1
|
Cacciatore S, Calvani R, Esposito I, Massaro C, Gava G, Picca A, Tosato M, Marzetti E, Landi F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024; 16:3271. [PMID: 39408239 PMCID: PMC11478655 DOI: 10.3390/nu16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of skeletal muscle mass, strength, and function, significantly impacting overall health and quality of life in older adults. This narrative review explores emerging targets and potential treatments for sarcopenia, aiming to provide a comprehensive overview of current and prospective interventions. METHODS The review synthesizes current literature on sarcopenia treatment, focusing on recent advancements in muscle regeneration, mitochondrial function, nutritional strategies, and the muscle-microbiome axis. Additionally, pharmacological and lifestyle interventions targeting anabolic resistance and neuromuscular junction integrity are discussed. RESULTS Resistance training and adequate protein intake remain the cornerstone of sarcopenia management. Emerging strategies include targeting muscle regeneration through myosatellite cell activation, signaling pathways, and chronic inflammation control. Gene editing, stem cell therapy, and microRNA modulation show promise in enhancing muscle repair. Addressing mitochondrial dysfunction through interventions aimed at improving biogenesis, ATP production, and reducing oxidative stress is also highlighted. Nutritional strategies such as leucine supplementation and anti-inflammatory nutrients, along with dietary modifications and probiotics targeting the muscle-microbiome interplay, are discussed as potential treatment options. Hydration and muscle-water balance are emphasized as critical in maintaining muscle health in older adults. CONCLUSIONS A combination of resistance training, nutrition, and emerging therapeutic interventions holds potential to significantly improve muscle function and overall health in the aging population. This review provides a detailed exploration of both established and novel approaches for the prevention and management of sarcopenia, highlighting the need for further research to optimize these strategies.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Ilaria Esposito
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
| | - Claudia Massaro
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Giordana Gava
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
- Department of Medicine and Surgery, LUM University, Strada Statale 100 Km 18, 70100 Casamassima, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| |
Collapse
|
2
|
Wang Y, Wang X, Luo J, Qiu B, Huang R, Xiao Y. Urinary Epinephrine Sulfate Can Predict Cardiovascular Risk in Moderate-to-Severe OSA: A Metabolomics-Based Study. Nat Sci Sleep 2024; 16:1153-1168. [PMID: 39131167 PMCID: PMC11314438 DOI: 10.2147/nss.s470154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose There are currently no ideal indicators for predicting the cardiovascular risk of obstructive sleep apnea (OSA). This study aimed to employ urinary metabolomics to detect early cardiovascular risk in patients with moderate-to-severe OSA. Patients and Methods Male participants who underwent polysomnography from November 2020 to May 2021 were screened. Clinical data, polysomnography data and urine samples were collected. Untargeted metabolomics analyses of urine were performed. Multivariate analyses and receiver operating characteristic (ROC) curve analyses were subsequently performed to identify potential biomarkers. Associations between metabolites and clinical indicators and cardiovascular risk were examined through linear regression analyses with interaction and mediation analyses. Results Thirty-six male participants were included in the study, comprising 22 males with moderate-to-severe OSA and 14 age-matched controls, with an average age of 39.6 ± 9.2 years. We identified 65 metabolites in the study, involving pathways including pyrimidine, androgen, estrogen, vitamin B6 and sulfate/sulfite metabolism. Among them, epinephrine sulfate was the most significantly altered metabolite. ROC analyses highlighted that epinephrine sulfate had the highest area under the curve (AUC=0.883) for detecting moderate-to-severe OSA. Epinephrine sulfate was statistically correlated with OSA severity, hypoxia-related indicators (apnea-hypopnea index: r=0.685; oxygen desaturation index: r=0.743, p<0.0001), arterial stiffness (arterial augmentation index: r=0.361, p=0.031) and long-term cardiovascular risk (Framingham cardiovascular risk: r=0.375, p=0.024). Linear regression analysis revealed that epinephrine sulfate was significantly associated with an increased in the Framingham risk (β = 0.004, 95% CI = 0.000-0.009, p = 0.049), with the effect partly mediated by systolic blood pressure (27.6%) and not moderated by other factors. Additionally, it also significantly associated with the increased in the arterial augmentation index (β = 0.019, 95% CI = 0.000-0.037, p = 0.046), with the effect fully mediated by blood pressure and not moderated by other indices statistically. Conclusion There are significant metabolic pathway alterations in moderate-to-severe OSA patients. Urinary epinephrine sulfate markedly predicts early cardiovascular risk in OSA patients.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaona Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jinmei Luo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Bintao Qiu
- Department of Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Rong Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Xiao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Rousseau AF, Martindale R. Nutritional and metabolic modulation of inflammation in critically ill patients: a narrative review of rationale, evidence and grey areas. Ann Intensive Care 2024; 14:121. [PMID: 39088114 PMCID: PMC11294317 DOI: 10.1186/s13613-024-01350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Inflammation is the hallmark of critical illness and triggers the neuro-endocrine stress response and an oxidative stress. Acute inflammation is initially essential for patient's survival. However, ongoing or exaggerated inflammation, due to persistent organ dysfunction, immune dysfunction or poor inflammation resolution, is associated to subsequent hypermetabolism and hypercatabolism that severely impact short and long-term functional status, autonomy, as well as health-related costs. Modulation of inflammation is thus tempting, with the goal to improve the short- and long-term outcomes of critically ill patients. FINDINGS Inflammation can be modulated by nutritional strategies (including the timing of enteral nutrition initiation, the provision of some specific macronutrients or micronutrients, the use of probiotics) and metabolic treatments. The most interesting strategies seem to be n-3 polyunsaturated fatty acids, vitamin D, antioxidant micronutrients and propranolol, given their safety, their accessibility for clinical use, and their benefits in clinical studies in the specific context of critical care. However, the optimal doses, timing and route of administration are still unknown for most of them. Furthermore, their use in the recovery phase is not well studied and defined. CONCLUSION The rationale to use strategies of inflammation modulation is obvious, based on critical illness pathophysiology and based on the increasingly described effects of some nutritional and pharmacological strategies. Regretfully, there isn't always substantial proof from clinical research regarding the positive impacts directly brought about by inflammation modulation. Some arguments come from studies performed in severe burn patients, but such results should be transposed to non-burn patients with caution. Further studies are needed to explore how the modulation of inflammation can improve the long-term outcomes after a critical illness.
Collapse
Affiliation(s)
- Anne-Françoise Rousseau
- Intensive Care Department, University Hospital of Liège, University of Liège, Avenue de l'Hôpital, 1/B35, Liège, B-4000, Belgium.
- GIGA-I3 Thematic Unit, Inflammation and Enhanced Rehabilitation Laboratory (Intensive Care), GIGA-Research, University of Liège, Liège, Belgium.
| | - Robert Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
4
|
Liu M, Zhang Y, Deng L, Pan L, Lu X, Yue R, Niu D, Li S, Sun C, Yao J. Disorders of fatty acid metabolism and imbalance in the ratio of monounsaturated fatty acids promote the development of pulmonary fibrosis. Int Immunopharmacol 2024; 139:112671. [PMID: 39003929 DOI: 10.1016/j.intimp.2024.112671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Although some studies suggested that metabolic abnormalities may contribute to the development of pulmonary fibrosis, there are no studies that have reported a clear causal relationship between them, and the aim of this study was to explore the causal relationship between plasma metabolites and pulmonary fibrosis using Mendelian randomization (MR) combined with metabolomics analysis. METHODS Firstly, we explored the causal relationship between 1400 metabolites and pulmonary fibrosis using MR analysis, and detected plasma metabolites in mice with pulmonary fibrosis using metabolomics technology, thus validating the results of MR analysis. In addition, we again used MR to explore the causal relationship between the results of the differential metabolite KEGG in metabolomics and pulmonary fibrosis. RESULTS A total of 52 metabolites were screened for association with pulmonary fibrosis in the MR analysis of 1400 plasma metabolites with pulmonary fibrosis, based on P < 0.05 for the IVW method, with consistent OR directions for all methods. Four of them were validated in the plasma of mice with pulmonary fibrosis, namely carnitine c18:2 levels (negative correlation), Glutamine degradant levels (positive correlation), Propionylcarnitine (c3) levels (negative correlation), carnitine to palmitoylcarnitine (c16) ratio (negative correlation). In addition, KEGG analysis of plasma differential metabolites revealed that the signaling pathway of biosynthetic of unsaturated fatty acids was most affected in mice with pulmonary fibrosis, and MR analysis showed that imbalance in the ratio of monounsaturated fatty acids was significantly associated with pulmonary fibrosis. CONCLUSIONS Our study suggests that abnormal fatty acid levels due to reduced levels of carnitine-like metabolites, and an imbalance in the ratio of monounsaturated, promote the development of pulmonary fibrosis. This study reveals the marker metabolites and metabolic pathways affecting the development of pulmonary fibrosis to provide a basis for the development of new drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | | | - Linkui Deng
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Rujing Yue
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China.
| |
Collapse
|
5
|
Kurth S, Li T, Hausker A, Evans WE, Dabre R, Müller E, Kervinen J. Separation of full and empty adeno-associated virus capsids by anion-exchange chromatography using choline-type salts. Anal Biochem 2024; 686:115421. [PMID: 38061416 DOI: 10.1016/j.ab.2023.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Development of clinically desirable adeno-associated virus (AAV) vectors with optimal genome design requires rapid and accurate analytical methods to assess AAV quality. Anion-exchange (AEX) chromatography provides a powerful analytical method for full/empty AAV capsid ratio determination. However, the current AEX methodology for separation of empty and full AAV capsids largely relies on the use of the highly toxic tetramethylammonium chloride (TMAC). Here, we describe a novel analytical AEX method for separation of empty and full AAV capsids that uses only non-toxic, choline-type compounds that contain structural similarity to the quaternary ammonium ligand present on the surface of AEX resin. Choline-Cl gradient, combined with sensitive fluorescence detection, allowed a safe and effective separation of empty and full AAV capsids with reproducible empty/full ratio determination. The choline-based assay was suitable for commonly used serotypes, AAV2, AAV5, AAV6, and AAV8. The limit of detection was ∼3.9 × 108 virus particles in the assay. A gradient-hold step-gradient elution with choline-Cl resulted in enhanced baseline separation of empty and full AAV8 capsids. In summary, the use of choline-Cl in the AEX assay is recommended for empty/full capsid ratio determination and other applications in AAV production, and it eliminates the necessity of using toxic TMAC.
Collapse
Affiliation(s)
- Sam Kurth
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - Tianyu Li
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - Alana Hausker
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - William E Evans
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - Romain Dabre
- Tosoh Bioscience GmbH, Im Leuschnerpark 4, 64347, Griesheim, Germany
| | - Egbert Müller
- Tosoh Bioscience GmbH, Im Leuschnerpark 4, 64347, Griesheim, Germany
| | - Jukka Kervinen
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA.
| |
Collapse
|
6
|
Hayden CMT, Nagarajan R, Smith ZH, Gilmore S, Kent JA. Postcontraction [acetylcarnitine] reflects interindividual variation in skeletal muscle ATP production patterns in vivo. Am J Physiol Regul Integr Comp Physiol 2024; 326:R66-R78. [PMID: 37955131 DOI: 10.1152/ajpregu.00027.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
In addition to its role in substrate selection (carbohydrate vs. fat) for oxidative metabolism in muscle, acetylcarnitine production may be an important modulator of the energetic pathway by which ATP is produced. A combination of noninvasive magnetic resonance spectroscopy measures of cytosolic acetylcarnitine and ATP production pathways was used to investigate the link between [acetylcarnitine] and energy production in vivo. Intracellular metabolites were measured in the vastus lateralis muscle of eight males (mean: 28.4 yr, range: 25-35) during 8 min of incremental, dynamic contractions (0.5 Hz, 2-min stages at 6%, 9%, 12%, and 15% maximal torque) that increased [acetylcarnitine] approximately fivefold from resting levels. ATP production via oxidative phosphorylation, glycolysis, and the creatine kinase reaction was calculated based on phosphorus metabolites and pH. Spearman rank correlations indicated that postcontraction [acetylcarnitine] was positively associated with both absolute (mM) and relative (% total ATP) glycolytic ATP production (rs = 0.95, P = 0.001; rs = 0.93, P = 0.002), and negatively associated with relative (rs = -0.81, P = 0.02) but not absolute (rs = -0.14, P = 0.75) oxidative ATP production. Thus, acetylcarnitine accumulated more when there was a greater reliance on "nonoxidative" glycolysis and a relatively lower contribution from oxidative phosphorylation, reflecting the fate of pyruvate in working skeletal muscle. Furthermore, these data indicate striking interindividual variation in responses to the energy demand of submaximal contractions. Overall, the results of this preliminary study provide novel evidence of the coupling in vivo between ATP production pathways and the carnitine system.NEW & NOTEWORTHY Production of acetylcarnitine from acetyl-CoA and free carnitine may be important for energy pathway regulation in contracting skeletal muscle. Noninvasive magnetic resonance spectroscopy was used to investigate the link between acetylcarnitine and energy production in the vastus lateralis muscle during dynamic contractions (n = 8 individuals). A positive correlation between acetylcarnitine accumulation and "nonoxidative" glycolysis and an inverse relationship with oxidative phosphorylation, provides novel evidence of the coupling between ATP production and the carnitine system in vivo.
