1
|
Coope OC, Reales Salguero A, Spurr T, Páez Calvente A, Domenech Farre A, Jordán Fisas E, Lloyd B, Gooderick J, Abad Sangrà M, Roman‐Viñas B. Effects of Root Extract of Ashwagandha (Withania somnifera) on Perception of Recovery and Muscle Strength in Female Athletes. Eur J Sport Sci 2025; 25:e12265. [PMID: 39954269 PMCID: PMC11829707 DOI: 10.1002/ejsc.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Ashwagandha is a supplement with the potential to improve exercise performance. However, research on its impact on female athletes remains limited. This study investigates the effects of ashwagandha on exercise recovery and muscle strength in professional female athletes, addressing a gap in understanding its role in this underrepresented population. Female footballers were randomly assigned to a 600 mg/day ashwagandha root extract group (ASH, n = 15; age: 26.0 ± 4.9 years, height: 1.66 ± 0.1 m, body mass: 61.5 ± 7.5 kg, and career: 15.2 ± 7.4 years) or a placebo group (PLA, n = 15; age: 23.5 ± 5.5 years, height: 1.66 ± 0.1 m, body mass: 61.5 ± 6.0 kg, and career: 13.1 ± 4.9 years). Recovery was assessed with total quality recovery (TQR), Hooper Index (HI) and rate of perceived exertion (RPE). Strength was assessed by hand grip, medicine ball throw (MBT), countermovement jump (CMJ) and peak power. Dietary intake was recorded prior to baseline measurements. Repeated measures ANOVA, Bonferroni test, independent t-tests and ANCOVA were used in the analysis. A significant group × time interaction effect was found for TQR (p = 0.026), with the post-hoc analysis revealing a significant difference between ASH and PLA at 28 days (p = 0.039). Perceived sleep quality from HI improved significantly in ASH compared to PLA (p = 0.038), with a significant change at 14 days. The ANCOVA analysis highlighted the significant influence of carbohydrate intake on hand grip strength (p = 0.005), MBT (p < 0.001) and body mass (p < 0.001). A dosage of 600 mg of ashwagandha root extract for 28 days may improve TQR and enhance perceived sleep quality in female footballers. Future research should investigate the optimal dosage and test across a broader range of athletic populations. Trials Registration: The trial is registered on ClinicalTrials.gov with the ID NCT06264986.
Collapse
Affiliation(s)
- Olivia C. Coope
- Blanquerna School of Health SciencesRamon Llull UniversityBarcelonaSpain
| | | | - Tilly Spurr
- Institute of SportUniversity of ChichesterChichesterUK
| | | | | | | | - Beth Lloyd
- Faculty of Social and Behavioural SciencesLeiden UniversityLeidenNetherlands
| | - Julie Gooderick
- School of Sport and Exercise Sciences, University of KentCanterburyUK
| | - Maria Abad Sangrà
- Faculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelonaSpain
| | - Blanca Roman‐Viñas
- Blanquerna School of Health SciencesRamon Llull UniversityBarcelonaSpain
- Faculty of Psychology, Education and Sport SciencesRamon Llull UniversityBarcelonaSpain
| |
Collapse
|
2
|
Sprengel M, Laskowski R, Jost Z. Withania somnifera (Ashwagandha) supplementation: a review of its mechanisms, health benefits, and role in sports performance. Nutr Metab (Lond) 2025; 22:9. [PMID: 39910586 PMCID: PMC11800443 DOI: 10.1186/s12986-025-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
In recent years Withania somnifera (Ashwagandha) gained a lot of interest as an adaptogen, aiding sleep, stress management and presenting health and sports-related benefits. Although clinical effects have been previously reviewed, the specific mechanism of Ashwagandha's action and its impact on different aspects of physical performance, body composition, as well as medical effects need more thorough analysis. Therefore, this narrative review delves into the available research examining the effects of Ashwagandha supplementation on such qualities as: strength, endurance, power, recovery, muscle mass, body fat, fertility, anxiety, metabolic health and aging, with additional focus on potential mechanisms underlying these effects. Moreover, we propose future perspectives based on the gaps observed in Ashwagandha research up to date.
Collapse
Affiliation(s)
- Mateusz Sprengel
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Radosław Laskowski
- Department of Physiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Zbigniew Jost
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, Poland.
| |
Collapse
|
3
|
Kerksick CM. Acute Alpha-Glycerylphosphorylcholine Supplementation Enhances Cognitive Performance in Healthy Men. Nutrients 2024; 16:4240. [PMID: 39683633 PMCID: PMC11644786 DOI: 10.3390/nu16234240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Choline is an essential nutrient required for proper cell functioning. Due to its status as a precursor to acetylcholine, an important neurotransmitter connected to cognition and neuromuscular function, maintaining or enhancing choline levels is of interest. Supplementation with alpha-glycerylphosphorycholine (A-GPC) can maintain choline levels, but its ability to offer support towards cognition remains an area of ongoing research. METHODS Using a randomized, double-blind, placebo-controlled, crossover approach, 20 resistance-trained males (31.3 ± 11.0 years, 178.6 ± 7.3 cm, 84.6 ± 11.4 kg, 15.4 ± 5.6% body fat) consumed either a placebo (PL), 630 mg A-GPC (HD), or 315 mg (LD) A-GPC (GeniusPure®, NNB Nutrition, Nanjing, China). After resting hemodynamic assessments, participants took their assigned dose and had cognitive assessments (Stroop, N-Back, and Flanker), visual analog scales, and hemodynamics evaluated 60 min after ingestion. All participants then warmed up and completed vertical jumps and bench press throws before completing a bout of lower-body resistance exercise (6 × 10 repetitions using the Smith squat at a load of 70% 1RM). Venous blood was collected 5, 15, 30, and 60 min after completion of the squat protocol to evaluate changes in growth hormones, and follow-up visual analog scales and cognitive measurements were evaluated 30 min after completing the exercise bout. RESULTS When compared to PL, changes in Stroop total score were statistically greater after HD (13.0 ± 8.2 vs. 5.2 ± 9.0, p = 0.013, d = 0.61) and LD (10.8 ± 7.7 vs. 5.2 ± 9.0, p = 0.046, d = 0.48) administration, in addition to significantly faster times to complete the Stroop test in the HD group when compared to PL (-0.12 ± 0.09 s vs. -0.05 ± 0.09 s, p = 0.021, d = 0.56). No significant differences between groups were found for the Flanker and N-Back assessments, while a tendency was observed for HD to have faster reaction times when compared to PL during the Flanker test. No group differences were realized for visual analog scales, physical performance, or growth hormone. Statistically significant changes in heart rate and blood pressure were observed in all groups, with all recorded values aligning with clinically accepted normative values. CONCLUSIONS HD and LD A-GPC supplementation significantly increased cognitive performance in a group of young, healthy males as measured by changes in the Stroop Total Score and completion time of the Stroop test. These results offer unique insight into the potential for A-GPC to acutely increase cognition in a group of young, healthy males. While previous research has indicated potential for A-GPC to acutely improve cognition in clinical populations, extending these outcomes to healthy individuals can be potentially meaningful for a wide variety of populations such as athletes, race car drivers, military operators, and other non-athletic populations who desire and have a need to improve their mental performance. This study was retrospectively registered as NCT06690619 on clinicaltrials.gov.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, Lindenwood University, St. Charles, MO 63301, USA
