisal was assessed using the Animal Research Reporting of In Vivo Experiments, SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations. Results: Five studies were included. Liposomes, metallic and polymeric nanoparticles were tested in BALB/c mice against Leishmania major, L. tropica or L. amazonensis. Limitations: Few studies were found to meet the eligibility criteria. Conclusion: All formulations had a significant efficacy, similar to the meglumine antimoniate reference treatment concerning the lesion size and parasite burden. The studies had a high and moderate risk of bias, and the confidence in cumulative evidence was considered low. Therefore, we encourage the development of high-quality preclinical studies. Registration: PROSPERO register CRD42020170191.
Collapse
Affiliation(s)
- Meliana Borilli Pereira
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Bruna Gomes Sydor
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Karla Gabriela Memare
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Thaís Gomes Verzignassi Silveira
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Sandra Mara Alessi Aristides
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Eduardo Monguilhott Dalmarco
- Health Sciences Center - Department of Clinical Analysis, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, s/n°, Bairro Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Jorge Juarez Vieira Teixeira
- Department of Clinical Analysis & Biomedicine, State University Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil.,Post Graduation Program in Bioscience & Physiopathology, State University Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Maria Valdrinez Campana Lonardoni
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Izabel Galhardo Demarchi
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil.,Health Sciences Center - Department of Clinical Analysis, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, s/n°, Bairro Trindade, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
40
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
41
|
Awad MA, Al Olayan EM, Siddiqui MI, Merghani NM, Alsaif SSAL, Aloufi AS. Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessment. Biomed Pharmacother 2021; 137:111294. [PMID: 33571836 DOI: 10.1016/j.biopha.2021.111294] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/31/2023] Open
Abstract
The drugs used to treat cutaneous leishmaniasis (CL) cannot effectively penetrate lesions. Nanogold and nanosilver have been used for treating or enhancing drug delivery in CL. The present study used Commiphora molmol (myrrh) to synthesize silver nanoparticles (MSNPs). The MSNPs were characterized using transmission electron microscopy and energy-dispersive spectroscopy. In addition, antiparasitic effect of myrrh silver nanoparticles (MSNPs) was assessed on Leishmania major both in vitro and in vivo. Five concentrations of MSNPs (10, 50, 80, 100, and 150 μl/100 μL) were used to study their effect on L. major cultures in vitro, and MSNPs were also applied topically to subcutaneous lesions in mice in vivo. The results showed that the MSNPs were 49.09 nm in size. MSNPs, showed a marked and significant (p ≤ 0.05) growth inhibition of L. major promastigotes which was concentration dependent. Overall, the higher concentrations (100, 150 μl/100 μL had a significantly greater inhibitory effect for the MSNPs in comparison to the chemical nanoparticles (CNPs) and pentostam at the same concentrations. Lesions healed completely in 21 d after MSNP treatment in vivo, while pentostam, a commercial drug, and CNPs showed a moderate healing effect on the lesions. Thus, MSNPs were more effective than pentostam and CNPs both in the in vivo and in vitro studies. MSNPs can therefore be promising candidates for various nanomedicine applications.
Collapse
Affiliation(s)
- Manal Ahmed Awad
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | | | | | - Nada Mahmmed Merghani
- Central Lab & Prince Naif for Health Research Center, King Saud University, Riyadh, Saudi Arabia.
| | | | - Abeer S Aloufi
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia; The Research Chair of Vaccines for Infectious Disease, Deanship of Scientific Research, King Saud University, RDO-MOE Postdoctoral Fellowship Program PFP, Saudi Arabia.
