1
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
2
|
Li Q, Wang J. The Effect of Protein Nutritional Support on Inflammatory Bowel Disease and Its Potential Mechanisms. Nutrients 2024; 16:2302. [PMID: 39064745 PMCID: PMC11280054 DOI: 10.3390/nu16142302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a complex chronic inflammatory bowel disorder that includes Crohn's disease (CD) and Ulcerative Colitis (UC), has become a globally increasing health concern. Nutrition, as an important factor influencing the occurrence and development of IBD, has attracted more and more attention. As the most important nutrient, protein can not only provide energy and nutrition required by patients, but also help repair damaged intestinal tissue, enhance immunity, and thus alleviate inflammation. Numerous studies have shown that protein nutritional support plays a significant role in the treatment and remission of IBD. This article presents a comprehensive review of the pathogenesis of IBD and analyzes and summarizes the potential mechanisms of protein nutritional support in IBD. Additionally, it provides an overview of the clinical effects of protein nutritional support in IBD and its impact on clinical complications. Research findings reveal that protein nutritional support demonstrates significant benefits in improving clinical symptoms, reducing the risk of complications, and improving quality of life in IBD patients. Therefore, protein nutritional support is expected to provide a new approach for the treatment of IBD.
Collapse
Affiliation(s)
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| |
Collapse
|
3
|
Xu D, Peng Z, Li Y, Hou Q, Peng Y, Liu X. Progress and Clinical Applications of Crohn's Disease Exclusion Diet in Crohn's Disease. Gut Liver 2024; 18:404-413. [PMID: 37842728 PMCID: PMC11096903 DOI: 10.5009/gnl230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 10/17/2023] Open
Abstract
Crohn's disease is a chronic intestinal inflammatory disorder of unknown etiology. Although the pharmacotherapies for Crohn's disease are constantly updating, nutritional support and adjuvant therapies have recently gained more attention. Due to advancements in clinical nutrition, various clinical nutritional therapies are used to treat Crohn's disease. Doctors treating inflammatory bowel disease can now offer several diets with more flexibility than ever. The Crohn's disease exclusion diet is a widely used diet for patients with active Crohn's disease. The Crohn's disease exclusion diet requires both exclusion and inclusion. Periodic exclusion of harmful foods and inclusion of wholesome foods gradually improves a patient's nutritional status. This article reviews the Crohn's disease exclusion diet, including its structure, mechanisms, research findings, and clinical applications.
Collapse
Affiliation(s)
- Duo Xu
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Ziheng Peng
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Yong Li
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Qian Hou
- Departments of Clinical Nutrition, Xiangya Hospital of Central South University, Changsha, China
| | - Yu Peng
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Xiaowei Liu
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
4
|
Tian QB, Chen SJ, Xiao LJ, Xie JQ, Zhao HB, Zhang X. Potential effects of nutrition-induced alteration of gut microbiota on inflammatory bowel disease: A review. J Dig Dis 2024; 25:78-90. [PMID: 38450936 DOI: 10.1111/1751-2980.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Inflammatory bowel disease (IBD), mainly comprising ulcerative colitis and Crohn's disease, is a group of gradually progressive diseases bringing significant mental anguish and imposes serious economic burdens. Interplay of genetic, environmental, and immunological factors have been implicated in its pathogenesis. Nutrients, as crucial environmental determinants, mainly encompassing carbohydrates, fats, proteins, and micronutrients, are closely related to the pathogenesis and development of IBD. Nutrition is essential for maintaining the dynamic balance of intestinal eco-environments to ensure intestinal barrier and immune homeostasis, while this balance can be disrupted easily by maladjusted nutrition. Research has firmly established that nutrition has the potential to shape the composition and function of gut microbiota to affect the disease course. Unhealthy diet and eating disorders lead to gut microbiota dysbiosis and further destroy the function of intestinal barrier such as the disruption of membrane integrity and increased permeability, thereby triggering intestinal inflammation. Notably, appropriate nutritional interventions, such as the Mediterranean diet, can positively modulate intestinal microecology, which may provide a promising strategy for future IBD prevention. In this review, we provide insights into the interplay between nutrition and gut microbiota and its effects on IBD and present some previously overlooked lines of evidence regarding the role of derived metabolites in IBD processes, such as trimethylamine N-oxide and imidazole propionate. Furthermore, we provide some insights into reducing the risk of onset and exacerbation of IBD by modifying nutrition and discuss several outstanding challenges and opportunities for future study.