| |
Collapse
|
4
|
La Monica MB, Raub B, Hartshorn S, Gustat AL, Grdic J, Kirby TO, Townsend JR, Sandrock J, Ziegenfuss TN. The effects of AG1® supplementation on the gut microbiome of healthy adults: a randomized, double-blind, placebo-controlled clinical trial. J Int Soc Sports Nutr 2024; 21:2409682. [PMID: 39352252 PMCID: PMC11445888 DOI: 10.1080/15502783.2024.2409682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND This study aimed to examine the effect of a commercially available multi-ingredient powder (AG1Ⓡ) on the gut microbiome and assess the impact of AG1Ⓡ on GI tolerability and other clinical safety markers in healthy men and women. METHODS Using a double-blind, randomized, two-arm, placebo-controlled, parallel design, we examined a 4-week daily supplementation regimen of AG1Ⓡ vs. placebo (PL). Fifteen men and 15 women provided stool samples for microbiome analysis, questionnaires for digestive quality of life (DQLQ), and completed visual analog scales (VAS) and Bristol stool charts to assess stool consistency and bowel frequency before and after the 4-week intervention. Participant's blood work (CBC, CMP, and lipid panel) was also assessed before and after the 4-week intervention. Alpha diversity was determined by Shannon and Chao1 index scores and evaluated by a two-way ANOVA, beta diversity in taxonomic abundances and functional pathways was visualized using partial least squares-discriminant analyses and statistically evaluated by PERMANOVA. To identify key biomarkers, specific feature differences in taxonomic relative abundance and normalized functional pathway counts were analyzed by linear discriminant analysis (LDA) effect size (LEfSe). Questionnaires, clinical safety markers, and hemodynamics were evaluated by mixed factorial ANOVAs with repeated measures. This study was registered on clinicaltrials.gov (NCT06181214). RESULTS AG1Ⓡ supplementation enriched two probiotic taxa (Lactobacillus acidophilus and Bifidobacterium bifidum) that likely stem from the probiotics species that exist in the product, as well as L. lactis CH_LC01 and Acetatifactor sp900066565 ASM1486575v1 while reducing Clostridium sp000435835. Regarding community function, AG1Ⓡ showed an enrichment of two functional pathways while diminishing none. Alternatively, the PL enriched six, but diminished five functional pathways. Neither treatment negatively impacted the digestive quality of life via DQLQ, bowel frequency via VAS, or stool consistency via VAS and Bristol. However, there may have been a greater improvement in the DQLQ score (+62.5%, p = 0.058, d = 0.73) after four weeks of AG1Ⓡ supplementation compared to a reduction (-50%) in PL. Furthermore, AG1Ⓡ did not significantly alter clinical safety markers following supplementation providing evidence for its safety profile. CONCLUSIONS AG1Ⓡ can be consumed safely by healthy adults over four weeks with a potential beneficial impact in their digestive symptom quality of life.
Collapse
Affiliation(s)
| | - Betsy Raub
- The Center for Applied Health Sciences, Canfield, OH, USA
| | | | | | - Jodi Grdic
- The Center for Applied Health Sciences, Canfield, OH, USA
| | - Trevor O. Kirby
- AG1, Research, Nutrition, and Innovation, Carson City, NV, USA
| | - Jeremy R. Townsend
- AG1, Research, Nutrition, and Innovation, Carson City, NV, USA
- Concordia University Chicago, Health & Human Performance, River Forest, IL, USA
| | - Jen Sandrock
- The Center for Applied Health Sciences, Canfield, OH, USA
| | | |
Collapse
|
5
|
Raut A, Tripathi R, Marathe PA, Uchil DA, Agashe S, Rege N, Vaidya AB. Evaluation of Withania somnifera (L.) Dunal (Ashwagandha) on Physical Performance, Biomarkers of Inflammation, and Muscle Status in Healthy Volunteers: A Randomized, Double-Blind, Placebo-Controlled Study. Cureus 2024; 16:e68940. [PMID: 39381480 PMCID: PMC11460434 DOI: 10.7759/cureus.68940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Sarcopenia is associated with chronic inflammation, a sedentary lifestyle, and ageing. However, there exists no drug, which is safe and effective for long-term use. Ashwagandha (Withaniasomnifera (L.) Dunal) has the potential to fill this therapeutic gap based on its efficacy and safety profile; hence, the present study was planned to evaluate its effect on inflammatory biomarkers and muscle status in healthy volunteers. METHODOLOGY A prospective, double-blind, randomized, placebo-controlled clinical study was conducted to evaluate the effects of Ashwagandha extract in healthy volunteers (February 2021 to May 2022) who received either Ashwagandha extract tablets 250 mg or a placebo twice daily for 60 days. The physical performance on a bicycle ergometer, inflammatory/muscle status biomarkers, body composition, reaction time, hemogram, and organ function tests was assessed at baseline, day 30, and day 60. RESULTS In the Ashwagandha group, there was a statistically significant (p<0.05) improvement in total distance travelled (Ashwagandha 2.85 ± 0.54 km vs placebo 2.16 ± 0.62 km), average speed achieved (Ashwagandha 25.6 ± 5.7 km/hour vs placebo 22.2 ± 5.48 km/hour) on a bicycle ergometer from the baseline visit (V3) to the last visit (V7) as compared to the placebo group. The observations on hand-grip strength, back-leg press, skeletal muscle mass, and VO2 max showed an increasing trend from V3 to V7, whereas the results of the three inflammatory markers (hs-C-reactive protein (CRP) mg/L; IL-6; TNF-alpha ) and the muscle marker (myostatin) revealed a decreasing trend from V3 to V7 in the Ashwagandha group. Ashwagandha extract was found to be safe in healthy volunteers as evidenced by the clinical profile, laboratory investigations, and reaction time test. CONCLUSION Ashwagandha extract supplementation was safe and effective in enhancing physical performance and strengthening muscle mass and could be a potential candidate for treating sarcopenia.