| |
Collapse
|
42
|
Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021; 19:106. [PMID: 33858436 PMCID: PMC8051083 DOI: 10.1186/s12951-021-00853-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a neglected tropical disease, Leishmaniasis is significantly instigating morbidity and mortality across the globe. Its clinical spectrum varies from ulcerative cutaneous lesions to systemic immersion causing hyperthermic hepato-splenomegaly. Curbing leishmanial parasite is toughly attributable to the myriad obstacles in existing chemotherapy and immunization. Since the 1990s, extensive research has been conducted for ameliorating disease prognosis, by resolving certain obstacles of conventional therapeutics viz. poor efficacy, systemic toxicity, inadequate drug accumulation inside the macrophage, scarce antigenic presentation to body's immune cells, protracted length and cost of the treatment. Mentioned hurdles can be restricted by designing nano-drug delivery system (nano-DDS) of extant anti-leishmanials, phyto-nano-DDS, surface modified-mannosylated and thiolated nano-DDS. Likewise, antigen delivery with co-transportation of suitable adjuvants would be achievable through nano-vaccines. In the past decade, researchers have engineered nano-DDS to improve the safety profile of existing drugs by restricting their release parameters. Polymerically-derived nano-DDS were found as a suitable option for oral delivery as well as SLNs due to pharmacokinetic re-modeling of drugs. Mannosylated nano-DDS have upgraded macrophage internalizing of nanosystem and the entrapped drug, provided with minimal toxicity. Cutaneous Leishmaniasis (CL) was tackling by the utilization of nano-DDS designed for topical delivery including niosomes, liposomes, and transfersomes. Transfersomes, however, appears to be superior for this purpose. The nanotechnology-based solution to prevent parasitic resistance is the use of Thiolated drug-loaded and multiple drugs loaded nano-DDS. These surfaces amended nano-DDS possess augmented IC50 values in comparison to conventional drugs and un-modified nano-DDS. Phyto-nano-DDS, another obscure horizon, have also been evaluated for their anti-leishmanial response, however, more intense assessment is a prerequisite. Impoverished Cytotoxic T-cells response followed by Leishmanial antigen proteins delivery have also been vanquished using nano-adjuvants. The eminence of nano-DDS for curtailment of anti-leishmanial chemotherapy and immunization associated challenges are extensively summed up in this review. This expedited approach is ameliorating the Leishmaniasis management successfully. Alongside, total to partial eradication of this disease can be sought along with associated co-morbidities.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
43
|
Awad N, Paul V, AlSawaftah NM, ter Haar G, Allen TM, Pitt WG, Husseini GA. Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacol Transl Sci 2021; 4:589-612. [PMID: 33860189 PMCID: PMC8033618 DOI: 10.1021/acsptsci.0c00212] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 12/13/2022]
Abstract
The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors. They are small enough to extravasate into solid tumors, where they slowly release their therapeutic load by passive leakage or biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH, and temperature) or externally (light, magnetic field, and ultrasound) applied stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuli-responsive nanocarriers and their application in cancer treatment with a particular focus on ultrasound.
Collapse
Affiliation(s)
- Nahid
S. Awad
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Nour M. AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Gail ter Haar
- Joint
Department of Physics, The Institute of
Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, U.K.
| | - Theresa M. Allen
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - William G. Pitt
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
44
|
Singh R, Hano C, Nath G, Sharma B. Green Biosynthesis of Silver Nanoparticles Using Leaf Extract of Carissa carandas L. and Their Antioxidant and Antimicrobial Activity against Human Pathogenic Bacteria. Biomolecules 2021; 11:299. [PMID: 33671333 PMCID: PMC7922588 DOI: 10.3390/biom11020299] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Carissa carandas L. is traditionally used as antibacterial medicine and accumulates many antioxidant phytochemicals. Here, we expand this traditional usage with the green biosynthesis of silver nanoparticles (AgNPs) achieved using a Carissa carandas L. leaf extract as a reducing and capping agent. The green synthesis of AgNPs reaction was carried out using 1mM silver nitrate and leaf extract. The effect of temperature on the synthesis of AgNPs was examined using room temperature (25 °C) and 60 °C. The silver nanoparticles were formed in one hour by stirring at room temperature. In this case, a yellowish brown colour was developed. The successful formation of silver nanoparticles was confirmed by UV-Vis, Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The characteristic peaks of the UV-vis spectrum and XRD confirmed the synthesis of AgNPs. The biosynthesised AgNPs showed potential antioxidant activity through DPPH assay. These AgNPs also exhibited potential antibacterial activity against human pathogenic bacteria. The results were compared with the antioxidant and antibacterial activities of the plant extract, and clearly suggest that the green biosynthesized AgNPs can constitute an effective antioxidant and antibacterial agent.