Collapse
Affiliation(s)
- Christopher M T Hayden
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - Zoe H Smith
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Samantha Gilmore
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
7
|
Abdalla W, Ammar MA, Ali A, Ragab D, Taeimah M. Effects of high-dose L-carnitine supplementation on diaphragmatic function in patients with respiratory failure: A randomized clinical trial. EGYPTIAN JOURNAL OF ANAESTHESIA 2023. [DOI: 10.1080/11101849.2023.2168852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Waleed Abdalla
- Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona A. Ammar
- Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Asmaa Ali
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jingkou, China
| | - Dina Ragab
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Taeimah
- Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Elsheikh M, El Sabagh A, Mohamed IB, Bhongade M, Hassan MM, Jalal PK. Frailty in end-stage liver disease: Understanding pathophysiology, tools for assessment, and strategies for management. World J Gastroenterol 2023; 29:6028-6048. [PMID: 38130738 PMCID: PMC10731159 DOI: 10.3748/wjg.v29.i46.6028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/13/2023] Open
Abstract
Frailty and sarcopenia are frequently observed in patients with end-stage liver disease. Frailty is a complex condition that arises from deteriorations across various physiological systems, including the musculoskeletal, cardiovascular, and immune systems, resulting in a reduced ability of the body to withstand stressors. This condition is associated with declined resilience and increased vulnerability to negative outcomes, including disability, hospitalization, and mortality. In cirrhotic patients, frailty is influenced by multiple factors, such as hyperammonemia, hormonal imbalance, malnutrition, ascites, hepatic encephalopathy, and alcohol intake. Assessing frailty is crucial in predicting morbidity and mortality in cirrhotic patients. It can aid in making critical decisions regarding patients' eligibility for critical care and transplantation. This, in turn, can guide the development of an individualized treatment plan for each patient with cirrhosis, with a focus on prioritizing exercise, proper nutrition, and appropriate treatment of hepatic complications as the primary lines of treatment. In this review, we aim to explore the topic of frailty in liver diseases, with a particular emphasis on pathophysiology, clinical assessment, and discuss strategies for preventing frailty through effective treatment of hepatic complications. Furthermore, we explore novel assessment and management strategies that have emerged in recent years, including the use of wearable technology and telemedicine.
Collapse
Affiliation(s)
- Mazen Elsheikh
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ahmed El Sabagh
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Islam B Mohamed
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Megha Bhongade
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Manal M Hassan
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Prasun Kumar Jalal
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
9
|
Jagim AR, Harty PS, Tinsley GM, Kerksick CM, Gonzalez AM, Kreider RB, Arent SM, Jager R, Smith-Ryan AE, Stout JR, Campbell BI, VanDusseldorp T, Antonio J. International society of sports nutrition position stand: energy drinks and energy shots. J Int Soc Sports Nutr 2023; 20:2171314. [PMID: 36862943 PMCID: PMC9987737 DOI: 10.1080/15502783.2023.2171314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of energy drink (ED) or energy shot (ES) consumption on acute exercise performance, metabolism, and cognition, along with synergistic exercise-related performance outcomes and training adaptations. The following 13 points constitute the consensus of the Society and have been approved by the Research Committee of the Society: Energy drinks (ED) commonly contain caffeine, taurine, ginseng, guarana, carnitine, choline, B vitamins (vitamins B1, B2, B3, B5, B6, B9, and B12), vitamin C, vitamin A (beta carotene), vitamin D, electrolytes (sodium, potassium, magnesium, and calcium), sugars (nutritive and non-nutritive sweeteners), tyrosine, and L-theanine, with prevalence for each ingredient ranging from 1.3 to 100%. Energy drinks can enhance acute aerobic exercise performance, largely influenced by the amount of caffeine (> 200 mg or >3 mg∙kg bodyweight [BW-1]) in the beverage. Although ED and ES contain several nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES based on scientific evidence appear to be caffeine and/or the carbohydrate provision. The ergogenic value of caffeine on mental and physical performance has been well-established, but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. Consuming ED and ES 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance with doses >3 mg∙kg BW-1. Consuming ED and ES containing at least 3 mg∙kg BW-1 caffeine is most likely to benefit maximal lower-body power production. Consuming ED and ES can improve endurance, repeat sprint performance, and sport-specific tasks in the context of team sports. Many ED and ES contain numerous ingredients that either have not been studied or evaluated in combination with other nutrients contained in the ED or ES. For this reason, these products need to be studied to demonstrate efficacy of single- and multi-nutrient formulations for physical and cognitive performance as well as for safety. Limited evidence is available to suggest that consumption of low-calorie ED and ES during training and/or weight loss trials may provide ergogenic benefit and/or promote additional weight control, potentially through enhanced training capacity. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. Individuals should consider the impact of regular coingestion of high glycemic index carbohydrates from ED and ES on metabolic health, blood glucose, and insulin levels. Adolescents (aged 12 through 18) should exercise caution and seek parental guidance when considering the consumption of ED and ES, particularly in excessive amounts (e.g. > 400 mg), as limited evidence is available regarding the safety of these products among this population. Additionally, ED and ES are not recommended for children (aged 2-12), those who are pregnant, trying to become pregnant, or breastfeeding and those who are sensitive to caffeine. Diabetics and individuals with preexisting cardiovascular, metabolic, hepatorenal, and/or neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should exercise caution and consult with their physician prior to consuming ED. The decision to consume ED or ES should be based upon the beverage's content of carbohydrate, caffeine, and other nutrients and a thorough understanding of the potential side effects. Indiscriminate use of ED or ES, especially if multiple servings per day are consumed or when consumed with other caffeinated beverages and/or foods, may lead to adverse effects. The purpose of this review is to provide an update to the position stand of the International Society of Sports Nutrition (ISSN) integrating current literature on ED and ES in exercise, sport, and medicine. The effects of consuming these beverages on acute exercise performance, metabolism, markers of clinical health, and cognition are addressed, as well as more chronic effects when evaluating ED/ES use with exercise-related training adaptions.
Collapse
Affiliation(s)
- Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, USA
- Exercise & Sport Science, University of Wisconsin – La Crosse, La Crosse, WI, USA
| | - Patrick S. Harty
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, USA
| | - Grant M. Tinsley
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Chad M. Kerksick
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, USA
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, USA
| | - Adam M. Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | | | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey R. Stout
- School of Kinesiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | - Trisha VanDusseldorp
- Bonafede Health, LLC, JDS Therapeutics, Harrison, NY, USA
- Department of Health and Exercise Sciences, Jacksonville University, Jacksonville, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
10
|
Pi A, Villivalam SD, Kang S. The Molecular Mechanisms of Fuel Utilization during Exercise. BIOLOGY 2023; 12:1450. [PMID: 37998049 PMCID: PMC10669127 DOI: 10.3390/biology12111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Exercise is widely recognized for its positive impact on human health and well-being. The process of utilizing substrates in skeletal muscle during exercise is intricate and governed by complex mechanisms. Carbohydrates and lipids serve as the primary fuel sources for skeletal muscle during exercise. It is now understood that fuel selection during exercise is not solely determined by physical activity itself but is also influenced by the overall metabolic state of the body. The balance between lipid and carbohydrate utilization significantly affects exercise capacity, including endurance, fatigue, and overall performance. Therefore, comprehensively understanding the regulation of substrate utilization during exercise is of utmost importance. The aim of this review is to provide an extensive overview of the current knowledge regarding the pathways involved in the regulation of substrate utilization during exercise. By synthesizing existing research, we can gain a holistic perspective on the intricate relationship between exercise, metabolism, and fuel selection. This advanced understanding has the potential to drive advancements in the field of exercise science and contribute to the development of personalized exercise strategies for individuals looking to optimize their performance and overall health.
Collapse
Affiliation(s)
| | | | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Mohd Sahardi NFN, Jaafar F, Tan JK, Mad Nordin MF, Makpol S. Elucidating the Pharmacological Properties of Zingiber officinale Roscoe (Ginger) on Muscle Ageing by Untargeted Metabolomic Profiling of Human Myoblasts. Nutrients 2023; 15:4520. [PMID: 37960173 PMCID: PMC10648528 DOI: 10.3390/nu15214520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: Muscle loss is associated with frailty and a reduction in physical strength and performance, which is caused by increased oxidative stress. Ginger (Zingiber officinale Roscoe) is a potential herb that can be used to reduce the level of oxidative stress. This study aimed to determine the effect of ginger on the expression of metabolites and their metabolic pathways in the myoblast cells to elucidate the mechanism involved and its pharmacological properties in promoting myoblast differentiation. (2) Methods: The myoblast cells were cultured into three stages (young, pre-senescent and senescent). At each stage, the myoblasts were treated with different concentrations of ginger extract. Then, metabolomic analysis was performed using liquid chromatography-tandem mass spectrometry (LCMS/MS). (3) Results: Nine metabolites were decreased in both the pre-senescent and senescent control groups as compared to the young control group. For the young ginger-treated group, 8-shogaol and valine were upregulated, whereas adipic acid and bis (4-ethyl benzylidene) sorbitol were decreased. In the pre-senescent ginger-treated group, the niacinamide was upregulated, while carnitine and creatine were downregulated. Ginger treatment in the senescent group caused a significant upregulation in 8-shogaol, octadecanamide and uracil. (4) Conclusions: Ginger extract has the potential as a pharmacological agent to reduce muscle loss in skeletal muscle by triggering changes in some metabolites and their pathways that could promote muscle regeneration in ageing.
Collapse
Affiliation(s)
- Nur Fatin Nabilah Mohd Sahardi
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Uner B, Ergin AD, Ansari IA, Macit-Celebi MS, Ansari SA, Kahtani HMA. Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity. Molecules 2023; 28:7115. [PMID: 37894594 PMCID: PMC10609287 DOI: 10.3390/molecules28207115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Addressing obesity is a critical health concern of the century, necessitating urgent attention. L-carnitine (LC), an essential water-soluble compound, plays a pivotal role in lipid breakdown via β-oxidation and facilitates the transport of long-chain fatty acids across mitochondrial membranes. However, LC's high hydrophilicity poses challenges to its diffusion through bilayers, resulting in limited bioavailability, a short half-life, and a lack of storage within the body, mandating frequent dosing. In our research, we developed LC-loaded nanoparticle lipid carriers (LC-NLCs) using economically viable and tissue-localized nanostructured lipid carriers (NLCs) to address these limitations. Employing the central composite design model, we optimized the formulation, employing the high-pressure homogenization (HPH) method and incorporating Poloxamer® 407 (surfactant), Compritol® 888 ATO (solid lipid), and oleic acid (liquid oil). A comprehensive assessment of nanoparticle physical attributes was performed, and an open-field test (OFT) was conducted on rats. We employed immunofluorescence assays targeting CRP and PPAR-γ, along with an in vivo rat study utilizing an isolated fat cell line to assess adipogenesis. The optimal formulation, with an average size of 76.4 ± 3.4 nm, was selected due to its significant efficacy in activating the PPAR-γ pathway. Our findings from the OFT revealed noteworthy impacts of LC-NLC formulations (0.1 mg/mL and 0.2 mg/mL) on adipocyte cells, surpassing regular L-carnitine formulations' effects (0.1 mg/mL and 0.2 mg/mL) by 169.26% and 156.63%, respectively (p < 0.05).