Collapse
Affiliation(s)
- Ashwinikumar Raut
- Clinical Research and Integrative Medicine Department, Kasturba Health Society, Medical Research Centre, Mumbai, IND
| | - Raakhi Tripathi
- Pharmacology and Therapeutics Department, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, IND
| | - Padmaja A Marathe
- Pharmacology and Therapeutics Department, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, IND
| | - Dinesh A Uchil
- Pharmacology and Therapeutics Department, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, IND
| | - Shubhada Agashe
- Clinical and Endocrine Laboratory, Kasturba Health Society, Medical Research Centre, Mumbai, IND
| | - Nirmala Rege
- Pharmacology and Therapeutics Department, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, IND
| | - Ashok B Vaidya
- Internal Medicine Department, Kasturba Health Society, Medical Research Centre, Mumbai, IND
| |
Collapse
|
6
|
Guo S, Rezaei MJ. The benefits of ashwagandha ( Withania somnifera) supplements on brain function and sports performance. Front Nutr 2024; 11:1439294. [PMID: 39155932 PMCID: PMC11327513 DOI: 10.3389/fnut.2024.1439294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Ashwagandha or Withania somnifera is an herbal plant belonging to the Solanaceae family. Because of its wide range of phytochemicals, ashwagandha root extract has been used in numerous research studies, either alone or in conjunction with other natural plants, for various biomedical applications, which include its anti-microbial, anti-inflammatory, anti-stress, anti-tumor, cardioprotective, and neuroprotective properties. Additionally, it improves endothelial function, lowers reactive oxygen species, controls apoptosis, and improves mitochondrial function. These properties make it a useful treatment for a variety of conditions, including age-related symptoms, anxiety, neurodegenerative diseases, diabetes, stress, arthritis, fatigue, and cognitive/memory impairment. Despite the numerous benefits of ashwagandha supplementation, there have been just four meta-analyses on the herb's effectiveness in treating anxiety, neurobehavioral disorders, impotence, and infertility. Moreover, no reviews exist that examine how ashwagandha affects antioxidant response and physical sports performance. Consequently, the goal of this study was to analyze the scientific literature regarding the effects of ashwagandha consumption on antioxidant response and athletic performance.
Collapse
Affiliation(s)
- Shiyi Guo
- College of Physical Education, LiaoNing Petrochemical University, Fushun, Liaoning, China
| | | |
Collapse
|
7
|
Chittiboyina AG, Khan IA. Current issues in phytomedicine research - Conundrum on the chemistry of ashwagandha and its biological effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117871. [PMID: 38325672 DOI: 10.1016/j.jep.2024.117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Affiliation(s)
| | - Ikhlas A Khan
- National Center for Natural Products Research, United States; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, United States.
| |
Collapse
|
8
|
La Monica MB, Raub B, Ziegenfuss EJ, Hartshorn S, Grdic J, Gustat A, Sandrock J, Ziegenfuss TN. Acute Effects of Naturally Occurring Guayusa Tea and Nordic Lion's Mane Extracts on Cognitive Performance. Nutrients 2023; 15:5018. [PMID: 38140277 PMCID: PMC10745489 DOI: 10.3390/nu15245018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to assess the effects of guayusa extract and Nordic Lion's Mane (LM) on cognition. Using a randomized, double-blind, placebo-controlled, crossover design, we examined the effects of a single dose of 650 mg guayusa extract (AMT: AmaTea® Max) vs. 1 g Nordic-grown Lion's Mane (LM) vs. placebo (PL). Participants attended three testing visits consisting of neuropsychological tests (Go/No-go, N-Back, and Serial 7 s tasks) assessing performance, subjective assessments of cognitive perception, and vital signs. Each assessment was measured at baseline (pre-ingestion) and 1 and 2 h post ingestion. AMT significantly (p ≤ 0.05) improved the number of attempts during Serial 7s, total score, number of correct responses, total number of responses, and reaction time during N-Back and improved Go stimulus reaction time, but it reduced the percentage of correct responses in the No-go stimulus response during Go/No-go. LM significantly (p ≤ 0.05) improved the number of attempts during Serial 7s and reaction time during N-Back and improved Go stimulus reaction time in Go/No-go. AMT improved mental clarity, focus, concentration, mood, and productivity at 1 and 2 h (p < 0.05); the ability to tolerate stress at 1 h; and had greater ratings than LM and PL for mental clarity, focus, concentration, and productivity. PL improved focus and concentration at 1 h from baseline (p ≤ 0.05). AMT and LM improved subjective ratings of "happiness compared to peers" and "getting the most out of everything" (p < 0.05); however, this occurred earlier in LM (i.e., 1 h post ingestion). AMT uniquely elevated blood pressure from baseline. AMT significantly improved cognitive performance and self-perceived cognitive indices of affect over a 2 h period and perceptions of happiness 2 h post ingestion. In comparison, LM helped improve working memory, complex attention, and reaction time 2 h post ingestion and perceptions of happiness over a 2 h period.
Collapse
|
9
|
La Monica MB, Raub B, Malone K, Hartshorn S, Grdic J, Gustat A, Sandrock J. Methylliberine Ingestion Improves Various Indices of Affect but Not Cognitive Function in Healthy Men and Women. Nutrients 2023; 15:4509. [PMID: 37960163 PMCID: PMC10650428 DOI: 10.3390/nu15214509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
This study assessed the acute effects of oral methylliberine (DynamineTM) supplementation on cognitive function and indices of well-being. This was a double-blind, randomized, within-subject crossover trial. In total, 25 healthy men and women (33.5 ± 10.7 yr, 172.7 ± 8.6 cm, 73.3 ± 11.0 kg) underwent pretesting before ingesting methylliberine (100 mg) or a placebo (PLA) for 3 days. On the fourth day, the participants were tested before their fourth dose (baseline) and every hour post-ingestion for 3 h. After a one-week washout period, the participants repeated testing with the alternate investigational product. The testing battery consisted of vitals, Stroop test, Trail Making Test-B, and visual analog scales that assessed various indices of well-being. Mixed factorial ANOVAs with repeated measures were used to assess all variables. There were significant (p ≤ 0.050) interactions in terms of concentration, motivation, and mood. Methylliberine improved concentration at 1 and 3 h, motivation at 3 h, and mood at 1, 2, and 3 h (p ≤ 0.050). Methylliberine improved energy, sustained energy, and mood in all participants to a greater extent than PLA at 1 h and 3 h relative to baseline (p ≤ 0.050). PLA improved motivation at 1 and 2 h and mood at 2 h (p ≤ 0.050). Methylliberine improved concentration, well-being, and the ability to tolerate stress to a greater extent than PLA at 3 h relative to baseline (p ≤ 0.050). Women observed elevations in sustained energy at 1 and 3 h (p ≤ 0.050) with methylliberine vs. PLA. Methylliberine had a negligible influence on cognitive function and vitals (p > 0.050), and no adverse events were reported. Methylliberine significantly improved subjective feelings of energy, concentration, motivation, and mood, but not cognitive function. PLA improved motivation and mood at hours 1 and 2, while methylliberine sustained these benefits for longer. Methylliberine also improved concentration, well-being, and the ability to tolerate stress to a greater degree than PLA, while having no detrimental effects on vital signs. Methylliberine also seemed to have a positive impact on sustained energy in women.