Collapse
Affiliation(s)
- Reetika Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Eure et Loir Campus, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS)—Groupement de Recherche 3711, Université d’Orléans, 45067 Orléans CEDEX 2, France
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
45
|
Afshari H, Maleki M, Hakimian M, Tanha RA, Salouti M. Immunogenicity evaluating of the SLNs-alginate conjugate against Pseudomonas aeruginosa. J Immunol Methods 2021; 488:112938. [PMID: 33259781 DOI: 10.1016/j.jim.2020.112938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023]
Abstract
P. aeruginosa is of particular importance due to its numerous pathogens and the spread of its multidrug-resistant strains around the world. Hence there is a need to develop an effective vaccine to prevent the diseases with P. aeruginosa. The aim of present study was to evaluate the immunogenicity of alginate (Alg) antigen in conjugation with SLN as a candidate for nanovaccine against P. aeruginosa in mouse model. Alginate is a weak immunogen, but the immune responses produced by alginate are effective in killing Pseudomonas bacteria. To increase the immunogenicity of alginate, SLN was used that is useful in drug delivery and can boost prolonged effectiveness. The results of ELISA and opsonophagocytosis tests showed that Alg-SLN conjugate has a better ability to stimulate the immune system to produce more immunoglobulins with better performance compared to alginate antigen alone. The challenge test also demonstrated that the Alg-SLN treated mice showed a higher level of immunity than the mice treated with pure alginate against infections caused by P. aeruginosa. Overally the findings showed the efficacy of new prepared vaccine to induce immunogenicity, and therefore it can be considered as a candidate for a strong vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Hossein Afshari
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Masoud Maleki
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mozhdeh Hakimian
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Roghaye Ahmadlou Tanha
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
46
|
Matha K, Calvignac B, Gangneux JP, Benoit JP. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opin Drug Deliv 2020; 18:471-487. [PMID: 33217254 DOI: 10.1080/17425247.2021.1853701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Although life-threatening if left untreated, visceral leishmaniasis (VL) is still a neglected endemic disease in 98 countries worldwide. The number of drugs available is low and few are in clinical trials. In the last decades, efforts have been made on the development of nanocarriers as drug delivery systems to treat VL. Given the preferential intracellular location of the parasite in the liver and spleen macrophages, the rationale is sturdy. In a clinical setting, liposomal amphotericin B displays astonishing cure rates.Areas covered: A literature search was performed through PubMed and Google Scholar. We critically reviewed the main literature highlighting the success of nanomedicine in VL. We also reviewed the hurdles and yet unfulfilled promises rising awareness of potential drawbacks of nanomedicine in VL.Expert opinion: VL is a disease where nanomedicines successes shine through. However, there are a lot of obstacles on the road to developing more efficient strategies such as targeting functionalization, oral formulations, or combined therapies. And those strategies raise many questions.
Collapse
Affiliation(s)
- Kevin Matha
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France.,CHU Angers, département Pharmacie,4 rue Larrey, 49933 Angers cedex 9, France
| | - Brice Calvignac
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset , (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.,Laboratoire de Parasitologie-Mycologie, CHU de Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Jean-Pierre Benoit
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France.,CHU Angers, département Pharmacie,4 rue Larrey, 49933 Angers cedex 9, France
| |
Collapse
|
47
|
Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, Talevi A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front Chem 2020; 8:601151. [PMID: 33324615 PMCID: PMC7726426 DOI: 10.3389/fchem.2020.601151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatid-caused conditions (African trypanosomiasis, Chagas disease, and leishmaniasis) are neglected tropical infectious diseases that mainly affect socioeconomically vulnerable populations. The available therapeutics display substantial limitations, among them limited efficacy, safety issues, drug resistance, and, in some cases, inconvenient routes of administration, which made the scenarios with insufficient health infrastructure settings inconvenient. Pharmaceutical nanocarriers may provide solutions to some of these obstacles, improving the efficacy-safety balance and tolerability to therapeutic interventions. Here, we overview the state of the art of therapeutics for trypanosomatid-caused diseases (including approved drugs and drugs undergoing clinical trials) and the literature on nanolipid pharmaceutical carriers encapsulating approved and non-approved drugs for these diseases. Numerous studies have focused on the obtention and preclinical assessment of lipid nanocarriers, particularly those addressing the two currently most challenging trypanosomatid-caused diseases, Chagas disease, and leishmaniasis. In general, in vitro and in vivo studies suggest that delivering the drugs using such type of nanocarriers could improve the efficacy-safety balance, diminishing cytotoxicity and organ toxicity, especially in leishmaniasis. This constitutes a very relevant outcome, as it opens the possibility to extended treatment regimens and improved compliance. Despite these advances, last-generation nanosystems, such as targeted nanocarriers and hybrid systems, have still not been extensively explored in the field of trypanosomatid-caused conditions and represent promising opportunities for future developments. The potential use of nanotechnology in extended, well-tolerated drug regimens is particularly interesting in the light of recent descriptions of quiescent/dormant stages of Leishmania and Trypanosoma cruzi, which have been linked to therapeutic failure.