Collapse
Affiliation(s)
- Burcu Uner
- Department of Administrative and Pharmaceutical Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO 63110, USA
| | - Ahmet Dogan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, 22030 Edirne, Turkey
- Department of Neuroscience, University of Turin, 10124 Turin, Italy
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, 22030 Edirne, Turkey
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Melahat Sedanur Macit-Celebi
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, 55270 Samsun, Turkey;
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.K.)
| | - Hamad M. Al Kahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.K.)
| |
Collapse
|
13
|
Mateus FG, Moreira S, Martins AD, Oliveira PF, Alves MG, Pereira MDL. L-Carnitine and Male Fertility: Is Supplementation Beneficial? J Clin Med 2023; 12:5796. [PMID: 37762736 PMCID: PMC10531648 DOI: 10.3390/jcm12185796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
L-Carnitine, a natural antioxidant found in mammals, plays a crucial role in the transport of long-chain fatty acids across the inner mitochondrial membrane. It is used as a nutritional supplement by professional athletes, improving performance and post-exercise recovery. Additionally, its therapeutic applications, including those in male infertility, have been investigated, as it may act as a defense mechanism against the excessive production of reactive oxygen species (ROS) in the testis, a process that can lead to sperm damage. This effect is achieved by enhancing the expression and activity of enzymes with antioxidant properties. Nevertheless, the mechanisms underlying the benefits of L-Carnitine remain unknown. This review aims to consolidate the current knowledge about the potential benefits of L-Carnitine and its role in male (in)fertility. Considering in vitro studies with Sertoli cells, pre-clinical studies, and investigations involving infertile men, a comprehensive understanding of the effects of L-Carnitine has been established. In vitro studies suggest that L-Carnitine has a direct influence on somatic Sertoli cells, improving the development of germ cells. Overall, evidence supports that L-Carnitine can positively impact male fertility, even at a relatively low dose of 2 g/day. This supplementation enhances sperm parameters, regulates hormone levels, reduces ROS levels, and subsequently improves fertility rates. However, further research is needed to elucidate the underlying mechanisms and establish optimal doses. In conclusion, the role of L-Carnitine in the field of male reproductive health is highlighted, with the potential to improve sperm quality and fertility.
Collapse
Affiliation(s)
- Filipa G. Mateus
- Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal; (F.G.M.); (S.M.)
| | - Silvia Moreira
- Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal; (F.G.M.); (S.M.)
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.D.M.); (P.F.O.)
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D. Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.D.M.); (P.F.O.)
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.D.M.); (P.F.O.)
| | - Marco G. Alves
- Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal; (F.G.M.); (S.M.)
- iBiMED-Institute of Biomedicine, Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal; (F.G.M.); (S.M.)
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, Rodriguez Y, Monsalve DM, Pardo-Rodriguez D, Cala MP, Acosta-Ampudia Y, Ramírez-Santana C. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci 2023; 10:1215039. [PMID: 37614441 PMCID: PMC10442829 DOI: 10.3389/fmolb.2023.1215039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked by an unpredictable course, high morbidity, and increased mortality risk that occurs especially in the diffuse and rapidly progressive forms of the disease, characterized by fibrosis of the skin and internal organs and endothelial dysfunction. Recent studies suggest that the identification of altered metabolic pathways may play a key role in understanding the pathophysiology of the disease. Therefore, metabolomics might be pivotal in a better understanding of these pathogenic mechanisms. Methods: Through a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA), searches were done in the PubMed, EMBASE, Web of Science, and Scopus databases from 2000 to September 2022. Three researchers independently reviewed the literature and extracted the data based on predefined inclusion and exclusion criteria. Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of 151 metabolites were differentially distributed between SSc patients and healthy controls (HC). The main deregulated metabolites were those derived from amino acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines associated with long-chain fatty acids and tricarboxylic acids such as citrate and succinate. Additionally, differences in metabolic profiling between SSc subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc) subtype showed upregulated amino acid-related pathways involved in fibrosis, endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were evaluated for the diagnosis of SSc, the identification of the dcSSc subtype, pulmonary arterial hypertension, and interstitial lung disease. These potential biomarkers are within amino acids, nucleotides, carboxylic acids, and carbohydrate metabolism. Discussion: The altered metabolite mechanisms identified in this study mostly point to perturbations in amino acid-related pathways, fatty acid beta-oxidation, and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are required to evaluate potential biomarkers for diagnosis, prognosis, and treatment response.
Collapse
Affiliation(s)
- Victoria Morales-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Galeano-Sánchez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Jaime Enrique Covaleda-Vargas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Yhojan Rodriguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
15
|
Chang D, Kong F, Jiang W, Li F, Zhang C, Ding H, Kang Y, Li W, Huang C, Zhou X, Zhang X, Jiao H, Kang Y, Shang X, Zhang B. Effects of L-carnitine Administration on Sperm and Sex Hormone Levels in a Male Wistar Rat Reproductive System Injury Model in a High-Altitude Hypobaric Hypoxic Environment. Reprod Sci 2023; 30:2231-2247. [PMID: 36633830 PMCID: PMC10310634 DOI: 10.1007/s43032-022-00948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023]
Abstract
The plateau environment impacts male reproductive function, causing decreased sperm quality and testosterone levels. L-carnitine can improve the semen microenvironment. However, the role of L-carnitine in a high-altitude environment remains unclear. In our study, we investigated the effects of L-carnitine administration in a male Wistar rat reproductive system injury model in the context of a simulated high-altitude environment. Rats were randomly divided into a normal control group (group A1, A2-low dose and A3-high dose) and high-altitude model groups (group B, C-low dose and D-high dose) with 20 rats in each group. With the exception of the normal control group exposed to normoxic conditions, the other groups were maintained in a hypobaric oxygen chamber that simulated an altitude of 6000 m for 28 days. In the experimental period, the low-dose groups (A2 and C) were administered 50 mg/kg L-carnitine via intraperitoneal injection once a day, and the high-dose groups (A3 and D) were given 100 mg/kg. After the feeding period, blood samples were collected to assess blood gas, serum hormone levels and oxidative stress. Sperm from the epididymis were collected to analyse various sperm parameters. After obtaining the testicular tissue, the morphological and pathological changes were observed under a light microscope and transmission electron microscopy (TEM). The impact of the simulated high-altitude environment on the rat testis tissue is obvious. Specifically, a decreased testicular organ index and altered indices of arterial blood gas and serum sex hormone levels caused testicular tissue morphological damage, reduced sperm quality, increased sperm deformity rate and altered malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) concentrations. The results demonstrate that L-carnitine can be administered as a preventive intervention to reduce the reproductive damage caused by high-altitude hypobaric and hypoxic environments and improve semen quality in a rat model.
Collapse
Affiliation(s)
- Dehui Chang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Feiyan Kong
- Second Department of Surgery, Beijing Fengtai Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Jiang
- Air Force Hangzhou Secret Service Rehabilitation Center, Convalescent Section First of Convalescent Zone Second, Hangzhou, Zhejiang, China
| | - Fudong Li
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Chunlei Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Haoshuai Ding
- The First Affiliated Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Yindong Kang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Weiping Li
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Chuang Huang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Xin Zhou
- The First Affiliated Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoli Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Hongmei Jiao
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Yafen Kang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Bin Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China.
| |
Collapse
|
16
|
Caballero-García A, Noriega-González DC, Roche E, Drobnic F, Córdova A. Effects of L-Carnitine Intake on Exercise-Induced Muscle Damage and Oxidative Stress: A Narrative Scoping Review. Nutrients 2023; 15:nu15112587. [PMID: 37299549 DOI: 10.3390/nu15112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise-induced muscle damage results in decreased physical performance that is accompanied by an inflammatory response in muscle tissue. The inflammation process occurs with the infiltration of phagocytes (neutrophils and macrophages) that play a key role in the repair and regeneration of muscle tissue. In this context, high intensity or long-lasting exercise results in the breakdown of cell structures. The removal of cellular debris is performed by infiltrated phagocytes, but with the release of free radicals as collateral products. L-carnitine is a key metabolite in cellular energy metabolism, but at the same time, it exerts antioxidant actions in the neuromuscular system. L-carnitine eliminates reactive oxygen and nitrogen species that, in excess, alter DNA, lipids and proteins, disturbing cell function. Supplementation using L-carnitine results in an increase in serum L-carnitine levels that correlates positively with the decrease in cell alterations induced by oxidative stress situations, such as hypoxia. The present narrative scoping review focuses on the critical evaluation of the efficacy of L-carnitine supplementation on exercise-induced muscle damage, particularly in postexercise inflammatory and oxidative damage. Although both concepts appear associated, only in two studies were evaluated together. In addition, other studies explored the effect of L-carnitine in perception of fatigue and delayed onset of muscle soreness. In view of the studies analyzed and considering the role of L-carnitine in muscle bioenergetics and its antioxidant potential, this supplement could help in postexercise recovery. However, further studies are needed to conclusively clarify the mechanisms underlying these protective effects.
Collapse
Affiliation(s)
- Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain
| | - David C Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Franchek Drobnic
- Medical Services Wolverhampton Wanderers FC, Wolverhampton WV3 9BF, UK
| | - Alfredo Córdova
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| |
Collapse
|
17
|
Jing Z, Iba T, Naito H, Xu P, Morishige JI, Nagata N, Okubo H, Ando H. L-carnitine prevents lenvatinib-induced muscle toxicity without impairment of the anti-angiogenic efficacy. Front Pharmacol 2023; 14:1182788. [PMID: 37089945 PMCID: PMC10116043 DOI: 10.3389/fphar.2023.1182788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Lenvatinib is an oral tyrosine kinase inhibitor that acts on multiple receptors involved in angiogenesis. Lenvatinib is a standard agent for the treatment of several types of advanced cancers; however, it frequently causes muscle-related adverse reactions. Our previous study revealed that lenvatinib treatment reduced carnitine content and the expression of carnitine-related and oxidative phosphorylation (OXPHOS) proteins in the skeletal muscle of rats. Therefore, this study aimed to evaluate the effects of L-carnitine on myotoxic and anti-angiogenic actions of lenvatinib. Co-administration of L-carnitine in rats treated with lenvatinib for 2 weeks completely prevented the decrease in carnitine content and expression levels of carnitine-related and OXPHOS proteins, including carnitine/organic cation transporter 2, in the skeletal muscle. Moreover, L-carnitine counteracted lenvatinib-induced protein synthesis inhibition, mitochondrial dysfunction, and cell toxicity in C2C12 myocytes. In contrast, L-carnitine had no influence on either lenvatinib-induced inhibition of vascular endothelial growth factor receptor 2 phosphorylation in human umbilical vein endothelial cells or angiogenesis in endothelial tube formation and mouse aortic ring assays. These results suggest that L-carnitine supplementation could prevent lenvatinib-induced muscle toxicity without diminishing its antineoplastic activity, although further clinical studies are needed to validate these findings.
Collapse
Affiliation(s)
- Zheng Jing
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomohiro Iba
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Vascular Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Pingping Xu
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jun-ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironao Okubo
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Bunkyō, Tokyo, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- *Correspondence: Hitoshi Ando,
| |
Collapse
|
18
|
Kooshesh L, Nateghian Z, Aliabadi E. Evaluation of L-Carnitine Potential in Improvement of Male Fertility. J Reprod Infertil 2023; 24:69-84. [PMID: 37547570 PMCID: PMC10402461 DOI: 10.18502/jri.v24i2.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023] Open
Abstract
L-carnitine, through its antioxidant potential, plays a significant role in reducing ROS production in male genital tract; therefore, fundamental improvements in spermatogenesis process and sperm structural and functional parameters in seminal plasma can be observed by treatment with L-carnitine. A literature search was performed using PubMed (including Medline) from the database earliest inception to 2021. Eligibility criteria included studies on protective effects of L-carnitine against damages to the male reproductive system. Based on the findings of the current study, L-carnitine has an effective potential to protect testis and improve conventional and functional sperm parameters against ROS-induced damages by sperm cryopreservation, busulfan treatment, and radiation.