Collapse
|
10
|
Kumar P, Banik SP, Goel A, Chakraborty S, Bagchi M, Bagchi D. A critical assessment of the whole plant-based phytotherapeutics from Withania somnifera (L.) Dunal with respect to safety and efficacy vis-a-vis leaf or root extract-based formulation. Toxicol Mech Methods 2023; 33:698-706. [PMID: 37533233 DOI: 10.1080/15376516.2023.2242933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Withania somnifera (L.) Dunal, popularly known as Ashwagandha or Indian ginseng, is well acclaimed for its health-enhancing effects, including its potent immunomodulatory, anti-inflammatory, neuroprotective, and anti-tumorigenic properties. The prime biological effectors of these attributes are a diverse group of ergostane-based steroidal lactones termed withanolides. Withanones and withanosides are distributed differentially across the plant body, whereas withanolides and withanones are known to be more abundant in leaves, while withanosides are found exclusively in the roots of the plants. Standardized W. somnifera extract is Generally Recognized as Safe (GRAS)-affirmed, however, moderate to severe toxic manifestations may occur at high dosages. Withaferin A, which also happens to be the primary bioactive ingredient for the effectiveness of this plant. There have been contrasting reports regarding the distribution of withaferin A in W. somnifera. While most reports state that the roots of the plant have the highest concentrations of this phytochemical, several others have indicated that leaves can accumulate withaferin A in proportionately higher amounts. A comprehensive survey of the available reports suggests that the biological effects of Ashwagandha are grossly synergistic in nature, with many withanolides together mediating the desired physiological effect. In addition, an assorted formulation of withanolides can also neutralize the toxic effects (if any) associated with withaferin A. This mini-review presents a fresh take on the recent developments regarding the safety and toxicity of the plant, along with a critical assessment of the use of roots against leaves as well as whole plants to develop therapeutic formulations. Going by the currently available scientific evidence, it is safe to infer that the use of whole plant formulations instead of exclusively root or leaf recipes may present the best possible option for further exploration of therapeutic benefits from this novel medicinal plant.HighlightsTherapeutic potential of withanolides owes to the presence of α,β unsaturated ketone which binds to amines, alcohols, and esters and 5β, 6β epoxy group which react with side chain thiols of proteins.At concentrations above NOAEL (no observed adverse effect level), the same mechanisms contribute towards toxicity of the molecule.Although withanosides are found exclusively in roots, whole plants have higher contents of withanones and withanolides.Whole plant-based formulations have other metabolites which can nullify the toxicity associated with roots.Extracts made from whole plants, therefore can holistically impart all therapeutic benefits as well as mitigate toxicity.
Collapse
Affiliation(s)
- Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | | | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Dept of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
11
|
Gómez Afonso A, Fernandez-Lazaro D, Adams DP, Monserdà-Vilaró A, Fernandez-Lazaro CI. Effects of Withania somnifera (Ashwagandha) on Hematological and Biochemical Markers, Hormonal Behavior, and Oxidant Response in Healthy Adults: A Systematic Review. Curr Nutr Rep 2023; 12:465-477. [PMID: 37428341 PMCID: PMC10444651 DOI: 10.1007/s13668-023-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE OF REVIEW: Withania somnifera (L.) Dunal (Ws) is a common herb plant that has been used for centuries to treat a wide range of conditions, particularly certain chronic diseases due to its antidiabetic, cardioprotective, antistress, and chondroprotective effects, among many others. No conclusive evidence, however, exists about the potential health effects of Ws in adults without chronic conditions. We aimed to evaluate the current evidence on the health benefits of Ws supplementation in healthy adults. RECENT FINDINGS: Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed studies indexed in Web of Science, Scopus, and PubMed to assess the effects of Ws on hematological and biochemical markers, hormonal behavior, and oxidant response in healthy adults. Original articles published up to March 5, 2022, with a controlled trial design or pre-post intervention design, in which supplementation of Ws was compared to a control group or data prior to intervention were included. Among 2,421 records identified in the search, 10 studies met the inclusion criteria. Overall, most of the studies reported beneficial effects of the Ws supplementation, and no serious adverse events were reported. Participants supplemented with Ws displayed reduced levels of oxidative stress and inflammation, and counterbalanced hormone levels. No evidence of the beneficial effects of Ws supplementation on hematological markers was reported. Ws supplementation appears to be safe, may regulate hormone levels, and has potent anti-inflammatory and antioxidant effects. However, further studies are needed to elucidate the relevance of its application.
Collapse
Affiliation(s)
- Adrián Gómez Afonso
- Faculty of Physical Activity Sport Sciences, European University of Madrid, 28670, Madrid, Spain
| | - Diego Fernandez-Lazaro
- Departamento de Biología Celular, Genética, Histología y Farmacología, Facultad de Ciencias de la Salud, Campus de Soria, Universidad de Valladolid, Soria, 42004, Spain.
- Grupo de Investigación Reconocido "Neurobiología", Facultad de Medicina, Universidad de Valladolid, Valladolid, 47005, Spain.
| | - David P Adams
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Aniol Monserdà-Vilaró
- Faculty of Physical Activity Sport Sciences, European University of Madrid, 28670, Madrid, Spain
| | - Cesar I Fernandez-Lazaro
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.
| |
Collapse
|
12
|
Mikulska P, Malinowska M, Ignacyk M, Szustowski P, Nowak J, Pesta K, Szeląg M, Szklanny D, Judasz E, Kaczmarek G, Ejiohuo OP, Paczkowska-Walendowska M, Gościniak A, Cielecka-Piontek J. Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review. Pharmaceutics 2023; 15:pharmaceutics15041057. [PMID: 37111543 PMCID: PMC10147008 DOI: 10.3390/pharmaceutics15041057] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
In recent years, there has been a significant surge in reports on the health-promoting benefits of winter cherry (Withania somnifera), also known as Ashwagandha. Its current research covers many aspects of human health, including neuroprotective, sedative and adaptogenic effects and effects on sleep. There are also reports of anti-inflammatory, antimicrobial, cardioprotective and anti-diabetic properties. Furthermore, there are reports of reproductive outcomes and tarcicidal hormone action. This growing body of research on Ashwagandha highlights its potential as a valuable natural remedy for many health concerns. This narrative review delves into the most recent findings and provides a comprehensive overview of the current understanding of ashwagandha’s potential uses and any known safety concerns and contraindications.