Collapse
Affiliation(s)
- Qi Bai Tian
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Shui Jiao Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li Jun Xiao
- Guangdong Corps Hospital of Chinese People's Armed Police Forces, Guangzhou, Guangdong Province, China
| | - Jia Qi Xie
- Hunan Food and Drug Vocational College, Changsha, Hunan Province, China
| | - Hong Bo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan Province, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Aliabadi M, Saghebjoo M, Yakhchali B, Shariati V. Interaction between high-intensity interval training and high-protein diet on gut microbiota composition and body weight in obese male rats. Appl Physiol Nutr Metab 2023; 48:808-828. [PMID: 37642210 DOI: 10.1139/apnm-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Diet and exercise are two critical factors that regulate gut microbiota, affecting weight management. The present study investigated the effect of 10 weeks of high-intensity interval training (HIIT) and a high-protein diet (HPD) on gut microbiota composition and body weight changes in obese male Wistar rats. Forty obese rats were randomly divided into five groups, including HPD, HIIT + HPD, HIIT + high-fat diet (HFD) (continuing HFD during intervention), obese control 1 (continuing HFD during intervention), obese control 2 (cutting off HFD at the beginning of the intervention and continuing standard diet), and eight non-obese Wistar rats as a non-obese control (NOC) group (standard diet). Microbial community composition and diversity analysis by sequencing 16S rRNA genes derived from the fecal samples, body weight, and Lee index were assessed. The body weight and Lee index in the NOC, HIIT + HFD, HPD, and HIIT + HPD groups were significantly lower than that in the OC1 and OC2 groups along with the lower body weight and Lee index in the HPD and HIIT + HPD groups compared with the HIIT + HFD group. Also, HFD consumption and switching from HFD to a standard diet or HPD increased gut microbiota dysbiosis. Furthermore, HIIT along with HFD increased the adverse effects of HFD on gut microbiota, while the HIIT + HPD increased microbial richness, improved gut microbiota dysbiosis, and changed rats' phenotype to lean. It appears that HFD discontinuation without doing HIIT does not improve gut microbiota dysbiosis. Also, the HIIT + HFD, HPD, and HIIT + HPD slow down HFD-induced weight gain, but HIIT + HPD is a more reliable strategy for weight management due to its beneficial effects on gut microbiota composition.
Collapse
Affiliation(s)
- Mohsen Aliabadi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Marziyeh Saghebjoo
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Bagher Yakhchali
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Vahid Shariati
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
6
|
Lan A, Guerbette T, Andriamihaja M, Magnin B, Bordet M, Ferron PJ, Burel A, Viel R, Fromenty B, Corlu A, Blachier F, Bouguen G. Mitochondrial remodeling and energy metabolism adaptations in colonic crypts during spontaneous epithelial repair after colitis induction in mice. Free Radic Biol Med 2023; 205:224-233. [PMID: 37315703 DOI: 10.1016/j.freeradbiomed.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Mucosal healing has emerged as a therapeutic goal to achieve lasting clinical remission in ulcerative colitis. Intestinal repair in response to inflammation presumably requires higher energy supplies for the restoration of intestinal barrier and physiological functions. However, epithelial energy metabolism during intestinal mucosal healing has been little studied, whereas inflammation-induced alterations have been reported in the main energy production site, the mitochondria. The aim of the present work was to assess the involvement of mitochondrial activity and the events influencing their function during spontaneous epithelial repair after colitis induction in mouse colonic crypts. The results obtained show adaptations of colonocyte metabolism during colitis to ensure maximal ATP production for supporting energetic demand by both oxidative phosphorylation and glycolysis in a context of decreased mitochondrial biogenesis and through mitochondrial function restoration during colon epithelial repair. In parallel, colitis-induced mitochondrial ROS production in colonic epithelial cells was rapidly associated with transient expression of GSH-related enzymes. Mitochondrial respiration in colonic crypts was markedly increased during both inflammatory and recovery phases despite decreased expression of several mitochondrial respiratory chain complex subunits after colitis induction. Rapid induction of mitochondrial fusion was associated with mitochondrial function restoration. Finally, in contrast with the kinetics expression of genes involved in mitochondrial oxidative metabolism and in glycolysis, the expression of glutaminase was markedly reduced in the colonic crypts both during colitis and repair phases. Overall, our data suggest that the epithelial repair after colitis induction is characterized by a rapid and transient increased capacity for mitochondrial ATP production in a context of apparent restoration of mitochondrial biogenesis and metabolic reorientation of energy production. The potential implication of energy production adaptations within colonic crypts to sustain mucosal healing in a context of altered fuel supply is discussed.
