1
|
Zhu S, Zhang B, Zhu T, Wang D, Liu C, Liu Y, He Y, Liang W, Li W, Han R, Li D, Yan F, Tian Y, Li G, Kang X, Li Z, Jiang R, Sun G. miR-128-3p inhibits intramuscular adipocytes differentiation in chickens by downregulating FDPS. BMC Genomics 2023; 24:540. [PMID: 37700222 PMCID: PMC10496186 DOI: 10.1186/s12864-023-09649-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is the major indicator for evaluating chicken meat quality due to its positive correlation with tenderness, juiciness, and flavor. An increasing number of studies are focusing on the functions of microRNAs (miRNAs) in intramuscular adipocyte differentiation. However, little is known about the association of miR-128-3p with intramuscular adipocyte differentiation. Our previous RNA-seq results indicated that miR-128-3p was differentially expressed at different periods in chicken intramuscular adipocytes, revealing a possible association with intramuscular adipogenesis. The purpose of this research was to investigate the biological functions and regulatory mechanism of miR-128-3p in chicken intramuscular adipogenesis. RESULTS The results of a series of assays confirmed that miR-128-3p could promote the proliferation and inhibit the differentiation of intramuscular adipocytes. A total of 223 and 1,050 differentially expressed genes (DEGs) were identified in the mimic treatment group and inhibitor treatment group, respectively, compared with the control group. Functional enrichment analysis revealed that the DEGs were involved in lipid metabolism-related pathways, such as the MAPK and TGF-β signaling pathways. Furthermore, target gene prediction analysis showed that miR-128-3p can target many of the DEGs, such as FDPS, GGT5, TMEM37, and ASL2. The luciferase assay results showed that miR-128-3p targeted the 3' UTR of FDPS. The results of subsequent functional assays demonstrated that miR-128-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting FDPS. CONCLUSION miR-128-3p inhibits chicken intramuscular adipocyte differentiation by downregulating FDPS. Our findings provide a theoretical basis for the study of lipid metabolism and reveal a potential target for molecular breeding to improve meat quality.
Collapse
Affiliation(s)
- Shuaipeng Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Binbin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Dongxue Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yixuan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenjie Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Fengbin Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China.
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Song G, Chen J, Deng Y, Sun L, Yan Y. TMT Labeling Reveals the Effects of Exercises on the Proteomic Characteristics of the Subcutaneous Adipose Tissue of Growing High-Fat-Diet-Fed Rats. ACS OMEGA 2023; 8:23484-23500. [PMID: 37426235 PMCID: PMC10324099 DOI: 10.1021/acsomega.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
Aim: Growing period is an important period for fat remodeling. High-fat diet and exercise are reasons for adipose tissue (AT) remodeling, but existing evidence is not enough. Therefore, the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on the proteomic characteristics of the subcutaneous AT of growing rats on normal diet or high-fat diet (HFD) were determined. Methods: Four-week-old male Sprague-Dawley rats (n = 48) were subdivided into six groups: normal diet control group, normal diet-MICT group, normal diet-HIIT group, HFD control group, HFD-MICT group, and HFD-HIIT group. Rats in the training group ran on a treadmill 5 days a week for 8 weeks (MICT: 50 min at 60-70% VO2max intensity; HIIT: 7 min of warm-up and recovery at 70% VO2max intensity, 6 sets of 3 min of 30% VO2max followed by 3 min 90% VO2max). Following physical assessment, inguinal subcutaneous adipose tissue (sWAT) was collected for proteome analysis using tandem mass tag labeling. Results: MICT and HIIT attenuated body fat mass and lean body mass but did not affect weight gain. Proteomics revealed the impact of exercise on ribosome, spliceosome, and the pentose phosphate pathway. However, the effect was reversed on HFD and normal diet. The differentially expressed proteins (DEPs) affected by MICT were related to oxygen transport, ribosome, and spliceosome. In comparison, the DEPs affected by HIIT were related to oxygen transport, mitochondrial electron transport, and mitochondrion protein. In HFD, HIIT was more likely to cause changes in immune proteins than MICT. However, exercise did not seem to reverse the protein effects of HFD. Conclusion: The exercise stress response in the growing period was stronger but increased the energy metabolism and metabolism. MICT and HIIT can reduce fat, increase muscle percentage, and improve maximum oxygen uptake in rats fed with HFD. However, in rats with normal diet, MICT and HIIT triggered more immune responses of sWAT, especially HIIT. In addition, spliceosomes may be the key factors in AT remodeling triggered by exercise and diet.