Collapse
Affiliation(s)
- Leila Kooshesh
- Department of Genetics, Fars Academic Center for Education, Culture and Research, ACECR, Shiraz, Iran
| | - Zohre Nateghian
- Islamic Azad University of Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Elham Aliabadi
- Department of Anatomy, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Functional Beverages in the 21st Century. BEVERAGES 2023. [DOI: 10.3390/beverages9010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Underlying the dawn of humanity was primarily the search for food and access to drinking water. Over the course of civilization, there has been a significant increase in drinking water quality. By the average of the nutritional standards, the daily water demand is 2.5 L (also including liquid products such as tea, coffee, or soup). However, it is worth noticing that the need is strictly individual for each person and depends on two major factors, namely, epidemiological (sex, age state of health, lifestyle, and diet) and environmental (humidity and air temperature). Currently, our diet is more and more often enriched with isotonic drinks, functional drinks, or drinks bearing the hallmarks of health-promoting products. As a result, manufacturing companies compete to present more interesting beverages with complex compositions. This article will discuss both the composition of functional beverages and their impact on health.
Collapse
|
20
|
Li Y, Xie Y, Qiu C, Yu B, Yang F, Cheng Y, Zhong W, Yuan J. Effects of L-carnitine supplementation on glucolipid metabolism: a systematic review and meta-analysis. Food Funct 2023; 14:2502-2517. [PMID: 36815696 DOI: 10.1039/d2fo02930h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: L-carnitine supplementation has been utilized against glucolipid metabolism disruption. However, to the best of our knowledge, no meta-analysis process has analyzed the effects of L-carnitine supplementation on insulin resistance, fasting blood glucose, lipid metabolism, and liver enzyme levels in adults. Methods: Through the analysis and screening of 12 221 studies, 15 studies were selected from eligible trials for meta-analysis. Meta-analysis was performed in a random effect model with heterogeneity determined by I2, and subgroup analyses were used to further identify the source of heterogeneity. Result: The results showed significant effects of L-carnitine on FBG (MD = -4.94 mg dL-1, 95% CI: -7.07 to -2.82), insulin (MD = -0.99 μU mL-1, 95% CI: -1.41 to -0.56), HOMA-IR (MD = -0.58, 95% CI: -0.77 to -0.38), TG (MD = -11.22 mg dL-1, 95% CI: -19.21 to -3.22), TC (MD = -6.45 mg dL-1, 95% CI: -9.95 to -2.95, LDLc (MD = -8.28 mg dL-1, 95% CI: -11.08 to -5.47), and ALT (MD = -19.71 IU L-1, 95% CI: -36.45 to -2.96). However, no significant effect of L-carnitine supplementation was observed in HDLc (MD = -0.77 mg dL-1, 95% CI: -0.10 to -1.63) or AST (MD = -11.05 IU L-1, 95% CI: -23.08 to 0.99). The duration of carnitine supplementation was negatively associated with mean differences in FBG, as assessed by meta-regression. Conclusion: The current meta-analysis revealed that L-carnitine may have favorable effects on glucolipid profile, especially insulin, FBG, HOMA-IR, TG, TC, LDLc, and ALT levels.
Collapse
Affiliation(s)
- Yanfei Li
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Yuchen Xie
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Chensheng Qiu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital Group, Qingdao, China
| | - Bowen Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Fangzheng Yang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Yuanchao Cheng
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Weizhen Zhong
- Human functional laboratory, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
21
|
Raja L, Venkatesan S, Lin MC, Vediappen P. Green synthesis of naphthyl derivative as an optical sensor for the detection of l-carnitine in food samples. LUMINESCENCE 2023; 38:224-231. [PMID: 36602149 DOI: 10.1002/bio.4436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
An economical and green approach to the synthesis of naphthyl derivative for detection of l-carnitine (3-hydroxy-4-N-trimethyl-aminobutyrate) is practically important. We developed a naphthyl derivative as a probe showing 'turn-on' response towards l-carnitine selectively at pH 7.2 through ICT mechanism with a good limit of detection (LOD) of 0.126 μM. Using Job's plot for determining the binding stoichiometry, it was found that probe could form a more stable complex (1:1) with carnitine. The binding constant (K) between probe and carnitine was calculated as 8 × 107 M-1 using the Benesi-Hildebrand plot. The binding interaction of the probe with l-carnitine was confirmed by nuclear magnetic resonance titrations, Fourier-transform infrared spectroscopy, photo physical studies and density functional theory calculations. Meanwhile, the probe can be used to quantitatively detect carnitine in food samples.
Collapse
Affiliation(s)
- Lavanya Raja
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Srinivasadesikan Venkatesan
- Department of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science Technology and Research, Guntur, Andhra Pradesh, India
| | - Ming-Chang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Padmini Vediappen
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India
| |
Collapse
|
22
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
23
|
A Carnitine-Containing Product Improves Aspects of Post-Exercise Recovery in Adult Horses. Animals (Basel) 2023; 13:ani13040657. [PMID: 36830444 PMCID: PMC9951645 DOI: 10.3390/ani13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Strenuous exercise can cause tissue damage, leading to an extended recovery period. To counteract delayed post-exercise recovery, a commercial product containing L-carnitine (AID) was tested in adult horses performing consecutive exercise tests to exhaustion. Fit Thoroughbreds were administered an oral bolus of placebo (CON) or AID prior to performing an exercise test to exhaustion (D1). The heart rate (HR) and fetlock kinematics were captured throughout the exercise test. Blood was collected before, 10 min and 1, 4 and 6 h relative to exercise for the quantification of cytokine (IL1β, IL8, IL10, TNFa) gene expression and lactate concentration. Horses performed a second exercise test 48 h later (D2), with all biochemical and physiological measures repeated. The results demonstrate that the horses receiving AID retained a greater (p < 0.05) amount of flexion in the front fetlock on D2 than the horses given CON. The horses presented a reduced (p < 0.05) rate of HR decline on D2 compared to that on D1. The expression of IL1β, IL8 and IL10 increased at 1 h post-exercise on D1 and returned to baseline by 6 h; the cytokine expression pattern was not duplicated on D2. These results provide evidence of disrupted cytokine expression, HR recovery and joint mobility in response to consecutive bouts of exhaustive exercise. Importantly, AID may accelerate recovery through an undetermined mechanism.
Collapse
|
24
|
Enomoto H, Zaima N. Desorption electrospray ionization-mass spectrometry imaging of carnitine and imidazole dipeptides in pork chop tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1216:123601. [PMID: 36680959 DOI: 10.1016/j.jchromb.2023.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Carnitine is essential for energy production and lipid metabolism in skeletal muscle. Carnosine and its methylated analogs anserine and balenine are histidine-containing imidazole dipeptides, which are antioxidative compounds. They are major health-related components in meat; however, analytical technique to investigate their distribution among tissues have not fully established. Here, we performed desorption electrospray ionization (DESI)-mass spectrometry imaging (MSI) of pork chop sections containing longissimus thoracis et lumborum muscle (loin), intermuscular fat tissue, transparent tissue, and spinalis muscle to investigate the distributions of carnitine and imidazole dipeptides. Liquid chromatography-MS revealed that the concentrations of carnitine, carnosine, anserine, and balenine were 11.0 ± 0.9, 330.1 ± 15.5, 21.2 ± 1.5, and 9.6 ± 0.5 mg/100 g, respectively. In the mass spectrum obtained by DESI-MSI, peaks corresponding to the chemical formulae of carnitine and imidazole dipeptides were detected. DESI-MSI provided definite identification of carnitine, while DESI-tandem MSI (MS/MSI) was necessary to accurately visualize carnosine, anserine, and balenine. Carnitine and these imidazole dipeptides were mainly distributed in the loin and spinalis muscle, while their distribution was not uniform in both muscle tissues. In addition, the balance between both tissues were different. The concentration of carnitine was higher in the spinalis muscle than that in the loin, while those of imidazole dipeptides were higher in the loin than those in the spinalis muscle. These results were consistent with those obtained by liquid chromatography-MS quantification, suggest that DESI-MSI analysis is useful for the distribution analysis of carnitine and imidazole dipeptides in meat.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan; Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan; Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan.
| | - Nobuhiro Zaima
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
25
|
Cakmak A, Nemutlu E, Yabanoglu-Ciftci S, Baysal I, Kocaaga E, Coplu L, Inal-Ince D. Metabolomic, oxidative, and inflammatory responses to acute exercise in chronic obstructive pulmonary disease. Heart Lung 2023; 59:52-60. [PMID: 36724589 DOI: 10.1016/j.hrtlng.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is currently a need to identify metabolomic responses to acute exercise in chronic obstructive pulmonary disease (COPD). OBJECTIVE We investigated the metabolomic, oxidative, and inflammatory responses to constant (CE) and intermittent (IE) work rate exercises in COPD. METHODS Sixteen males with COPD performed a symptom-limited incremental cycle exercise test (ICE). Metabolomic, oxidative, and inflammatory responses to CE and IE (based on the performance of ICE) were analyzed in the plasma. RESULTS Fructose-6-phosphate, 3-phosphoglyceric acid, l-carnitine, and acylcarnitines levels were significantly decreased, whereas alpha-ketoglutaric, malic, 2-hydroxybutyric, and 3-hydroxybutyric acids were increased, after CE and IE (p<0.05). Increases in citric, isocitric, and lactic acids, as well as decreases in pyruvic and oxalic acids, were only present with IE (p<0.05). Isoleucine was decreased after both exercises (p<0.05). We observed an increase in inosine-5'-diphosphate, uric acid, ascorbic acid, and pantothenic acid, as well as a decrease in 5-hydroxymethyluridine, threonic acid, and dehydroascorbic acid, after IE (p<0.05). Catalase, reduced glutathione, and total antioxidant status difference values for both exercises were similar (p>0.05). The change in glutathione peroxidase (GPx) with CE was more significant than that with IE (p = 0.004). The superoxide dismutase change was greater with IE than with CE (p = 0.015). There were no significant changes in inflammatory markers after exercise (p>0.05). CONCLUSION CE and IE cause isoleucine, l-carnitine, and acylcarnitine levels to decrease, whereas ketone bodies were increased, thus indicating the energy metabolism shift from carbohydrates to amino acid utilization and lipid metabolism in COPD. Compared with CE, IE produces significant changes in more metabolomics in terms of carbohydrates, lipids, amino acids, nucleotides, and vitamins. Acute CE and IE alter circulating GPx levels in COPD.
Collapse
Affiliation(s)
- Aslihan Cakmak
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey.
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey.
| | | | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey.
| | - Elif Kocaaga
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey.
| | - Lutfi Coplu
- Faculty of Medicine, Department of Chest Diseases, Hacettepe University, Ankara, Turkey.
| | - Deniz Inal-Ince
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
26
|
GÖBEL P. Nutrition knowledge levels and nutritional supplement beliefs of professional karate athletes. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1198884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim
The fact that sportspeople gain adequate, balanced and correct dietary habits improve their athletic performance and helps them prevent injuries by contributing to more appropriate body composition. Adequate and balanced nutrition is only possible if the sportsperson has sufficient nutrition knowledge.
Material and Methods
Professional karate athletes (1st Dan and above) attending various karate schools in the province of Ankara, Turkey, and volunteering to participate in the study were included in the study. A total of 106 sportspeople, 52 male and 54 female, with an age average of 24.08±6.54 years, participated in the study. The participants answered the Nutrition for Sports Knowledge Questionnaire and the Sports Supplements Belief Scale questions after the questionnaire in which their demographic and anthropometric characteristics were questioned.
Results
When the sportspeople’s average nutrition knowledge level was examined, it was determined that they are at a weak level of knowledge (34.18±13.84) and that they are less prone to using doping and similar banned nutritional supplements (17.79±9.01) in terms of their approach to sports nutritional supplements. No statistically significant difference was found in terms of the sports supplements belief scale and the nutrition for sports knowledge questionnaire based on the sportspeople’s sex, age, karate categories, training duration, and BMI (p>0.05).