Collapse
Affiliation(s)
- Annaïg Lan
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France; Inserm, Univ Rennes, INRAE, UMR1317 Nutrition Metabolisms and Cancer (NuMeCan), 35000, Rennes, France.
| | - Thomas Guerbette
- Inserm, Univ Rennes, INRAE, UMR1317 Nutrition Metabolisms and Cancer (NuMeCan), 35000, Rennes, France
| | | | - Benjamin Magnin
- Inserm, Univ Rennes, INRAE, UMR1317 Nutrition Metabolisms and Cancer (NuMeCan), 35000, Rennes, France
| | - Martin Bordet
- Inserm, Univ Rennes, INRAE, UMR1317 Nutrition Metabolisms and Cancer (NuMeCan), 35000, Rennes, France
| | - Pierre-Jean Ferron
- Inserm, Univ Rennes, INRAE, UMR1317 Nutrition Metabolisms and Cancer (NuMeCan), 35000, Rennes, France
| | - Agnès Burel
- Biosit-Biogenouest, Université Rennes, 35000, Rennes, France
| | - Roselyne Viel
- Biosit-Biogenouest, Université Rennes, 35000, Rennes, France
| | - Bernard Fromenty
- Inserm, Univ Rennes, INRAE, UMR1317 Nutrition Metabolisms and Cancer (NuMeCan), 35000, Rennes, France
| | - Anne Corlu
- Inserm, Univ Rennes, INRAE, UMR1317 Nutrition Metabolisms and Cancer (NuMeCan), 35000, Rennes, France
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Guillaume Bouguen
- Inserm, Univ Rennes, INRAE, UMR1317 Nutrition Metabolisms and Cancer (NuMeCan), 35000, Rennes, France; Service de Gastro-Entérologie, CHU Rennes, 35000, Rennes, France
| |
Collapse
|
7
|
Li S, Xu K, Cheng Y, Chen L, Yi A, Xiao Z, Zhao X, Chen M, Tian Y, Meng W, Tang Z, Zhou S, Ruan G, Wei Y. The role of complex interactions between the intestinal flora and host in regulating intestinal homeostasis and inflammatory bowel disease. Front Microbiol 2023; 14:1188455. [PMID: 37389342 PMCID: PMC10303177 DOI: 10.3389/fmicb.2023.1188455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
Pharmacological treatment of inflammatory bowel disease (IBD) is inefficient and difficult to discontinue appropriately, and enterobacterial interactions are expected to provide a new target for the treatment of IBD. We collected recent studies on the enterobacterial interactions among the host, enterobacteria, and their metabolite products and discuss potential therapeutic options. Intestinal flora interactions in IBD are affected in the reduced bacterial diversity, impact the immune system and are influenced by multiple factors such as host genetics and diet. Enterobacterial metabolites such as SCFAs, bile acids, and tryptophan also play important roles in enterobacterial interactions, especially in the progression of IBD. Therapeutically, a wide range of sources of probiotics and prebiotics exhibit potential therapeutic benefit in IBD through enterobacterial interactions, and some have gained wide recognition as adjuvant drugs. Different dietary patterns and foods, especially functional foods, are novel therapeutic modalities that distinguish pro-and prebiotics from traditional medications. Combined studies with food science may significantly improve the therapeutic experience of patients with IBD. In this review, we provide a brief overview of the role of enterobacteria and their metabolites in enterobacterial interactions, discuss the advantages and disadvantages of the potential therapeutic options derived from such metabolites, and postulate directions for further research.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Kan Xu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailin Yi
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuefei Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Minjia Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Meng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zongyuan Tang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuhong Zhou
- Department of Laboratory Animal Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
8
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
9
|