Collapse
Affiliation(s)
- Ge Song
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Junying Chen
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Guangdong
Ersha Sports Training Center, Guangzhou 510105, China
| | - Yimin Deng
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Fuzhou
Medical College of Nanchang University, Fuzhou 344000, China
| | - Lingyu Sun
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yi Yan
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Laboratory
of Sports Stress and Adaptation of General Administration of Sport, Beijing100084, China
- Laboratory
of Physical Fitness and Exercise, Ministry
of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
3
|
Jiang X, Yang Z, Wang S, Deng S. “Big Data” Approaches for Prevention of the Metabolic Syndrome. Front Genet 2022; 13:810152. [PMID: 35571045 PMCID: PMC9095427 DOI: 10.3389/fgene.2022.810152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic syndrome (MetS) is characterized by the concurrence of multiple metabolic disorders resulting in the increased risk of a variety of diseases related to disrupted metabolism homeostasis. The prevalence of MetS has reached a pandemic level worldwide. In recent years, extensive amount of data have been generated throughout the research targeted or related to the condition with techniques including high-throughput screening and artificial intelligence, and with these “big data”, the prevention of MetS could be pushed to an earlier stage with different data source, data mining tools and analytic tools at different levels. In this review we briefly summarize the recent advances in the study of “big data” applications in the three-level disease prevention for MetS, and illustrate how these technologies could contribute tobetter preventive strategies.
Collapse
Affiliation(s)
- Xinping Jiang
- Department of United Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Zhang Yang
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shuai Wang
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shuanglin Deng
- Department of Oncological Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shuanglin Deng,
| |
Collapse
|
4
|
Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic syndrome (MetS) constitutes a group of risk factors that may increase the risk of cancer and other health problems. Nowadays, researchers are focusing on food compounds that could prevent many chronic diseases. Thus, people are shifting from dietary supplements towards healthy nutritional approaches. As a nutritious and natural food source, purple carrot (Daucus carota spp. Sativus var. atrorubens Alef.) roots could have an important role in the prevention of MetS as well as cancer. This review provides deep insight into the role of purple carrot’s main bioactive compounds and their effectiveness against MetS and cancer. Phenolic compounds, such as anthocyanin, present in purple carrot roots may be especially productive in avoiding or delaying the onset of cardiovascular disease (CVDs), obesity, diabetes, and cancer. Anthocyanins and other phenolics are successful in reducing metabolic changes and inflammation by inhibiting inflammatory effects. Many researchers have made efforts to employ this vegetable in the prevention and treatment of MetS and cancer. However, more advanced studies are required for the identification of its detailed role, effectiveness, suitable intake, and the effect of its bioactive compounds against these diseases.
Collapse
|
5
|
Effects of High-Fat Diet Induced Obesity and Fructooligosaccharide Supplementation on Cardiac Protein Expression. Nutrients 2020; 12:nu12113404. [PMID: 33167590 PMCID: PMC7694524 DOI: 10.3390/nu12113404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 01/12/2023] Open
Abstract
The mechanism by which high fat-diet induced obesity affects cardiac protein expression is unclear, and the extent to which this is modulated by prebiotic treatment is not known. These outcomes were assessed in rats initially fed a high-fat diet, then the top 40% weight gain group were randomly allocated to control (CON), high-fat (HF) and HF supplemented with fructooligosaccharide (32 g; HF-FOS) treatments for 12 weeks (n = 10/group). At sacrifice, left ventricles were either frozen or preserved in formalin. Serum was stored for glucose and insulin measurements. Protein spectra was obtained using an Orbitrap analyzer, processed with Sequest and fold changes assessed with Scaffold Q +. Treatment effects for body weights, glucose and insulin were assessed using one-way ANOVA, and the differential protein expression was assessed by a Mann-Whitney U test. The Database for Annotation, Visualization and Integrated Discovery and the Kyoto Encyclopedia of Genes and Genomes identified pathways containing overrepresented proteins. Hematoxylin and eosin sections were graded for hypertrophy and also quantified; differences were identified using Chi-square analyses and Mann-Whitney U tests. HF diet fed rats were significantly (p < 0.05) heavier than CON, and 23 proteins involved in mitochondrial function and lipid metabolism were differentially expressed between HF and CON. Between HF-FOS and HF, 117 proteins involved in contractility, lipid and carbohydrate metabolism were differentially expressed. HF cardiomyocytes were significantly (p < 0.05) more hypertrophic than CON. We conclude that high-fat feeding and FOS are associated with subcellular deviations in cardiac metabolism and contractility, which may influence myocardial function and alter the risk of cardiovascular disease.