Collapse
Affiliation(s)
- Giuliana Muraca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Wagner J. Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
48
|
Varma DM, Redding EA, Bachelder EM, Ainslie KM. Nano- and Microformulations to Advance Therapies for Visceral Leishmaniasis. ACS Biomater Sci Eng 2020; 7:1725-1741. [PMID: 33966377 PMCID: PMC10372633 DOI: 10.1021/acsbiomaterials.0c01132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Visceral leishmaniasis (VL) is a deadly, vector-borne, neglected tropical disease endemic to arid parts of the world and is caused by a protozoan parasite of the genus Leishmania. Chemotherapy is the primary treatment for this systemic disease, and multiple potent therapies exist against this intracellular parasite. However, several factors, such as systemic toxicity, high costs, arduous treatment regimen, and rising drug resistance, are barriers for effective therapy against VL. Material-based platforms have the potential to revolutionize chemotherapy for leishmaniasis by imparting a better pharmacokinetic profile and creating patient-friendly routes of administration, while also lowering the risk for drug resistance. This review highlights promising drug delivery strategies and novel therapies that have been evaluated in preclinical models, demonstrating the potential to advance chemotherapy for VL.
Collapse
Affiliation(s)
- Devika M. Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth A. Redding
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
49
|
Calvo A, Moreno E, Larrea E, Sanmartín C, Irache JM, Espuelas S. Berberine-Loaded Liposomes for the Treatment of Leishmania infantum-Infected BALB/c Mice. Pharmaceutics 2020; 12:pharmaceutics12090858. [PMID: 32916948 PMCID: PMC7558179 DOI: 10.3390/pharmaceutics12090858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Berberine (BER)—an anti-inflammatory quaternary isoquinoline alkaloid extracted from plants—has been reported to have a variety of biologic properties, including antileishmanial activity. This work addresses the preparation of BER-loaded liposomes with the aim to prevent its rapid liver metabolism and improve the drug selective delivery to the infected organs in visceral leishmaniasis (VL). BER liposomes (LP-BER) displayed a mean size of 120 nm, negative Z-potential of −38 mV and loaded 6 nmol/μmol lipid. In vitro, the loading of BER in liposomes enhanced its selectivity index more than 7-fold by decreasing its cytotoxicity to macrophages. In mice, LP-BER enhanced drug accumulation in the liver and the spleen. Consequently, the liposomal delivery of the drug reduced parasite burden in the liver and spleen by three and one logarithms (99.2 and 93.5%), whereas the free drug only decreased the infection in the liver by 1-log. The organ drug concentrations—far from IC50 values— indicate that BER immunomodulatory activity or drug metabolites also contribute to the efficacy. Although LP-BER decreased 10-fold—an extremely rapid clearance of the free drug in mice—the value remains very high. Moreover, LP-BER reduced plasma triglycerides levels.
Collapse
Affiliation(s)
- Alba Calvo
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Esther Moreno
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-425-600 (ext. 806310)
| |
Collapse
|
50
|
Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol 2020; 104:8965-8977. [PMID: 32875362 DOI: 10.1007/s00253-020-10856-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important tropical neglected diseases according to the World Health Organization. Even after more than a century, we still have few drugs for the disease therapy and their great toxicity and side effects put in check the treatment control program around the world. Moreover, the emergence of strains resistant to conventional drugs, co-infections such as HIV/Leishmania spp., the small therapeutic arsenal (pentavalent antimonials, amphotericin B and formulations, and miltefosine), and the low investment for the discovery/development of new drugs force researchers and world health agencies to seek new strategies to combat and control this important neglected disease. In this context, the aim of this review is to summarize new advances and new strategies used on leishmaniasis therapy addressing alternative and innovative treatment paths such as physical and local/topical therapies, combination or multi-drug uses, immunomodulation, drug repurposing, and the nanotechnology-based drug delivery systems.Key points• The treatment of leishmaniasis is a challenge for global health agencies.• Toxicity, side effects, reduced therapeutic arsenal, and drug resistance are the main problems.• New strategies and recent advances on leishmaniasis treatment are urgent.• Immunomodulators, nanotechnology, and drug repurposing are the future of leishmaniasis treatment.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rory Cristiane Fortes De Brito
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Rodrigo Dian de Oliveira Aguiar-Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil. .,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil. .,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil.
| |
Collapse
|