Gill PA, Inniss S, Kumagai T, Rahman FZ, Smith AM. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front Immunol 2022; 13:866059. [PMID: 35450067 PMCID: PMC9016115 DOI: 10.3389/fimmu.2022.866059] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Diet is an important lifestyle factor that is known to contribute in the development of human disease. It is well established that poor diet plays an active role in exacerbating metabolic diseases, such as obesity, diabetes and hypertension. Our understanding of how the immune system drives chronic inflammation and disease pathogenesis has evolved in recent years. However, the contribution of dietary factors to inflammatory conditions such as inflammatory bowel disease, multiple sclerosis and arthritis remain poorly defined. A western diet has been associated as pro-inflammatory, in contrast to traditional dietary patterns that are associated as being anti-inflammatory. This may be due to direct effects of nutrients on immune cell function. Diet may also affect the composition and function of gut microbiota, which consequently affects immunity. In animal models of inflammatory disease, diet may modulate inflammation in the gastrointestinal tract and in other peripheral sites. Despite limitations of animal models, there is now emerging evidence to show that anti-inflammatory effects of diet may translate to human gastrointestinal and inflammatory diseases. However, appropriately designed, larger clinical studies must be conducted to confirm the therapeutic benefit of dietary therapy.
Collapse
Affiliation(s)
- Paul A Gill
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Saskia Inniss
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Tomoko Kumagai
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Farooq Z Rahman
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom.,Department of Gastroenterology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Andrew M Smith
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
10
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Zhao Y, Chen L, Chen L, Huang J, Chen S, Yu Z. Exploration of the Potential Relationship Between Gut Microbiota Remodeling Under the Influence of High-Protein Diet and Crohn's Disease. Front Microbiol 2022; 13:831176. [PMID: 35308389 PMCID: PMC8927681 DOI: 10.3389/fmicb.2022.831176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Diet and gut microbiota are both important factors in the pathogenesis of Crohn’s disease, and changes in diet can lead to alteration in gut microbiome. However, there is still insufficient exploration on interaction within the gut microbiota under high-protein diet (HPD) intervention. We analyzed the gut microbial network and marker taxa from patients with Crohn’s disease in public database (GMrepo, https://gmrepo.humangut.info) combined with investigation of the changes of composition and function of intestinal microbiome in mice fed on HPD by metagenomic sequencing. The results showed that there was an indirect negative correlation between Escherichia coli and Lachnospiraceae in patients with Crohn’s disease, and Escherichia coli was a marker for both Crohn’s disease and HPD intervention. Besides, enriched HH_1414 (one of the orthologs in eggNOG) related to tryptophan metabolism was from Helicobacter, whereas reduced orthologs (OGs) mainly contributed by Lachnospiraceae after HPD intervention. Our research indicates that some compositional changes in gut microbiota after HPD intervention are consistent with those in patients with Crohn’s disease, providing insights into potential impact of altered gut microbes under HPD on Crohn’s disease.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lulu Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
12
|
Hou Y, Wang SF, Zhou K, Dai SX. Comparison and recommendation of dietary patterns based on nutrients for Eastern and Western patients with inflammatory bowel disease. Front Nutr 2022; 9:1066252. [PMID: 36817063 PMCID: PMC9928567 DOI: 10.3389/fnut.2022.1066252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Inflammatory bowel disease (IBD), a non-specific chronic idiopathic inflammatory condition of the digestive system, requires lifelong treatment in which drugs are the mainstay, along with surgery when necessary. In adjuvant therapies, the diet is considered to be an essential, controllable, and economical component. However, the majority of recent nutrition research has focused on the general effects of nutrients on IBD, with little attention given to the advantages and negative aspects of individual foods and dietary combinations. To cover these shortcomings, we surveyed the benefits and drawbacks of typical foods and their chemical compositions on intestinal pathophysiology by comparing nutrients existing in the foods in Eastern and Western countries. Moreover, for Eastern and Western patients with IBD, we innovatively propose a 3-step dietary recommendation based on modified customary eating habits, including lowering the triggering foods, modifying dietary advice to control disease progression, and improving surgery prognosis.