Conclusion
Adequate and balanced nutrition habits are very important for sportspeople to have good physical performance as well as health. Clubs, coaches and sportspeople seeking success in national and international fields should cooperate with a nutrition expert.
Collapse
|
27
|
Al-Dhuayan IS. Biomedical role of L-carnitine in several organ systems, cellular tissues, and COVID-19. BRAZ J BIOL 2023; 82:e267633. [PMID: 36629544 DOI: 10.1590/1519-6984.267633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Carnitine is a conditionally necessary vitamin that aids in energy creation and fatty acid metabolism. Its bioavailability is higher in vegetarians than in meat-eaters. Deficits in carnitine transporters occur because of genetic mutations or in conjunction with other illnesses. Carnitine shortage can arise in health issues and diseases-including hypoglycaemia, heart disease, starvation, cirrhosis, and ageing-because of abnormalities in carnitine control. The physiologically active form of L-carnitine supports immunological function in diabetic patients. Carnitine has been demonstrated to be effective in the treatment of Alzheimer's disease, several painful neuropathies, and other conditions. It has been used as a dietary supplement for the treatment of heart disease, and it also aids in the treatment of obesity and reduces blood glucose levels. Therefore, L-carnitine shows the potential to eliminate the influences of fatigue in COVID-19, and its consumption is recommended in future clinical trials to estimate its efficacy and safety. This review focused on carnitine and its effect on tissues, covering the biosynthesis, metabolism, bioavailability, biological actions, and its effects on various body systems and COVID-19.
Collapse
Affiliation(s)
- I S Al-Dhuayan
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Biology, Dammam, Saudi Arabia
| |
Collapse
|
28
|
Warner II ER, Satapathy SK. Sarcopenia in the Cirrhotic Patient: Current Knowledge and Future Directions. J Clin Exp Hepatol 2023; 13:162-177. [PMID: 36647414 PMCID: PMC9840086 DOI: 10.1016/j.jceh.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Cirrhosis predisposes to abnormalities in energy, hormonal, and immunological homeostasis. Disturbances in these metabolic processes create susceptibility to sarcopenia or pathological muscle wasting. Sarcopenia is prevalent in cirrhosis and its presence portends significant adverse outcomes including the length of hospital stay, infectious complications, and mortality. This highlights the importance of identification of at-risk individuals with early nutritional, therapeutic and physical therapy intervention. This manuscript summarizes literature relevant to sarcopenia in cirrhosis, describes current knowledge, and elucidates possible future directions.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ACE-I, angiotensin-converting enzyme inhibitor
- AKI, acute kidney injury
- ALM, appendicular lean mass
- ARB, angiotensin receptor blocker
- ASM, appendicular skeletal mass
- AT1R, angiotensin type 1 receptor
- AT2R, angiotensin type 2 receptor
- ATP, adenosine-5′-triphosphate
- AWGS, Asian Working Group for Sarcopenia
- BCAA, branched chained amino acids
- BIA, bioelectrical impedance analysis
- BMI, body mass index
- CART, classification and regression tree
- CKD, chronic kidney disease
- CRP, C-reactive protein
- DEXA, dual energy X-ray absorptiometry
- EAA, essential amino acids
- ESPEN-SIG, European Society for Clinical Nutrition and Metabolism Special Interests Groups
- ESRD, end-stage renal disease
- EWGSOP, European Working Group on Sarcopenia in Older People
- FAD, flavin adenine dinucleotide
- FADH2, flavin adenine dinucleotide +2 hydrogen
- FNIH, Foundation for the National Institutes of Health
- GTP, guanosine-5′-triphosphate
- GnRH, gonadotrophin-releasing hormone
- HCC, hepatocellular carcinoma
- HPT, hypothalamic-pituitary-testicular
- IFN-γ, interferon γ
- IGF-1, insulin-like growth factor 1
- IL-1, interleukin-1
- IL-6, interleukin-6
- IWGS, International Working Group on Sarcopenia
- LH, luteinizing hormone
- MELD, Model for End-Stage Liver Disease
- MuRF1, muscle RING-finger-1
- NAD, nicotinamide adenine dinucleotide
- NADH, nicotinamide adenine dinucleotide + hydrogen
- NADPH, nicotinamide adenine dinucleotide phosphate
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NF-κβ, nuclear factor κβ
- NHANES, National Health and Nutritional Examination Survey
- PMI, psoas muscle index
- PMTH, psoas muscle thickness
- RAAS, renin-angiotensin-aldosterone system
- ROS, reactive oxygen species
- SARC-F, Strength, Assistance with walking, Rise from a chair, Climb stairs, and Falls
- SHBG, sex hormone binding globulin
- SMI, skeletal muscle index
- SNS, sympathetic nervous system
- SPPB, Short Performance Physical Battery
- TNF-α, tumor necrosis factor α
- UCSF, University of California, San Francisco
- UNOS, United Network of Organ Sharing
- cirrhosis
- energy
- mTOR, mammalian target of rapamycin
- metabolism
- muscle
- sarcopenia
Collapse
Affiliation(s)
- Edgewood R. Warner II
- Department of Medicine, Donald and Barbara Zucker School of Medicine/Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Sanjaya K. Satapathy
- Division of Hepatology and Northwell Health Center for Liver Diseases and Transplantation, Department of Medicine, Donald and Barbara Zucker School of Medicine/Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
| |
Collapse
|
29
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
30
|
Yang Q, Bae G, Nadiradze G, Castagna A, Berezhnoy G, Zizmare L, Kulkarni A, Singh Y, Weinreich FJ, Kommoss S, Reymond MA, Trautwein C. Acidic ascites inhibits ovarian cancer cell proliferation and correlates with the metabolomic, lipidomic and inflammatory phenotype of human patients. J Transl Med 2022; 20:581. [PMID: 36503580 PMCID: PMC9743551 DOI: 10.1186/s12967-022-03763-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The poor prognosis of ovarian cancer patients is strongly related to peritoneal metastasis with the production of malignant ascites. However, it remains largely unclear how ascites in the peritoneal cavity influences tumor metabolism and recurrence. This study is an explorative approach aimed at for a deeper molecular and physical-chemical characterization of malignant ascites and to investigate their effect on in vitro ovarian cancer cell proliferation. METHODS This study included 10 malignant ascites specimens from patients undergoing ovarian cancer resection. Ascites samples were deeply phenotyped by 1H-NMR based metabolomics, blood-gas analyzer based gas flow analysis and flow cytomertry based a 13-plex cytokine panel. Characteristics of tumor cells were investigated in a 3D spheroid model by SEM and metabolic activity, adhesion, anti-apoptosis, migratory ability evaluated by MTT assay, adhesion assay, flowcytometry and scratch assay. The effect of different pH values was assessed by adding 10% malignant ascites to the test samples. RESULTS The overall extracellular (peritoneal) environment was alkaline, with pH of ascites at stage II-III = 7.51 ± 0.16, and stage IV = 7.78 ± 0.16. Ovarian cancer spheroids grew rapidly in a slightly alkaline environment. Decreasing pH of the cell culture medium suppressed tumor features, metabolic activity, adhesion, anti-apoptosis, and migratory ability. However, 10% ascites could prevent tumor cells from being affected by acidic pH. Metabolomics analysis identified stage IV patients had significantly higher concentrations of alanine, isoleucine, phenylalanine, and glutamine than stage II-III patients, while stage II-III patients had significantly higher concentrations of 3-hydroxybutyrate. pH was positively correlated with acetate, and acetate positively correlated with lipid compounds. IL-8 was positively correlated with lipid metabolites and acetate. Glutathione and carnitine were negatively correlated with cytokines IL-6 and chemokines (IL-8 & MCP-1). CONCLUSION Alkaline malignant ascites facilitated ovarian cancer progression. Additionally, deep ascites phenotyping by metabolomics and cytokine investigations allows for a refined stratification of ovarian cancer patients. These findings contribute to the understanding of ascites pathology in ovarian cancer.
Collapse
Affiliation(s)
- Qianlu Yang
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany
| | - Gyuntae Bae
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Giorgi Nadiradze
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Arianna Castagna
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Laimdota Zizmare
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Aditi Kulkarni
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Yogesh Singh
- grid.411544.10000 0001 0196 8249Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Research Institute of Women’s Health, Women’s Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Frank J. Weinreich
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany
| | - Stefan Kommoss
- grid.411544.10000 0001 0196 8249Research Institute of Women’s Health, Women’s Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Marc A. Reymond
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022; 14:nu14235069. [PMID: 36501099 PMCID: PMC9736198 DOI: 10.3390/nu14235069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
The metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two-tart cherry and omega-3 fatty acids-are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.
Collapse
|
32
|
Malaguarnera G, Catania VE, Bertino G, Chisari LM, Castorina M, Bonfiglio C, Cauli O, Malaguarnera M. Acetyl-L-carnitine Slows the Progression from Prefrailty to Frailty in Older Subjects: A Randomized Interventional Clinical Trial. Curr Pharm Des 2022; 28:3158-3166. [PMID: 36043711 DOI: 10.2174/1381612828666220830092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Ageing is characterized by a gradual decline in body function, representing the clinical situation called "frailty". Prefrailty is the intermediate stage between frailty and robust condition. L-carnitine (LC) plays an important role in energy production from long-chain fatty acids in mitochondria, and its serum level is lower in prefrail and frail subjects. OBJECTIVE This study aims to evaluate the effect of Acetyl-L-carnitine (ALCAR) in pre-frail older patients. METHODS We scheduled 3 months of treatment and then 3 months of follow-up. A total of 92 subjects were selected from May, 2009 to July, 2017, in a randomized, observational, double-blind, placebo-controlled study. We scheduled 3 months of treatment and then 3 months of follow-up. ALCAR (oral 1.5 g/bis in die - BID) or placebo groups were used. RESULTS After the treatment, only the treated group displayed a decrease in C reactive protein (CRP) p < 0.001 and an increase in serum-free carnitine and acetylcarnitine (p < 0.05) in Mini-Mental state (MMSE) p < 0.0001 and 6-walking distance (p < 0.0001); ALCAR group vs. placebo group showed a decrease in HDL cholesterol and CRP (p < 0.01), an increase in MMSE score (p < 0.001) and in the 6-walking distance (p < 0.001). CONCLUSIONS ALCAR treatment delays the incidence and severity of onset of degenerative disorders of the elderly in prefrail subjects with improvement in memory and cognitive processes.
Collapse
Affiliation(s)
- Giulia Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Vito Emanuele Catania
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gaetano Bertino
- Hepatology Unit, A.O.U. Policlinico- San Marco, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Maria Chisari
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | | | | | - Omar Cauli
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, c/Jaume Roig s/n, 46010 Valencia, Spain.,Frailty and Cognitive Impairment Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Michele Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.,Department of Psychobiology, Facultad de Psicología, Universidad de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| |
Collapse
|
33
|
Hafezi H, Vahdati A, Forouzanfar M, Shariatic M. Ameliorate effects of resveratrol and l-carnitine on the testicular tissue and sex hormones level in busulfan induced azoospermia rats. Theriogenology 2022; 191:47-53. [PMID: 35964476 DOI: 10.1016/j.theriogenology.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022]
Abstract
Busulfan (Bus), is an alkylating agent widely used in chemotherapy which has been proven to possess toxic side effects on testicles. This study was carried out to compare the probable treatment effects of resveratrol (Res) or/and l-carnitine (Lca), as strong antioxidants, on the testicular tissue as well as on the level of sex hormones in busulfan-induced azoospermic rat models. A total of 78 adult male rats, were divided into six different experimental groups including: 1) Control; 2) Lca + Res; 3) BUS; 4) Bus + Lca; 5) BUS + Res and 6) Bus + Lca + Res. Busulfan was intraperitoneally administered in a single dose (10 mg/kg b.w), while resveratrol (20 mg/kg b.w/day) and l-carnitine (200 mg/kg b.w/day) were orally administered by gavage during 48 consecutive days to the rats. At the end of the experiment in all groups the level of LH, FSH, and testosterone were biochemically analyzed by ELISA and the testicular tissue evaluated histologically using stereological technique. Results showed that Lca or/and Res, increased the body and testis weight, the volume of the testis, interstitial tissue, germinal epithelium, and seminiferous tubule, the number of the different cells of germinal epithelium and the level of testosterone. On the other hand, Lca, Res and their combination decreased the concentration of LH and FSH compared to the group treated with Bus. In conclusion, these results suggested that l-carnitine or/and resveratrol treatment significantly attenuated busulfan -induced changes of the rat reproductive system led to the recovery of both testis and sperm parameters. However, co-administration of L-ca and Res was more effective than their individual treatment. This combination may alleviate the side effects of alkylating drugs, such as busulfan and may be beneficial for spermatogenesis.