Collapse
|
6
|
Petropoulos SA, Sampaio SL, Di Gioia F, Tzortzakis N, Rouphael Y, Kyriacou MC, Ferreira I. Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants (Basel) 2019; 8:E617. [PMID: 31817206 PMCID: PMC6943509 DOI: 10.3390/antiox8120617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
During the last few decades, the food and beverage industry faced increasing demand for the design of new functional food products free of synthetic compounds and artificial additives. Anthocyanins are widely used as natural colorants in various food products to replenish blue color losses during processing and to add blue color to colorless products, while other compounds such as carotenoids and betalains are considered as good sources of other shades. Root vegetables are well known for their broad palette of colors, and some species, such as black carrot and beet root, are already widely used as sources of natural colorants in the food and drug industry. Ongoing research aims at identifying alternative vegetable sources with diverse functional and structural features imparting beneficial effects onto human health. The current review provides a systematic description of colored root vegetables based on their belowground edible parts, and it highlights species and/or cultivars that present atypical colors, especially those containing pigment compounds responsible for hues of blue color. Finally, the main health effects and antioxidant properties associated with the presence of coloring compounds are presented, as well as the effects that processing treatments may have on chemical composition and coloring compounds in particular.
Collapse
Affiliation(s)
- Spyridon A. Petropoulos
- Crop Production and Rural Environment, Department of Agriculture, University of Thessaly, 38446 Nea Ionia, Greece
| | - Shirley L. Sampaio
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus;
| | - Isabel Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|
7
|
Huang JW, Chen CJ, Yen CH, Chen YMA, Liu YP. Loss of Glycine N-Methyltransferase Associates with Angiopoietin-Like Protein 8 Expression in High Fat-Diet-Fed Mice. Int J Mol Sci 2019; 20:ijms20174223. [PMID: 31470507 PMCID: PMC6747252 DOI: 10.3390/ijms20174223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Imbalance of lipid metabolism is a main cause of metabolic syndrome leading to life-threatening metabolic diseases. Angiopoietin-like protein 8 (Angptl8) was recently identified as a liver and adipose tissue-released hormone that is one of the molecules involved in triglyceride metabolism. However, the regulatory mechanism of Angptl8 is largely unknown. A high fat diet (HFD)-fed mouse model, which showed high cholesterol, high triglyceride, and high insulin in the blood, revealed the upregulation of hepatic and plasma Angptl8 and the downregulation of hepatic glycine N-methyltransferase (GNMT). The inverse correlation of hepatic Angptl8 and GNMT expression in the livers of HFD-fed mice was also confirmed in a publicly available microarray dataset. The mechanistic study using primary hepatocytes showed that the Angptl8 expression could be induced by insulin treatment in a dose- and time-dependent manner. Inhibition of PI3K/Akt pathway by the specific inhibitors or the dominant-negative Akt blocked the insulin-induced Angptl8 expression. Moreover, knockout of GNMT promoted the Akt activation as well as the Angptl8 expression. These results suggested that GNMT might be involved in insulin-induced Angptl8 expression in HFD-mediated metabolic syndrome.
Collapse
Affiliation(s)
- Jian-Wei Huang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chao-Ju Chen
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ming Arthur Chen
- Master Program of Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Peng Liu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
8
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
9
|
Terzo S, Caldara GF, Ferrantelli V, Puleio R, Cassata G, Mulè F, Amato A. Pistachio Consumption Prevents and Improves Lipid Dysmetabolism by Reducing the Lipid Metabolizing Gene Expression in Diet-Induced Obese Mice. Nutrients 2018; 10:nu10121857. [PMID: 30513740 PMCID: PMC6316241 DOI: 10.3390/nu10121857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
Pistachios contain beneficial substances such as unsaturated fatty acids, phytosterols, and polyphenols. In the present study, we investigated if pistachio consumption is able to prevent or to revert hyperglycemia, dyslipidemia, hepatic steatosis, and adipose tissue morphological alterations caused by high fat diet (HFD) in the mouse. Moreover, the impact of pistachio intake on the mRNA expression of peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid transport proteins (FAT-P), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and sterol regulatory element-binding transcription factor-1c (SREBP-1c) in liver and adipose tissue was also analyzed. No change in body weight, food intake, and hyperglycemia was observed between mice consuming pistachios (HFD-P) and HFD mice. Pistachio intake was able to prevent but not to reverse HFD-induced hypertriglyceridemia. Cholesterol plasma levels, steatosis grading, body fat mass, and adipocyte size were significantly lower in HFD-P group compared to HFD in both prevention and reversal protocol. Pistachio-diet was able to prevent HFD-induced overexpression of PPAR-γ, FAS, and SCD1 in the liver and SREBP-1c, PPAR-γ, and FAT-P in adipose tissue. Similarly, HFD-P significantly ameliorated the expression levels of FAT-P and SCD1 in the liver and SREBP-1c, FAS, and SCD1 in adipose tissue of obese mice. The present study shows that pistachio consumption is able to prevent and to ameliorate obesity-related dysfunctions by positively modulating the expression of genes linked to lipid metabolism.
Collapse
Affiliation(s)
- Simona Terzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Gaetano Felice Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| |
Collapse
|