Collapse
|
13
|
D'Cruz M, Andrade C. Potential clinical applications of Ashwagandha ( Withania somnifera) in medicine and neuropsychiatry. Expert Rev Clin Pharmacol 2022; 15:1067-1080. [PMID: 36062480 DOI: 10.1080/17512433.2022.2121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Ashwagandha (ASW) is the extract of the plant Withania somnifera. It is widely used in complementary, alternative, and integrative medicine (CAIM) but is little discussed in mainstream modern medical literature. AREAS COVERED We performed a review of potential pharmacotherapeutic properties of ASW. Studies were sourced from relevant online and offline databases. In animal models, ASW displays antioxidant activity. It has GABAergic and other neurotransmitter modulatory effects. It reduces apoptosis and promotes synaptic plasticity. It improves cognition and reverses induced cognitive deficits. It attenuates indices of stress. In human subjects, ASW enhances adaptogenesis in healthy adults. It modestly benefits generalized anxiety disorder and obsessive-compulsive disorder, and symptom severity in schizophrenia, substance use disorders, and attention deficit hyperactivity disorder. It improves sleep quality. EXPERT OPINION ASW may confer modest benefit in certain neuropsychiatric conditions. Its benefits may arise from induction of neuroplasticity, antioxidant and anti-inflammatory effects, and modulation of GABA and glutamate, as well as other neurotransmitters. The antioxidant and anti-inflammatory actions may also benefit neurodegenerative states. Reports of clinical benefit with ASW must be interpreted with caution, given the paucity of randomized clinical trials (RCTs). Greater methodological rigor is necessary before clinical recommendations on ASW can be confidently made.
Collapse
Affiliation(s)
- Migita D'Cruz
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Chittaranjan Andrade
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
14
|
Rathore S, Khuntia BK, Wadhawan M, Sharma V, Sharma G. Herbal adaptogens: An integrative approach for enhancing performance and resilience in athletes. Phytother Res 2022; 36:3678-3680. [PMID: 35751417 DOI: 10.1002/ptr.7529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Shubhangi Rathore
- Centre for Integrative Medicine and Research (CIMR), All India Institute of Medical, Sciences, New Delhi, India
| | - Bharat Krushna Khuntia
- Centre for Integrative Medicine and Research (CIMR), All India Institute of Medical, Sciences, New Delhi, India
| | - Mohit Wadhawan
- Centre for Integrative Medicine and Research (CIMR), All India Institute of Medical, Sciences, New Delhi, India
| | - Vandna Sharma
- Centre for Integrative Medicine and Research (CIMR), All India Institute of Medical, Sciences, New Delhi, India
| | - Gautam Sharma
- Centre for Integrative Medicine and Research (CIMR), All India Institute of Medical, Sciences, New Delhi, India
| |
Collapse
|
15
|
Sharifi-Rad J, Quispe C, Ayatollahi SA, Kobarfard F, Staniak M, Stępień A, Czopek K, Sen S, Acharya K, Matthews KR, Sener B, Devkota HP, Kırkın C, Özçelik B, Victoriano M, Martorell M, Rasul Suleria HA, Alshehri MM, Chandran D, Kumar M, Cruz-Martins N, Cho WC. Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma-Food Industry Applications. J FOOD QUALITY 2021; 2021:1-14. [DOI: 10.1155/2021/8985179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/05/2023] Open
Abstract
The Withania genus comes from the Solanaceae family and includes around 23 species, spread over some areas of the Mediterranean, Asia, and East Africa. Widely used in traditional medicine for thousands of years, these plants are rich in secondary metabolites, with special emphasis on steroidal lactones, named withanolides which are used as ingredients in numerous formulations for a plethora of diseases, such as asthma, diabetes, arthritis, impotence, amnesia, hypertension, anxiety, stress, cancer, neurodegenerative, and cardiovascular diseases, and many others. Among them, Withania somnifera (L.) Dunal is the most widely addressed species from a pharmacological and agroindustrial point of view. In this sense, this review provides an overview of the folk uses, phytochemical composition, and biological activity, such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activity of W. somnifera, although more recently other species have also been increasingly investigated. In addition, their health-promoting effects, i.e., antistress, anxiolytic, adaptogenic, antirheumatoid arthritis, chemoprotective, and cardiorespiratory-enhancing abilities, along with safety and adverse effects are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariola Staniak
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Anna Stępień
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Katarzyna Czopek
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Bilge Sener
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara 06330, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Celale Kırkın
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Bioactive Research & Innovation Food Manufacturing Industry Trade Ltd. Co., Maslak, Istanbul 34469, Turkey
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, Gandra 4585-116, Portugal
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
16
|
Wang J, Zhang H, Kaul A, Li K, Priyandoko D, Kaul SC, Wadhwa R. Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules 2021; 11:biom11101454. [PMID: 34680087 PMCID: PMC8533065 DOI: 10.3390/biom11101454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Withania somnifera (Ashwagandha) is used in Indian traditional medicine, Ayurveda, and is believed to have a variety of health-promoting effects. The molecular mechanisms and pathways underlying these effects have not yet been sufficiently explored. In this study, we investigated the effect of Ashwagandha extracts and their major withanolides (withaferin A and withanone) on muscle cell differentiation using C2C12 myoblasts. We found that withaferin A and withanone and Ashwagandha extracts possessing different ratios of these active ingredients have different effects on the differentiation of C2C12. Withanone and withanone-rich extracts caused stronger differentiation of myoblasts to myotubes, deaggregation of heat- and metal-stress-induced aggregated proteins, and activation of hypoxia and autophagy pathways. Of note, the Parkinson’s disease model of Drosophila that possess a neuromuscular disorder showed improvement in their flight and climbing activity, suggesting the potential of Ashwagandha withanolides for the management of muscle repair and activity.