Collapse
Affiliation(s)
- Yue Hou
- Department of Gastroenterology, (Guangdong Provincial Geriatrics Institute), National Key Clinical Specialty, Guangdong Provincial People’s Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Sai-Feng Wang
- Department of Gastroenterology, (Guangdong Provincial Geriatrics Institute), National Key Clinical Specialty, Guangdong Provincial People’s Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zhou
- Department of Obstetrics and Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shi-Xue Dai
- Department of Gastroenterology, (Guangdong Provincial Geriatrics Institute), National Key Clinical Specialty, Guangdong Provincial People’s Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People’s Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Shi-Xue Dai,
| |
Collapse
|
13
|
Chen L, Wang J, Yi J, Liu Y, Yu Z, Chen S, Liu X. Increased mucin-degrading bacteria by high protein diet leads to thinner mucus layer and aggravates experimental colitis. J Gastroenterol Hepatol 2021; 36:2864-2874. [PMID: 34050560 DOI: 10.1111/jgh.15562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Westernized high-fat diet increases the risk for inflammatory bowel diseases (IBDs), yet with insufficient understanding of the role of high-protein diet. We aimed to identify the effect of high-protein diets from different dietary proteins (casein, whey protein, soy protein) on experimental colitis and its impact on microbiota, structure and function of colonic mucus layer. METHODS Female BALB/c mice were fed by standard diet, high-casein diet (HCD), high whey protein diet or high soy protein diet for 4 weeks. The susceptibility of dextran sulfate sodium (DSS)-induced colitis in mice and thickness of colonic mucus layer were compared after different dietary interventions, associated with the identification of the reversal effect of broad-spectrum antibiotic intervention (0.5 g/L of vancomycin and 1 g/L of neomycin sulfate, metronidazole and ampicillin in drinking water). Further analysis was performed on the synthesis of mucin, microbiota and sialidase involved in degradation of mucus layer. RESULTS High-protein diets aggravated acute DSS-induced colitis independent of protein composition, while broad-spectrum antibiotics reversed this effect. HCD significantly altered the composition of bacteria in the colonic mucus layer, especially Bacteroides thetaiotaomicron and total mucin-degrading bacteria; besides, it increased sialidase concentration and reduced the thickness of mucus layer. However, it exhibited no significant effect on the synthesis of Muc2. Broad-spectrum antibiotics decreased the abundance of mucin-degrading bacteria and sialidase concentration while increased the thickness of mucus layer. CONCLUSION High-protein diet shifts microbial composition and thickness of colonic mucus layer, leading to the aggravation of acute DSS-induced colitis.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Jingyan Wang
- Department of Microbiology, School of Basic Medical Science Central South University, Changsha, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Yajun Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science Central South University, Changsha, China
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| |
Collapse
|
14
|
Li DP, Cui M, Tan F, Liu XY, Yao P. High Red Meat Intake Exacerbates Dextran Sulfate-Induced Colitis by Altering Gut Microbiota in Mice. Front Nutr 2021; 8:646819. [PMID: 34355008 PMCID: PMC8329097 DOI: 10.3389/fnut.2021.646819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious hazard to public health, but the precise etiology of the disease is unclear. High intake of red meat diet is closely related to the occurrence of IBD. In this study, we investigated whether the high intake of red meat can increase the sensitivity of colitis and the underlying mechanism. Mice were fed with different levels of red meat for 8 weeks and then the colonic contents were analyzed by 16S rRNA sequencing. Then 3% dextran sulfate sodium was used to induce colitis in mice. We observed the severity of colitis and inflammatory cytokines. We found that high-dose red meat caused intestinal microbiota disorder, reduced the relative abundance of Lachnospiraceae_NK4A136_group, Faecalibaculum, Blautia and Dubosiella, and increased the relative abundance of Bacteroides and Alistipes. This in turn leads to an increase in colitis and inflammatory cytokine secretion. Moreover, we found that high red meat intake impaired the colon barrier integrity and decreased the expression of ZO-1, claudin, and occludin. We also found high red meat intake induced the production of more inflammatory cytokines such as IL-1β, TNF-α, IL-17, and IL-6 and inflammatory inducible enzymes such as COX-2 and iNOS in dextran sulfate sodium-induced colitis. These results suggest that we should optimize the diet and reduce the intake of red meat to prevent the occurrence of IBD.