Collapse
Affiliation(s)
- Hananeh Hafezi
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran; Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Akbar Vahdati
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Mehrdad Shariatic
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
34
|
Neural effects of viewing children’s faces on mental fatigue: a magnetoencephalography study. Exp Brain Res 2022; 240:2885-2896. [DOI: 10.1007/s00221-022-06466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022]
|
35
|
Assessment of the Preventive Effect of L-carnitine on Post-statin Muscle Damage in a Zebrafish Model. Cells 2022; 11:cells11081297. [PMID: 35455976 PMCID: PMC9032104 DOI: 10.3390/cells11081297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Statins, such as lovastatin, are lipid-lowering drugs (LLDs) that have been used to treat hypercholesterolaemia, defined as abnormally elevated cholesterol levels in the patient’s blood. Although statins are considered relatively safe and well tolerated, recipients may suffer from adverse effects, including post-statin myopathies. Many studies have shown that supplementation with various compounds may be beneficial for the prevention or treatment of side effects in patients undergoing statin therapy. In our study, we investigated whether L-carnitine administered to zebrafish larvae treated with lovastatin alleviates post-statin muscle damage. We found that exposure of zebrafish larvae to lovastatin caused skeletal muscle disruption observed as a reduction of birefringence, changes in muscle ultrastructure, and an increase in atrogin-1. Lovastatin also affected heart performance and swimming behaviour of larvae. Our data indicated that the muscle-protective effect of L-carnitine is partial. Some observed myotoxic effects, such as disruption of skeletal muscle and increase in atrogin-1 expression, heart contraction could be rescued by the addition of L-carnitine. Others, such as slowed heart rate and reduced locomotion, could not be mitigated by L-carnitine supplementation.
Collapse
|
36
|
Miranda-Castro S, Aidar FJ, de Moura SS, Marcucci-Barbosa L, Lobo LF, de Assis Dias Martins-Júnior F, da Silva Filha R, Vaz de Castro PAS, Simões e Silva AC, da Glória de Souza D, da Silva SA, de Castro Pinto KM, de Paula Costa G, Silva AF, Clemente FM, Pereira WVC, Nunes-Silva A. The Curcumin Supplementation with Piperine Can Influence the Acute Elevation of Exercise-Induced Cytokines: Double-Blind Crossover Study. BIOLOGY 2022; 11:biology11040573. [PMID: 35453772 PMCID: PMC9032800 DOI: 10.3390/biology11040573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Inflammation is an immune response to harmful stimuli, such as pathogens and damaged cells. Intense exercise can induce a local and systemic inflammatory response as well. We believe that exercise-induced inflammatory responses are essential for muscle repair and regeneration. However, uncontrolled acute inflammation in athletes during the training process and competition could reduce the level of performance. In this study, we investigate the effects of curcumin and piperine on the exercise-induced inflammatory response. Abstract Background: to evaluate the effects of one week of supplementation with curcumin combined with piperine on physical performance, immune system cell counts, muscle damage, and plasma levels of inflammatory markers after a treadmill running training session. Methods: This study is a double-blind, crossover-balanced clinical trial with a three-week intervention. Sixteen male runners with a mean age of 36 ± 9 years and VO2 max of 60.6 ± 9.03 mL.kg −1 min −1 were recruited and randomly divided into 2 groups: the first group (CPG) was supplemented daily for 7 days with 500 mg of curcumin + 20 mg piperine, and the second group (PG) was supplemented with 540 mg of cellulose. After the 7th day of supplementation, the volunteers participated in the experimental running protocol, where blood samples were collected before, after, and one hour after exercise for analysis of the number of leukocytes, creatine kinase, and cytokine concentration (IL-2, TNF-α, IFN, IL-6, and IL-10) using flow cytometry. This process was repeated, reversing the supplementation offered to the groups. Results: curcumin and piperine supplementation could not change the physical performance, immune cell counts, and muscle damage; however, the aerobic fatiguing exercise protocol inhibited the elevation of the plasmatic levels of some cytokines. The running exercise protocol could elevate the circulating levels of IL-2 (from 49.7 to 59.3 pg/mL), TNF-α (from 48.5 to 51.5 pg/mL), INF (from 128.8 to 165.0 pg/mL), IL-6 (from 63.1 to 77.3 pg/mL), and IL-10 (from 48.9 to 59.6 pg/mL) 1 h after the end of the running protocol. However, the curcumin and piperine supplementation could inhibit this elevation. Conclusions: curcumin and piperine supplementation had no effect on physical performance, immune cell counts, or muscle damage; however, the supplementation could modulate the kinetics of IL-2, TNF-α, INF, IL-6, and IL-10 1 h after the end of exercise.
Collapse
Affiliation(s)
- Stéfani Miranda-Castro
- Laboratory of Exercise Inflammation and Immunology, School of Physical Education, Federal University of Ouro Preto (LABIIEX/EEF-UFOP), Ouro Preto 35400-000, Brazil; (S.M.-C.); (L.M.-B.); (L.F.L.); (F.d.A.D.M.-J.); (K.M.d.C.P.); (W.V.C.P.)
- Graduate Health and Nutrition Program, Federal University of Ouro Preto (PPGSN/UFOP), Ouro Preto 35400-000, Brazil;
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristóvão 49100-000, Brazil;
| | - Samara Silva de Moura
- Graduate Health and Nutrition Program, Federal University of Ouro Preto (PPGSN/UFOP), Ouro Preto 35400-000, Brazil;
| | - Lucas Marcucci-Barbosa
- Laboratory of Exercise Inflammation and Immunology, School of Physical Education, Federal University of Ouro Preto (LABIIEX/EEF-UFOP), Ouro Preto 35400-000, Brazil; (S.M.-C.); (L.M.-B.); (L.F.L.); (F.d.A.D.M.-J.); (K.M.d.C.P.); (W.V.C.P.)
| | - Lázaro Fernandes Lobo
- Laboratory of Exercise Inflammation and Immunology, School of Physical Education, Federal University of Ouro Preto (LABIIEX/EEF-UFOP), Ouro Preto 35400-000, Brazil; (S.M.-C.); (L.M.-B.); (L.F.L.); (F.d.A.D.M.-J.); (K.M.d.C.P.); (W.V.C.P.)
| | - Francisco de Assis Dias Martins-Júnior
- Laboratory of Exercise Inflammation and Immunology, School of Physical Education, Federal University of Ouro Preto (LABIIEX/EEF-UFOP), Ouro Preto 35400-000, Brazil; (S.M.-C.); (L.M.-B.); (L.F.L.); (F.d.A.D.M.-J.); (K.M.d.C.P.); (W.V.C.P.)
| | - Roberta da Silva Filha
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine UFMG (LIIM/UFMG), Belo Horizonte 30130-100, Brazil; (R.d.S.F.); (P.A.S.V.d.C.); (A.C.S.e.S.)
| | - Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine UFMG (LIIM/UFMG), Belo Horizonte 30130-100, Brazil; (R.d.S.F.); (P.A.S.V.d.C.); (A.C.S.e.S.)
| | - Ana Cristina Simões e Silva
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine UFMG (LIIM/UFMG), Belo Horizonte 30130-100, Brazil; (R.d.S.F.); (P.A.S.V.d.C.); (A.C.S.e.S.)
| | - Danielle da Glória de Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil;
| | - Siomara Aparecida da Silva
- Sports Teaching Methodology Laboratory, School of Physical Education, Federal University of Ouro Preto (LAMEES/EEF-UFOP), Ouro Preto 35400-000, Brazil;
| | - Kelerson Mauro de Castro Pinto
- Laboratory of Exercise Inflammation and Immunology, School of Physical Education, Federal University of Ouro Preto (LABIIEX/EEF-UFOP), Ouro Preto 35400-000, Brazil; (S.M.-C.); (L.M.-B.); (L.F.L.); (F.d.A.D.M.-J.); (K.M.d.C.P.); (W.V.C.P.)
- Graduate Health and Nutrition Program, Federal University of Ouro Preto (PPGSN/UFOP), Ouro Preto 35400-000, Brazil;
| | - Guilherme de Paula Costa
- Graduate Program in Biological Sciences, Research Center in Biological Sciences, Federal University of Ouro Preto (CEBIOL), Ouro Preto 35400-000, Brazil;
| | - Ana Filipa Silva
- Sports and Leisure School, Polytechnic Institute of Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (A.F.S.); (F.M.C.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal
| | - Filipe Manuel Clemente
- Sports and Leisure School, Polytechnic Institute of Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (A.F.S.); (F.M.C.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - William Valadares Campos Pereira
- Laboratory of Exercise Inflammation and Immunology, School of Physical Education, Federal University of Ouro Preto (LABIIEX/EEF-UFOP), Ouro Preto 35400-000, Brazil; (S.M.-C.); (L.M.-B.); (L.F.L.); (F.d.A.D.M.-J.); (K.M.d.C.P.); (W.V.C.P.)
| | - Albená Nunes-Silva
- Laboratory of Exercise Inflammation and Immunology, School of Physical Education, Federal University of Ouro Preto (LABIIEX/EEF-UFOP), Ouro Preto 35400-000, Brazil; (S.M.-C.); (L.M.-B.); (L.F.L.); (F.d.A.D.M.-J.); (K.M.d.C.P.); (W.V.C.P.)
- Graduate Health and Nutrition Program, Federal University of Ouro Preto (PPGSN/UFOP), Ouro Preto 35400-000, Brazil;
- Correspondence:
| |
Collapse
|
37
|
Johri AM, Hétu MF, Heyland DK, Herr JE, Korol J, Froese S, Norman PA, Day AG, Matangi MF, Michos ED, LaHaye SA, Saunders FW, Spence JD. Progression of atherosclerosis with carnitine supplementation: a randomized controlled trial in the metabolic syndrome. Nutr Metab (Lond) 2022; 19:26. [PMID: 35366920 PMCID: PMC8976995 DOI: 10.1186/s12986-022-00661-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/22/2022] [Indexed: 01/22/2023] Open
Abstract
Background L-carnitine (L-C), a ubiquitous nutritional supplement, has been investigated as a potential therapy for cardiovascular disease, but its effects on human atherosclerosis are unknown. Clinical studies suggest improvement of some cardiovascular risk factors, whereas others show increased plasma levels of pro-atherogenic trimethylamine N-oxide. The primary aim was to determine whether L-C therapy led to progression or regression of carotid total plaque volume (TPV) in participants with metabolic syndrome (MetS).
Methods This was a phase 2, prospective, double blinded, randomized, placebo-controlled, two-center trial. MetS was defined as ≥ 3/5 cardiac risk factors: elevated waist circumference; elevated triglycerides; reduced HDL-cholesterol; elevated blood pressure; elevated glucose or HbA1c; or on treatment. Participants with a baseline TPV ≥ 50 mm3 were randomized to placebo or 2 g L-C daily for 6 months.
Results The primary outcome was the percent change in TPV over 6 months. In 157 participants (L-C N = 76, placebo N = 81), no difference in TPV change between arms was found. The L-C group had a greater increase in carotid atherosclerotic stenosis of 9.3% (p = 0.02) than the placebo group. There was a greater increase in total cholesterol and LDL-C levels in the L-C arm. Conclusions Though total carotid plaque volume did not change in MetS participants taking L-C over 6-months, there was a concerning progression of carotid plaque stenosis. The potential harm of L-C in MetS and its association with pro-atherogenic metabolites raises concerns for its further use as a potential therapy and its widespread availability as a nutritional supplement. Trial registration: ClinicalTrials.gov, NCT02117661, Registered April 21, 2014, https://clinicaltrials.gov/ct2/show/NCT02117661. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00661-9.