Collapse
Affiliation(s)
- Jia Wang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Huayue Zhang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Ashish Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Kejuan Li
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- College of Life Science, Sichuan Normal University, Chengdu 610066, China
| | - Didik Priyandoko
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Department of Biology, Universitas Pendidikan Indonesia, Bangdung 40154, Indonesia
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Correspondence:
| |
Collapse
|
17
|
Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
|
18
|
Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front Pharmacol 2021; 12:623795. [PMID: 34012390 PMCID: PMC8126694 DOI: 10.3389/fphar.2021.623795] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
As the COVID-19 pandemic is progressing, the therapeutic gaps in conventional management have highlighted the need for the integration of traditional knowledge systems with modern medicine. Ayurvedic medicines, especially Ashwagandha (Withania somnifera (L.) Dunal, WS), may be beneficial in the management of COVID-19. WS is a widely prescribed Ayurvedic botanical known as an immunomodulatory, antiviral, anti-inflammatory, and adaptogenic agent. The chemical profile and pharmacological activities of WS have been extensively reported. Several clinical studies have reported its safety for use in humans. This review presents a research synthesis of in silico, in vitro, in vivo, and clinical studies on Withania somnifera (L.) Dunal (WS) and discusses its potential for prophylaxis and management of COVID-19. We have collated the data from studies on WS that focused on viral infections (HIV, HSV, H1N1 influenza, etc.) and noncommunicable diseases (hypertension, diabetes, cancer, etc.). The experimental literature indicates that WS has the potential for 1) maintaining immune homeostasis, 2) regulating inflammation, 3) suppressing pro-inflammatory cytokines, 4) organ protection (nervous system, heart, lung, liver, and kidney), and 5) anti-stress, antihypertensive, and antidiabetic activities. Using these trends, the review presents a triangulation of Ayurveda wisdom, pharmacological properties, and COVID-19 pathophysiology ranging from viral entry to end-stage acute respiratory distress syndrome (ARDS). The review proposes WS as a potential therapeutic adjuvant for various stages of COVID-19 management. WS may also have beneficial effects on comorbidities associated with the COVID-19. However, systematic studies are needed to realize the potential of WS for improving clinical outcome of patients with COVID-19.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kirti Limgaokar
- Division of Biochemistry, Department of Chemistry, Fergusson College (Autonomous), Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
19
|
Bonilla DA, Moreno Y, Gho C, Petro JL, Odriozola-Martínez A, Kreider RB. Effects of Ashwagandha ( Withania somnifera) on Physical Performance: Systematic Review and Bayesian Meta-Analysis. J Funct Morphol Kinesiol 2021; 6:20. [PMID: 33670194 PMCID: PMC8006238 DOI: 10.3390/jfmk6010020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/01/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
Ashwagandha (Withania somnifera) is considered a potent adaptogen and anti-stress agent that could have some potential to improve physical performance. This preferred reporting items for systematic reviews and meta-analyses (PRISMA)-based comprehensive systematic review and Bayesian meta-analysis aimed to evaluate clinical trials up to 2020 from PubMed, ScienceDirect, and Google Scholar databases regarding the effect of Ashwagandha supplementation on physical performance in healthy individuals. Besides implementing estimation statistics analysis, we developed Bayesian hierarchical models for a pre-specified subgroup meta-analysis on strength/power, cardiorespiratory fitness and fatigue/recovery variables. A total of 13 studies met the requirements of this systematic review, although only 12 were included in the quantitative analysis. A low-to-moderate overall risk of bias of the trials included in this study was detected. All Bayesian hierarchical models converged to a target distribution (Ȓ = 1) for both meta-analytic effect size (μ) and between-study standard deviation (τ). The meta-analytic approaches of the included studies revealed that Ashwagandha supplementation was more efficacious than placebo for improving variables related to physical performance in healthy men and female. In fact, the Bayesian models showed that future interventions might be at least in some way beneficial on the analyzed outcomes considering the 95% credible intervals for the meta-analytic effect size. Several practical applications and future directions are discussed, although more comparable studies are needed in exercise training, and athletic populations are needed to derive a more stable estimate of the true underlying effect.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia; (Y.M.); (C.G.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, San Sebastián, Spain;
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia; (Y.M.); (C.G.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Camila Gho
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia; (Y.M.); (C.G.); (J.L.P.)
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia; (Y.M.); (C.G.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Adrián Odriozola-Martínez
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, San Sebastián, Spain;
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Phymo Lab, Physiology and Molecular Laboratory, 08028 Barcelona, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
20
|
Kim SH, Singh KB, Hahm ER, Singh SV. The Role of Forkhead Box Q1 Transcription Factor in Anticancer Effects of Withaferin A in Breast Cancer. Cancer Prev Res (Phila) 2021; 14:421-432. [PMID: 33509807 DOI: 10.1158/1940-6207.capr-20-0590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Elimination of both rapidly dividing epithelial mammary cancer cells as well as breast cancer stem-like cells (bCSC) is essential for maximizing antitumor response. Withaferin A (WA), a small molecule derived from a medicinal plant (Withania somnifera), is highly effective in reducing burden and/or incidence of breast cancer in vivo in various preclinical models. We have shown previously that suppression of breast cancer incidence by WA administration in a rat model is associated with a decrease in self-renewal of bCSC but the underlying mechanism is still elusive. This study investigated the role of forkhead box Q1 (FoxQ1) transcription factor in antitumor responses to WA. Exposure of MDA-MB-231 and SUM159 cells to WA resulted in downregulation of protein and mRNA levels of FoxQ1 as well as inhibition of its transcriptional activity. FoxQ1 overexpression in SUM159 and MCF-7 cells resulted in a marked protection against WA-mediated inhibition of bCSC as judged by flow cytometric analysis of CD49fhigh population and mammosphere assay. RNA-sequencing analysis revealed upregulation of many bCSC-associated genes by FoxQ1 overexpression in SUM159 cells, including IL8 whose expression was decreased by WA treatment in SUM159 and MCF-7 cells. FoxQ1 was recruited to the promoter of IL8 that was inhibited significantly by WA treatment. On the other hand, WA-mediated inhibition of cell proliferation or migration was not affected by FoxQ1 overexpression. The FoxQ1 overexpression partially attenuated WA-mediated G2-M phase cell cycle arrest in SUM159 cells only. These results indicate that FoxQ1 is a target of WA for inhibition of bCSC fraction. PREVENTION RELEVANCE: Withaferin A (WA) is highly effective in reducing burden and/or incidence of breast cancer in various preclinical models. However, the mechanism underlying breast cancer prevention by WA is not fully understood. This study shows a role for FoxQ1 in antitumor response to WA.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Mukherjee PK, Banerjee S, Biswas S, Das B, Kar A, Katiyar CK. Withania somnifera (L.) Dunal - Modern perspectives of an ancient Rasayana from Ayurveda. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113157. [PMID: 32783987 DOI: 10.1016/j.jep.2020.113157] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/25/2019] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal, commonly known as Ashwagandha, is an important medicinal plant that has been used in Ayurvedic and indigenous medicine for more than 3000 years. According to Charaka Samhita, Susruta Samhita and other ancient texts, Ashwagandha is known as Balya (increases strength), Brusya (sexual performance enhancer), vajikari (spermatogenic), Kamarupini (libido-enhancing), Pustida (nourishing). AIM OF THE REVIEW This review article documented and critically assessed W. somnifera regarding its ethnopharmacology, traditional use, botanical description, phytochemicals present, pharmacological activities, clinical trials, and marketed formulations. MATERIALS AND METHODS The sources of information used in the study are traditional Ayurvedic books like Charaka Samhita, Susruta Samhita, Astanga Hridaya etc, government reports, dissertations, books, research articles and databases like Science-Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, and ACS Publications on Ashwagandha and Withania somnifera (L.) Dunal. RESULTS Traditional uses of Ashwagandha in Ayurveda are very prominent in several texts where formulations with various dosage forms have been mentioned in Charaka Samhita, Susruta Samhita, Astanga Hridaya, different nighantus etc. The drugs were identified based on their composition containing Ashwagandha as one of the major ingredients and their medicinal uses. Phytochemical studies on W. somnifera revealed the presence of important chemical constituents such as flavonoids, phenolic acids, alkaloids, saponins, tannins, and withanolides. The phytochemicals showed various pharmacological activities like anti-cancer, immunomodulatory, cardioprotective, neuroprotective, anti-aging, anti-stress/adaptogenic and anti-diabetic. Various clinical trials show that the plant extract and its bioactive compounds are used in the prevention and treatment of many diseases, such as arthritis, impotence, amnesia, anxiety, cancer, neurodegenerative and cardiovascular diseases, and others. CONCLUSIONS Pharmacological data reviewed here revealed that W. somnifera is a potential source for the treatment of a wide range of diseases especially anxiety and other CNS disorders. From its ancient use to its modern application it has been proven to be non-toxic and effective clinically for human health and wellness. W. somnifera based herbal formulation has been marketed in the form of supplement, extract, capsule, powder etc. This review will be helpful to correlate the mechanism of action with the phytochemical profile of this well-known plant from Ayurveda.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India; Institute of Bioresources and Sustainable Development, A National Institute Under Dept. of Biotechnology, Govt. of India, Imphal, 795004, India.