Collapse
Affiliation(s)
- Dan-Ping Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Min Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Fang Tan
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xiao-Yan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ping Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
15
|
Yu L, Zhao D, Nian Y, Li C. Casein-fed mice showed faster recovery from DSS-induced colitis than chicken-protein-fed mice. Food Funct 2021; 12:5806-5820. [PMID: 34047734 DOI: 10.1039/d1fo00659b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to examine whether casein- and chicken protein-fed mice had different capacities of recovering from dextran sulfate sodium (DSS)-induced colitis. Mice were fed a chicken protein or casein diet for 14 days, which was followed by 7-day DSS treatment and then a 6-day recovery period by gavage of Akkermansia muciniphila (A. muciniphila). Compared with the chicken protein diet, the casein diet increased the relative abundance of beneficial gut bacteria, whereas DSS treatment did not induce significant differences in physiological and pathological indicators between the diet groups. During the recovery period, gavage of A. muciniphila alleviated colitis symptoms by decreasing the score of the disease activity index (DAI), spleen weight, and TNF-α mRNA level but increasing the mucus thickness and MUC2 mRNA level. Several genera, including the Ruminococcaceae NK4A214 group, Bifidobacterium, Roseburia, Ruminiclostridium and Lachnospiraceae NK4A136 group, may play a critical role. In addition, the casein diet helped DSS-treated mice recover faster from colitis, in terms of their body weight, colon length and histological score, probably due to its higher digestibility.
Collapse
Affiliation(s)
- Lili Yu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Yingqun Nian
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| |
Collapse
|
16
|
Tan J, Ni D, Ribeiro RV, Pinget GV, Macia L. How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients 2021; 13:823. [PMID: 33801480 PMCID: PMC7999246 DOI: 10.3390/nu13030823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cell survival, proliferation and function are energy-demanding processes, fuelled by different metabolic pathways. Immune cells like any other cells will adapt their energy production to their function with specific metabolic pathways characteristic of resting, inflammatory or anti-inflammatory cells. This concept of immunometabolism is revolutionising the field of immunology, opening the gates for novel therapeutic approaches aimed at altering immune responses through immune metabolic manipulations. The first part of this review will give an extensive overview on the metabolic pathways used by immune cells. Diet is a major source of energy, providing substrates to fuel these different metabolic pathways. Protein, lipid and carbohydrate composition as well as food additives can thus shape the immune response particularly in the gut, the first immune point of contact with food antigens and gastrointestinal tract pathogens. How diet composition might affect gut immunometabolism and its impact on diseases will also be discussed. Finally, the food ingested by the host is also a source of energy for the micro-organisms inhabiting the gut lumen particularly in the colon. The by-products released through the processing of specific nutrients by gut bacteria also influence immune cell activity and differentiation. How bacterial metabolites influence gut immunometabolism will be covered in the third part of this review. This notion of immunometabolism and immune function is recent and a deeper understanding of how lifestyle might influence gut immunometabolism is key to prevent or treat diseases.