Collapse
Affiliation(s)
- Amer M Johri
- Department of Medicine, Cardiovascular Imaging Network at Queen's University, Kingston, ON, Canada. .,Department of Medicine, Queen's University, 76 Stuart Street, KGH FAPC 3, Kingston, ON, K7L 2V7, Canada.
| | - Marie-France Hétu
- Department of Medicine, Cardiovascular Imaging Network at Queen's University, Kingston, ON, Canada
| | - Daren K Heyland
- Department of Critical Care Medicine, Clinical Evaluation Research Unit, Kingston, ON, Canada
| | - Julia E Herr
- Department of Medicine, Cardiovascular Imaging Network at Queen's University, Kingston, ON, Canada
| | - Jennifer Korol
- Department of Critical Care Medicine, Clinical Evaluation Research Unit, Kingston, ON, Canada
| | - Shawna Froese
- Department of Critical Care Medicine, Clinical Evaluation Research Unit, Kingston, ON, Canada
| | | | - Andrew G Day
- Kingston Health Sciences Centre, Kingston, ON, Canada
| | | | - Erin D Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephen A LaHaye
- Department of Medicine, Queen's University, 76 Stuart Street, KGH FAPC 3, Kingston, ON, K7L 2V7, Canada
| | - Fraser W Saunders
- Southeastern Ontario Vascular Laboratory, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - J David Spence
- Stroke Prevention and Atherosclerosis Research Centre, University of Western Ontario, London, ON, Canada
| |
Collapse
|
38
|
Lim J, Nguyen TTH, Pal K, Gil Kang C, Park C, Kim SW, Kim D. Phytochemical properties and functional characteristics of wild turmeric ( Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chem X 2022; 13:100198. [PMID: 35499023 PMCID: PMC9039939 DOI: 10.1016/j.fochx.2021.100198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022] Open
Abstract
Wild turmeric (Curcuma aromatica) was fermented with R. oligosporus. Curcuminoid fermented for 5 days and phenolic compound of all fermented wild turmeric increased. The l-carnitine content of fermented wild turmeric was newly synthesized. The antioxidant activities were enhanced 1.47-fold after fermentation for 3 days. Anti-inflammatory, anti-melanogenic, and anti-obesity effects improved with fermentation.
This study investigated the effect of solid-state fermentation of wild turmeric (Curcuma aromatica) with Rhizopus oligosporus, a common fungus found in fermented soy tempeh, on phytochemical and biological properties. Ultra-performance liquid chromatography–tandem mass spectrometry showed that fermented wild turmeric has higher concentrations of curcumin, demethoxycurcumin, bisdemethoxycurcumin, phenolic compounds and total flavonoid-curcuminoid after fermentation for 1-, 3-, and 5-day relative to non-fermented turmeric. The l-carnitine content reached 242 µg g−1 extract after fermentation for 7-day. Wild turmeric had 1.47- and 2.25-fold increases in ORAC and FRAP, respectively, after 3-day fermentation. The inhibitory effects of fermented wild turmeric on lipid accumulation from 3T3-L1 cells, nitric oxide production from lipopolysaccharide-stimulated RAW264.7 murine macrophages, and melanin formation by B16F10 mouse melanoma cells with α-MSH increased 1.08-, 1.44-, and 1.52-fold, respectively, after 3-day fermentation. Based on these results, fermented wild turmeric product can be used as a functional ingredient in the cosmeceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea
| | - Thi Thanh Hanh Nguyen
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Choon Gil Kang
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060, South Korea
| | - Chanho Park
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060, South Korea
| | - Seung Wook Kim
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060, South Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea.,Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea
| |
Collapse
|
39
|
Jagim AR, Harty PS, Barakat AR, Erickson JL, Carvalho V, Khurelbaatar C, Camic CL, Kerksick CM. Prevalence and Amounts of Common Ingredients Found in Energy Drinks and Shots. Nutrients 2022; 14:nu14020314. [PMID: 35057494 PMCID: PMC8780606 DOI: 10.3390/nu14020314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Energy drinks are one of the most popular packaged beverage products consumed within the United States (US). Energy drinks are considered a functional beverage, a category that also includes sports drinks and nutraceutical beverages. PURPOSE The focus of the current study was to examine the nutrition fact panels of the top selling commercially available energy drink and energy shot products within the US to characterize common ingredient profiles to help establish a standard definition and ingredient profile of energy drinks and energy shots for consumers, health care practitioners, and researchers. METHODS The top 75 commercially available energy drinks and shots were identified and compiled from multiple commercial retail websites as of September 2021. For the purpose of this study, an energy drink must have met the following criteria: (A) marketed as an energy drink; (B) purported to improve energy, focus, or alertness; (C) not sold as a dietary supplement (no supplement fact panels); (D) manufactured as a pre-packaged and ready-to-drink beverage; and (E) contains at least three of (1) caffeine, (2) B-vitamins, (3) sugar, (4) taurine, (5) creatine, (6) quercetin, (7) guarana, (8) ginseng, (9) coenzyme Q10, or (10) branched chain amino acids. Energy shots must have met similar criteria to be included: (A) marketed as an energy shot; (B) purported to improve energy, focus, or alertness; (C) sold as a dietary supplement; (D) manufactured as a pre-packaged beverage with a small volume (<3.5 mL); and (E) contains at least three of the ingredients stated above. RESULTS Twenty energy shots and fifty-five energy drinks were included in this analysis. The number of ingredients per product (mean ± SD) was 18.2 ± 5.7, with 15 products containing proprietary blends with undisclosed ingredient amounts. The relative prevalence and average amounts of the top ingredients were as follows: caffeine (100%; 174.4 ± 81.1 mg), vitamin B6 (72%; 366.9 ± 648.1 percent daily value (%DV)), vitamin B3 (67%; 121.44 ± 69.9% DV), vitamin B12 (67%; 5244.5 ± 10,474.6% DV), vitamin B5 (37.3%; 113.6 ± 76.6% DV), and taurine (37.3%; amounts undisclosed). CONCLUSIONS Our findings suggest a high prevalence of caffeine and B-vitamins in these energy products, with many of the formulations containing well above the recommended daily value of B-vitamins.
Collapse
Affiliation(s)
- Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA; (A.R.B.); (J.L.E.); (V.C.)
- Exercise & Sport Science, University of Wisconsin—La Crosse, La Crosse, WI 54603, USA;
- Correspondence:
| | - Patrick S. Harty
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Abdelrahman R. Barakat
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA; (A.R.B.); (J.L.E.); (V.C.)
| | - Jacob L. Erickson
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA; (A.R.B.); (J.L.E.); (V.C.)
| | - Victoria Carvalho
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA; (A.R.B.); (J.L.E.); (V.C.)
| | - Chinguun Khurelbaatar
- Exercise & Sport Science, University of Wisconsin—La Crosse, La Crosse, WI 54603, USA;
| | - Clayton L. Camic
- Kinesiology and Physical Education, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Chad M. Kerksick
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO 63301, USA;
| |
Collapse
|
40
|
The use of Dietary and Protein Supplements by Women Attending Fitness Clubs on a Recreational Basis and an Analysis of the Factors Influencing their Consumption. CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2022. [DOI: 10.18276/cej.2022.3-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
VELASCO GDS, RIBEIRO CB, RAMOS GLDPA, SILVA GVDLCE, SILVA MC, SILVA MAPD, CAPPATO LP. Supplement consumption profile by strength training practitioners in Brazil: a literature review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Mielgo-Ayuso J, Pietrantonio L, Viribay A, Calleja-González J, González-Bernal J, Fernández-Lázaro D. Effect of Acute and Chronic Oral l-Carnitine Supplementation on Exercise Performance Based on the Exercise Intensity: A Systematic Review. Nutrients 2021; 13:4359. [PMID: 34959912 PMCID: PMC8704793 DOI: 10.3390/nu13124359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
l-Carnitine (l-C) and any of its forms (glycine-propionyl l-Carnitine (GPL-C) or l-Carnitine l-tartrate (l-CLT)) has been frequently recommended as a supplement to improve sports performance due to, among others, its role in fat metabolism and in maintaining the mitochondrial acetyl-CoA/CoA ratio. The main aim of the present systematic review was to determine the effects of oral l-C supplementation on moderate- (50-79% V˙O2 max) and high-intensity (≥80% V˙O2 max) exercise performance and to show the effective doses and ideal timing of its intake. A structured search was performed according to the PRISMA® statement and the PICOS guidelines in the Web of Science (WOS) and Scopus databases, including selected data obtained up to 24 October 2021. The search included studies where l-C or glycine-propionyl l-Carnitine (GPL-C) supplementation was compared with a placebo in an identical situation and tested its effects on high and/or low-moderate performance. The trials that used the supplementation of l-C together with additional supplements were eliminated. There were no applied filters on physical fitness level, race, or age of the participants. The methodological quality of studies was evaluated by the McMaster Critical Review Form. Of the 220 articles obtained, 11 were finally included in this systematic review. Six studies used l-C, while three studies used l-CLT, and two others combined the molecule propionyl l-Carnitine (PL-C) with GPL-C. Five studies analyzed chronic supplementation (4-24 weeks) and six studies used an acute administration (<7 days). The administration doses in this chronic supplementation varied from 1 to 3 g/day; in acute supplementation, oral l-C supplementation doses ranged from 3 to 4 g. On the one hand, the effects of oral l-C supplementation on high-intensity exercise performance variables were analyzed in nine studies. Four of them measured the effects of chronic supplementation (lower rating of perceived exertion (RPE) after 30 min at 80% V˙O2 max on cycle ergometer and higher work capacity in "all-out" tests, peak power in a Wingate test, and the number of repetitions and volume lifted in leg press exercises), and five studies analyzed the effects of acute supplementation (lower RPE after graded exercise test on the treadmill until exhaustion and higher peak and average power in the Wingate cycle ergometer test). On the other hand, the effects of l-C supplementation on moderate exercise performance variables were observed in six studies. Out of those, three measured the effect of an acute supplementation, and three described the effect of a chronic supplementation, but no significant improvements on performance were found. In summary, l-C supplementation with 3 to 4 g ingested between 60 and 90 min before testing or 2 to 2.72 g/day for 9 to 24 weeks improved high-intensity exercise performance. However, chronic or acute l-C or GPL-C supplementation did not present improvements on moderate exercise performance.