| | - Subhadip Banerjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Sayan Biswas
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - C K Katiyar
- Health Care Division, Emami Limited 13, BT Road, Kolkata, 700056, India.
| |
Collapse
|
22
|
The 4R's Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010103. [PMID: 33375691 PMCID: PMC7796021 DOI: 10.3390/ijerph18010103] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/05/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
Post-exercise recovery is a broad term that refers to the restoration of training capacity. After training or competition, there is fatigue accumulation and a reduction in sports performance. In the hours and days following training, the body recovers and performance is expected to return to normal or improve. ScienceDirect, PubMed/MEDLINE, and Google Scholar databases were reviewed to identify studies and position declarations examining the relationship between nutrition and sports recovery. As an evidence-based framework, a 4R’s approach to optimizing post-exercise recovery was identified: (i) Rehydration—a fundamental process that will depend on the athlete, environment and sports event; (ii) Refuel—the consumption of carbohydrates is not only important to replenish the glycogen reserves but also to contribute to the energy requirements for the immune system and tissue reparation. Several bioengineered carbohydrates were discussed but further research is needed; (iii) Repair—post-exercise ingestion of high-quality protein and creatine monohydrate benefit the tissue growth and repair; and (iv) Rest—pre-sleep nutrition has a restorative effect that facilitates the recovery of the musculoskeletal, endocrine, immune, and nervous systems. Nutritional consultancy based on the 4R’s is important for the wise stewardship of the hydration, feeding, and supplementation strategies to achieve a timely recovery.
Collapse
|
23
|
Schoenfeld BJ, Alto A, Grgic J, Tinsley G, Haun CT, Campbell BI, Escalante G, Sonmez GT, Cote G, Francis A, Trexler ET. Alterations in Body Composition, Resting Metabolic Rate, Muscular Strength, and Eating Behavior in Response to Natural Bodybuilding Competition Preparation: A Case Study. J Strength Cond Res 2020; 34:3124-3138. [PMID: 33105363 DOI: 10.1519/jsc.0000000000003816] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Schoenfeld, BJ, Alto, A, Grgic, J, Tinsley, G, Haun, CT, Campbell, BI, Escalante, G, Sonmez, GT, Cote, G, Francis, A, and Trexler, ET. Alterations in body composition, resting metabolic rate, muscular strength, and eating behavior in response to natural bodybuilding competition preparation: A case study. J Strength Cond Res 34(11): 3124-3138, 2020-We carried out a prospective case study in a high-level amateur natural male bodybuilder throughout preparation for 4 competitions and during the ensuing postcontest recovery period. Laboratory testing was conducted monthly over a 1-year period, which included the following assessments: B-mode ultrasound evaluation of muscle thickness (MT), multifrequency bioelectrical impedance analysis, blood pressure and heart rate assessment, resting metabolic rate via indirect calorimetry, skinfold testing, vertical jump height, isometric lower-body strength testing, and a 3-factor eating questionnaire. Blood work (including testosterone, thyroid hormone, sex hormone binding globulin, glomerular filtration rate, blood urea nitrogen, aspartate aminotransferase, alanine aminotransferase, white blood count, albumin to globulin ratio, and lipoprotein A) was obtained separately from an outside laboratory at 4 time points. We also assessed the effectiveness of a carbohydrate (carb) deplete and carb load peaking strategy employed immediately before competition. The subject employed a high-volume, high-frequency, whole-body training program throughout the study period. Average daily nutritional intakes ranged from 1,953 to 3,415 kcal: 104-386 g carb; 253-263 g protein, and; 57-95 g lipid. Body fat was reduced to very low levels (∼5%) immediately before competition, but this corresponded with a loss of lean mass. Alterations in metabolism, hormonal status, explosive strength, and psychological aspects of eating were observed during precontest preparation; however, all of these variables recovered quickly postcompetition. The implementation of a carb depleteand carb load peaking strategy acutely increased MT and thus may be a viable precontest approach to maximize muscular aesthetics.
Collapse
Affiliation(s)
| | - Andrew Alto
- Department of Health Sciences, CUNY Lehman College, Bronx, New York
| | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Grant Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | | | - Bill I Campbell
- Exercise Science Program, University of South Florida, Tampa, Florida
| | - Guillermo Escalante
- California State University, San Bernardino, San Bernardino, California; and
| | - Gul T Sonmez
- Department of Health Sciences, CUNY Lehman College, Bronx, New York
| | - Gilda Cote
- Department of Health Sciences, CUNY Lehman College, Bronx, New York
| | - Aston Francis
- Department of Health Sciences, CUNY Lehman College, Bronx, New York
| | | |
Collapse
|
24
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
25
|
Tandon N, Yadav SS. Safety and clinical effectiveness of Withania Somnifera (Linn.) Dunal root in human ailments. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112768. [PMID: 32201301 DOI: 10.1016/j.jep.2020.112768] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/02/2019] [Revised: 01/01/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera popularly known as Aswagandha or Indian Ginseng/Poison Gooseberry have thousands years of history of use in Indian traditional medicine. Besides, finding place root of the plant as Indian Ginseng, Ayurveda also uses root of this plant as general health tonic, adaptogenic, nootropic, immunomodulatory etc. With its widespread and growing use, it becomes prudent to scientifically evaluate and document both the efficacy and safety of this plant in humans. AIM OF THE STUDY Aswagnadha root is rapidly gaining popularity abroad for use as medicine. Current article attempts to primarily review the human efficacy and safety of Aswagandha generated through clinical trials. METHODS A systematic search both for indexed and non-indexed literature was made for W. somnifera using various search engines and databases and the details of research articles pertaining to all clinical trials/human studies, animal studies addressing safety issues of CNS, CVS, general toxicity, mutagenicity, genotoxicity, reproductive safety and herb-drug interactions were reviewed and compiled comprehensively from full texts. RESULTS A total of 69 (39 pre-clinical and 30 clinical) studies documenting efficacy and safety aspects were identified and the desired information of these studies is comprehensively presented in this review. Retrieved thirty(30) human studies demonstrated reasonable efficacy of root preparations in subclinical hypothyroidism (1), schizophrenia (3), chronic stress (2), insomnia (2), anxiety (1), memory and cognitive improvement (2), obsessive-compulsive disorder (1), rheumatoid arthritis (2), type-2 diabetes (2), male infertility (6), fertility promotion activity in females (1), adaptogenic (3), growth promoter in children (3) and chemotherapy adjuvant (1). Reasonable safety of root preparations of Aswagandha has been established by these retrieved 30 human trials. No serious adverse events or any changes in haematological, biochemical or vital parameters were reported in these human studies. Only mild and mainly transient type adverse events of somnolence, epigastric pain/discomfort and loose stools were reported as most common (>5%); and giddiness, drowsiness, hallucinogenic, vertigo, nasal congestion (rhinitis), cough, cold, decreased appetite, nausea, constipation, dry mouth, hyperactivity, nocturnal cramps, blurring of vision, hyperacidity, skin rash and weight gain were reported as less common adverse events. Pre-clinical chronic toxicity studies conducted up to 8 months also found root extracts to be safe. No mutagenicity or genotoxicity was reported for the root; only mild CNS depression and increase in thyroxine (T4) levels were reported with rootby some studies. Further, there was no in vitro and in vivo inhibition seen for CYP3A4 and CYP2D6, the two major hepatic drug metabolizing enzymes. CONCLUSION Root of the Ayurvedic drug W. somnifera (Aswagandha) appears a promising safe and effective traditional medicine for management of schizophrenia, chronic stress, insomnia, anxiety, memory/cognitive enhancement, obsessive-compulsive disorder, rheumatoid arthritis, type-2 diabetes and male infertility, and bears fertility promotion activity in females adaptogenic, growth promoter activity in children and as adjuvant for reduction of fatigue and improvement in quality of life among cancer patients undergoing chemotherapy. Properly designed, randomized-controlled, large-size, prospective trials with standardized preparations are needed to ascertain efficacy of Aswagandha root in previously studied and other new indications.
Collapse
Affiliation(s)
- Neeraj Tandon
- Indian Council of Medical Research, Ansari Nagar, New Delhi, India.
| | | |
Collapse
|
26
|
Lopez HL, Cesareo KR, Raub B, Kedia AW, Sandrock JE, Kerksick CM, Ziegenfuss TN. Effects of Hemp Extract on Markers of Wellness, Stress Resilience, Recovery and Clinical Biomarkers of Safety in Overweight, But Otherwise Healthy Subjects. J Diet Suppl 2020; 17:561-586. [DOI: 10.1080/19390211.2020.1765941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Betsy Raub
- The Center for Applied Health Sciences, Stow, OH, USA
| | | | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | | |
Collapse
|
27
|
Withaninsams A and B: Phenylpropanoid Esters from the Roots of Indian Ginseng (Withania somnifera). PLANTS 2019; 8:plants8120527. [PMID: 31757014 PMCID: PMC6963882 DOI: 10.3390/plants8120527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/30/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Withania somnifera (L.) Dunal (Solanaceae), known as Indian ginseng or ashwagandha, has been used in Indian Ayurveda for the treatment of a variety of disorders, such as diabetes and reproductive and nervous system disorders. It is particularly used as a general health tonic, analgesic, and sedative. As part of continuing projects to discover unique bioactive natural products from medicinal plants, phytochemical investigation of the roots of W. somnifera combined with a liquid chromatography–mass spectrometry (LC/MS)-based analysis has led to the isolation of two novel phenylpropanoid esters, Withaninsams A (1) and B (2), as an inseparable mixture, along with three known phenolic compounds (3, 4, and 6) and a pyrazole alkaloid (5). The structures of the new compounds were elucidated using a combination of spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HR-ESIMS). Withaninsams A (1) and B (2) are phenylpropanoid esters that contain a side chain, 4-methyl-1,4-pentanediol unit. To the best of our knowledge, the present study is the first to report on phenylpropanoid esters with 4-methyl-1,4-pentanediol unit. The anti-inflammatory activity of the isolated compounds (1–6) was evaluated by determining their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, where compound 3 inhibited LPS-induced NO production (IC50 = 33.3 μM) and TNF-α production, a pro-inflammatory cytokine (IC50 = 40.9 μM). The anti-inflammatory mechanism through the inhibition of transcriptional iNOS protein expression was confirmed by western blotting experiments for the active compound 3, which showed decreased iNOS protein expression.
Collapse
|
28
|
Dutta R, Khalil R, Green R, Mohapatra SS, Mohapatra S. Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. Int J Mol Sci 2019; 20:ijms20215310. [PMID: 31731424 PMCID: PMC6862083 DOI: 10.3390/ijms20215310] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Ashwagandha (Withania Somnifera, WS), belonging to the family Solanaceae, is an Ayurvedic herb known worldwide for its numerous beneficial health activities since ancient times. This medicinal plant provides benefits against many human illnesses such as epilepsy, depression, arthritis, diabetes, and palliative effects such as analgesic, rejuvenating, regenerating, and growth-promoting effects. Several clinical trials of the different parts of the herb have demonstrated safety in patients suffering from these diseases. In the last two decades, an active component of Withaferin A (WFA) has shown tremendous cytotoxic activity suggesting its potential as an anti-carcinogenic agent in treatment of several cancers. In spite of enormous progress, a thorough elaboration of the proposed mechanism and mode of action is absent. Herein, we provide a comprehensive review of the properties of WS extracts (WSE) containing complex mixtures of diverse components including WFA, which have shown inhibitory properties against many cancers, (breast, colon, prostate, colon, ovarian, lung, brain), along with their mechanism of actions and pathways involved.
Collapse
Affiliation(s)
- Rinku Dutta
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Roukiah Khalil
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Shyam S Mohapatra
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- James A Haley VA Hospital, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-4127
| |
Collapse
|