Collapse
Affiliation(s)
- Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Laura Pietrantonio
- Faculty of Sport Science, Universidad Europea de Madrid, 28670 Madrid, Spain;
| | - Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004 Vitoria-Gasteiz, Spain;
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, 01007 Vitoria, Spain;
| | - Jerónimo González-Bernal
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
43
|
Rousta N, Ferreira JA, Taherzadeh MJ. Production of L-carnitine-enriched edible filamentous fungal biomass through submerged cultivation. Bioengineered 2021; 12:358-368. [PMID: 33323030 PMCID: PMC8806343 DOI: 10.1080/21655979.2020.1863618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
The edible filamentous fungi are hot candidate for future supply of functional food and feed with e.g. protein, essential amino acids, and compounds with immunostimulant activity. L-carnitine that plays a crucial role in energy metabolism represents a functional compound normally produced by Zygomycetes filamentous fungus Rhizopus oligosporus in solid-state fermentation. The present study provides the first insights on production of L-carnitine-enriched edible fungal biomass through submerged cultivation of several Ascomycetes and Zygomycetes including Aspergillus oryzae, Neurospora intermedia, Rhizopus oryzae, and Rhizopus oligosporus. A. oryzae with 3 mg L-carnitine yield per gram of fungal biomass, indicates great potential on production of this bioactive compound which is remarkably higher than the other tested fungi in this work and also previous studies. In addition to fungal strain, other factors such as cultivation time and presence of yeast extract were found to play a role. Further studies on submerged growth optimization of A. oryzae in both high-quality recipes and in medium based on low-value substrates are proposed in order to clarify its potential for production of L-carnitine-enriched fungal biomass.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Jorge A. Ferreira
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
44
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
45
|
Sahebnasagh A, Avan R, Monajati M, Hashemi J, Habtemariam S, Negintaji S, Saghafi F. L-carnitine: Searching for New Therapeutic Strategy for Sepsis Management. Curr Med Chem 2021; 29:3300-3323. [PMID: 34789120 DOI: 10.2174/0929867328666211117092345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
In this review, we discussed the biological targets of carnitine, its effects on immune function, and how L-carnitine supplementation may help critically ill patients. L-carnitine is a potent antioxidant. L-carnitine depletion has been observed in prolonged intensive care unit (ICU) stays, while L-carnitine supplementation has beneficial effects in health promotion and regulation of immunity. It is essential for the uptake of fatty acids into mitochondria. By inhibiting the ubiquitin-proteasome system, down-regulation of apelin receptor in cardiac tissue, and reducing β-oxidation of fatty acid, carnitine may decrease vasopressor requirement in septic shock and improve clinical outcomes of this group of patients. We also have an overview of animal and clinical studies that have been recruited for evaluating the beneficial effects of L-carnitine in the management of sepsis/ septic shock. Additional clinical data are required to evaluate the optimal daily dose and duration of L-carnitine supplementation.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Razieh Avan
- Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand. Iran
| | - Mahila Monajati
- Department of Internal Medicine, Golestan University of Medical Sciences, Gorgan. Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB. United Kingdom
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| |
Collapse
|
46
|
Fielding RA, Rivas D, Grosicki GJ, Ezzyat Y, Ceglia L, Price LL, Orhan C, Sahin K, Fowler K, White T, Durkee S, Kritsch K, Bellamine A. Effects of Low Doses of L-Carnitine Tartrate and Lipid Multi-Particulate Formulated Creatine Monohydrate on Muscle Protein Synthesis in Myoblasts and Bioavailability in Humans and Rodents. Nutrients 2021; 13:3985. [PMID: 34836240 PMCID: PMC8625796 DOI: 10.3390/nu13113985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
The primary objective of this study was to investigate the potential synergy between low doses of L-carnitine tartrate and creatine monohydrate to induce muscle protein synthesis and anabolic pathway activation in primary human myoblasts. In addition, the effects of Lipid multi-particulates (LMP) formulation on creatine stability and bioavailability were assessed in rodents and healthy human subjects. When used individually, L-carnitine tartrate at 50 µM and creatine monohydrate at 0.5 µM did not affect myoblast protein synthesis and signaling. However, when combined, they led to a significant increase in protein synthesis. Increased AKT and RPS6 phosphorylation were observed with 50 µM L-carnitine tartrate 5 µM creatine in combination in primary human myoblasts. When Wistar rats were administered creatine with LMP formulation at either 21 or 51 mg/kg, bioavailability was increased by 27% based on the increase in the area under the curve (AUC) at a 51 mg/kg dose compared to without LMP formulation. Tmax and Cmax were unchanged. Finally, in human subjects, a combination of LMP formulated L-carnitine at 500 mg (from L-carnitine tartrate) with LMP formulated creatine at 100, 200, or 500 mg revealed a significant and dose-dependent increase in plasma creatine concentrations. Serum total L-carnitine levels rose in a similar manner in the three combinations. These results suggest that a combination of low doses of L-carnitine tartrate and creatine monohydrate may lead to a significant and synergistic enhancement of muscle protein synthesis and activation of anabolic signaling. In addition, the LMP formulation of creatine improved its bioavailability. L-carnitine at 500 mg and LMP-formulated creatine at 200 or 500 mg may be useful for future clinical trials to evaluate the effects on muscle protein synthesis.
Collapse
Affiliation(s)
- Roger A. Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Aging Tufts University, Boston, MA 02111, USA; (D.R.); (G.J.G.); (Y.E.)
| | - Donato Rivas
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Aging Tufts University, Boston, MA 02111, USA; (D.R.); (G.J.G.); (Y.E.)
| | - Gregory J. Grosicki
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Aging Tufts University, Boston, MA 02111, USA; (D.R.); (G.J.G.); (Y.E.)
- Biodynamics and Human Performance Center, Georgia Southern University, Armsrong Campus, Savannah, GA 31419, USA
| | - Yassine Ezzyat
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Aging Tufts University, Boston, MA 02111, USA; (D.R.); (G.J.G.); (Y.E.)
| | - Lisa Ceglia
- Division of Endocrinology, Tufts Medical Center, Boston, MA 02111, USA;
| | - Lori Lyn Price
- The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA;
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA 02111, USA
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (K.S.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (K.S.)
| | - Kelli Fowler
- R&D Innovation, Lonza Consumer Health, Morristown, NJ 07960, USA; (K.F.); (T.W.); (S.D.); (A.B.)
| | - Tyler White
- R&D Innovation, Lonza Consumer Health, Morristown, NJ 07960, USA; (K.F.); (T.W.); (S.D.); (A.B.)
| | - Shane Durkee
- R&D Innovation, Lonza Consumer Health, Morristown, NJ 07960, USA; (K.F.); (T.W.); (S.D.); (A.B.)
| | - Katja Kritsch
- R&D Lonza Specialty Ingredients, Alpharetta, GA 30004, USA;
| | - Aouatef Bellamine
- R&D Innovation, Lonza Consumer Health, Morristown, NJ 07960, USA; (K.F.); (T.W.); (S.D.); (A.B.)
| |
Collapse
|
47
|
Bin-Jumah MN, Gilani SJ, Hosawi S, Al-Abbasi FA, Zeyadi M, Imam SS, Alshehri S, Ghoneim MM, Nadeem MS, Kazmi I. Pathobiological Relationship of Excessive Dietary Intake of Choline/L-Carnitine: A TMAO Precursor-Associated Aggravation in Heart Failure in Sarcopenic Patients. Nutrients 2021; 13:3453. [PMID: 34684454 PMCID: PMC8540684 DOI: 10.3390/nu13103453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
The microecological environment of the gastrointestinal tract is altered if there is an imbalance between the gut microbiota phylases, resulting in a variety of diseases. Moreover, progressive age not only slows down physical activity but also reduces the fat metabolism pathway, which may lead to a reduction in the variety of bacterial strains and bacteroidetes' abundance, promoting firmicutes and proteobacteria growth. As a result, dysbiosis reduces physiological adaptability, boosts inflammatory markers, generates ROS, and induces the destruction of free radical macromolecules, leading to sarcopenia in older patients. Research conducted at various levels indicates that the microbiota of the gut is involved in pathogenesis and can be considered as the causative agent of several cardiovascular diseases. Local and systematic inflammatory reactions are caused in patients with heart failure, as ischemia and edema are caused by splanchnic hypoperfusion and enable both bacterial metabolites and bacteria translocation to enter from an intestinal barrier, which is already weakened, to the blood circulation. Multiple diseases, such as HF, include healthy microbe-derived metabolites. These key findings demonstrate that the gut microbiota modulates the host's metabolism, either specifically or indirectly, by generating multiple metabolites. Currently, the real procedures that are an analogy to the symptoms in cardiac pathologies, such as cardiac mass dysfunctions and modifications, are investigated at a minimum level in older patients. Thus, the purpose of this review is to summarize the existing knowledge about a particular diet, including trimethylamine, which usually seems to be effective for the improvement of cardiac and skeletal muscle, such as choline and L-carnitine, which may aggravate the HF process in sarcopenic patients.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.); (F.A.A.-A.); (M.Z.); (M.S.N.)
| |
Collapse
|
48
|
Stefan M, Sharp M, Gheith R, Lowery R, Ottinger C, Wilson J, Durkee S, Bellamine A. L-Carnitine Tartrate Supplementation for 5 Weeks Improves Exercise Recovery in Men and Women: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:3432. [PMID: 34684429 PMCID: PMC8541253 DOI: 10.3390/nu13103432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
L-carnitine tartrate has been shown to improve relatively short-term recovery among athletes. However, there is a lack of research on the longer-term effects in the general population. OBJECTIVE The primary objectives of this randomized double-blind, placebo-controlled trial were to evaluate the effects of daily L-carnitine tartrate supplementation for 5 weeks on recovery and fatigue. METHOD In this study, eighty participants, 21- to 65-years-old, were recruited. Participants were split into two groups of forty participants each, a placebo, and a L-carnitine Tartrate group. Seventy-three participants completed a maintenance exercise training program that culminated in a high-volume exercise challenge. RESULTS Compared to placebo, L-carnitine tartrate supplementation was able to improve perceived recovery and soreness (p = 0.021), and lower serum creatine kinase (p = 0.016). In addition, L-carnitine tartrate supplementation was able to blunt declines in strength and power compared to placebo following an exercise challenge. Two sub-analyses indicated that these results were independent of gender and age. Interestingly, serum superoxide dismutase levels increased significantly among those supplementing with L-carnitine tartrate. CONCLUSIONS These findings agree with previous observations among healthy adult subjects and demonstrate that L-carnitine tartrate supplementation beyond 35 days is beneficial for improving recovery and reducing fatigue following exercise across gender and age.
Collapse
Affiliation(s)
- Matthew Stefan
- Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (R.L.); (C.O.); (J.W.)
| | - Matthew Sharp
- Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (R.L.); (C.O.); (J.W.)
| | - Raad Gheith
- Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (R.L.); (C.O.); (J.W.)
| | - Ryan Lowery
- Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (R.L.); (C.O.); (J.W.)
| | - Charlie Ottinger
- Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (R.L.); (C.O.); (J.W.)
| | - Jacob Wilson
- Applied Science & Performance Institute, Research Division, Tampa, FL 33607, USA; (M.S.); (R.G.); (R.L.); (C.O.); (J.W.)
| | - Shane Durkee
- Lonza Consumer Health Inc., Morristown, NJ 07960, USA;
| | | |
Collapse
|
49
|
Tama B, Fabara SP, Zarrate D, Anas Sohail A. Effectiveness of Propionyl-L-Carnitine Supplementation on Exercise Performance in Intermittent Claudication: A Systematic Review. Cureus 2021; 13:e17592. [PMID: 34513531 PMCID: PMC8413087 DOI: 10.7759/cureus.17592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Lower extremity peripheral artery disease (PAD) affects 8.5 million people in the United States and more than 200 million worldwide. The most significant risk factors for PAD are hyperlipidemia, hypertension, diabetes mellitus, chronic kidney disease, and smoking. Intermittent claudication (IC) is the predominant symptom of PAD, but only about 10% of patients with PAD experience IC and are associated with reduced exercise capacity. The pathophysiology of IC is characterized by different degrees of stenosis and obstruction, with a progressive reduction in distal perfusion pressure and blood flow. Supervised exercise therapy is recommended as the initial therapy for IC, but the recommendations for medical treatment of IC vary significantly. Propionyl L-carnitine is an acyl derivative of levocarnitine (L-carnitine) and is indicated for patients with the peripheral arterial occlusive disease. It corrects secondary muscle carnitine deficiency in patients with PAD, significantly improving the walking capacity; its levels increase in serum and muscle. Thus, it is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function, thereby reducing hypoxia-induced cellular and biochemical disruptions.
Collapse
Affiliation(s)
- Belen Tama
- Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | - Stephanie P Fabara
- Internal Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | | | | |
Collapse
|
50
|
Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H. Mechanisms of Physical Fatigue and its Applications in Nutritional Interventions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6755-6768. [PMID: 34124894 DOI: 10.1021/acs.jafc.1c01251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Physical fatigue during exercise can be defined as an impairment of physical performance. Multiple factors have been found contributing to physical fatigue, including neurotransmitter-mediated defense action, insufficient energy supply, and induction of oxidative stress. These mechanistic findings provide a sound theoretical rationale for nutritional intervention since most of these factors can be modulated by nutrient supplementation. In this review, we summarize the current evidence regarding the functional role of nutrients supplementation in managing physical performance and propose the issues that need to be addressed for better utilization of nutritional supplementation approach to improve physical performance.
Collapse
Affiliation(s)
- Xuan Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hui Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lixing Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shuang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|