Collapse
Affiliation(s)
- Jian Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rosilene V. Ribeiro
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gabriela V. Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Liu C, Wu H, Fan H. Progress in understanding of mechanism of dietary therapy for ulcerative colitis with regard to intestinal microbiota. Shijie Huaren Xiaohua Zazhi 2021; 29:146-151. [DOI: 10.11569/wcjd.v29.i3.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of ulcerative colitis is closely related to the complex interaction between heredity, environment, and intestinal microbiota. Intestinal dysbiosis is not only the cause of ulcerative colitis, but also the pathological result of ulcerative colitis. Dietary therapies have been found to modulate the microbiota to alter the effects of environmental factors on ulcerative colitis. Dietary pattern is related to the pathogenesis, development, and prognosis of ulcerative colitis, and the role of diet in ulcerative colitis has attracted more and more attention. This article reviews the mechanisms by which dietary therapy treats ulcerative colitis with regard to regulating the brain-gut functional axis, regulating the immune function, and protecting the intestinal mucosal barrier by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Chang Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
19
|
Vidal-Lletjós S, Khodorova NV, Piscuc M, Gaudichon C, Blachier F, Lan A. Tissue-specific effect of colitis on protein synthesis in mice: impact of the dietary protein content. Eur J Nutr 2020; 60:1669-1677. [PMID: 32808061 DOI: 10.1007/s00394-020-02365-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE Inflammatory bowel diseases are associated with an increase in the whole-body protein turnover, thus possibly requiring an additional supply of dietary proteins. Our aim was to evaluate whether increasing dietary protein content could alleviate protein metabolism alterations in the injured splanchnic and peripheral tissues during colitis and spontaneous mucosal healing. METHODS Mice with acute chemically induced colitis received either a normal protein (P14, 14% as energy), a moderately (P30, 30%) and a very high-protein (P53, 55%) diets. At different times after the challenge, protein synthesis rate was determined in tissues using a flooding dose of 13C valine. RESULTS Colon, liver and spleen protein synthesis rates were significantly increased after colitis induction, while being decreased in the caecum, kidneys and muscle. Contrastingly to the two other diets, P30 diet consumption allowed faster recovery of the animals, and this coincided with a rapid resaturation of the initial protein synthesis in the colon. In the other tissues studied, the high-protein diets show different effects depending on the dietary protein content consumed and on the examined tissues, with a general trend of P53 in lowering anabolism rates. CONCLUSION This study highlights the severe impact of acute colonic inflammation on protein metabolism in different organs. In addition, dietary protein content modulated the recovery of the initial protein synthesis rate in the various tissues following colitis induction. P30 diet consumption notably showed a better ability to alleviate protein metabolism perturbations induced by colitis, that may explain its documented beneficial effect on colon mucosal healing.
Collapse
Affiliation(s)
- Sandra Vidal-Lletjós
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Equipe Apports protéiques et Adaptations Intestinales, 16 rue Claude Bernard, 75005, Paris, France
| | - Nadezda V Khodorova
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Equipe Apports protéiques et Adaptations Intestinales, 16 rue Claude Bernard, 75005, Paris, France
| | - Maria Piscuc
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Equipe Apports protéiques et Adaptations Intestinales, 16 rue Claude Bernard, 75005, Paris, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Equipe Apports protéiques et Adaptations Intestinales, 16 rue Claude Bernard, 75005, Paris, France
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Equipe Apports protéiques et Adaptations Intestinales, 16 rue Claude Bernard, 75005, Paris, France
| | - Annaïg Lan
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Equipe Apports protéiques et Adaptations Intestinales, 16 rue Claude Bernard, 75005, Paris, France.
| |
Collapse
|
20
|
Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective. Nutrients 2020; 12:nu12082285. [PMID: 32751533 PMCID: PMC7468805 DOI: 10.3390/nu12082285] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The continuous population increase of older adults with metabolic diseases may contribute to increased prevalence of sarcopenia and obesity and requires advocacy of optimal nutrition treatments to combat their deleterious outcomes. Sarcopenic obesity, characterized by age-induced skeletal-muscle atrophy and increased adiposity, may accelerate functional decline and increase the risk of disability and mortality. In this review, we explore the influence of dietary protein on the gut microbiome and its impact on sarcopenia and obesity. Given the associations between red meat proteins and altered gut microbiota, a combination of plant and animal-based proteins are deemed favorable for gut microbiota eubiosis and muscle-protein synthesis. Additionally, high-protein diets with elevated essential amino-acid concentrations, alongside increased dietary fiber intake, may promote gut microbiota eubiosis, given the metabolic effects derived from short-chain fatty-acid and branched-chain fatty-acid production. In conclusion, a greater abundance of specific gut bacteria associated with increased satiation, protein synthesis, and overall metabolic health may be driven by protein and fiber consumption. This could counteract the development of sarcopenia and obesity and, therefore, represent a novel approach for dietary recommendations based on the gut microbiota profile. However, more human trials utilizing advanced metabolomic techniques to investigate the microbiome and its relationship with macronutrient intake, especially protein, are warranted.
Collapse
|
21
|
Basson AR, LaSalla A, Lam G, Kulpins D, Moen EL, Sundrud MS, Miyoshi J, Ilic S, Theriault BR, Cominelli F, Rodriguez-Palacios A. Artificial microbiome heterogeneity spurs six practical action themes and examples to increase study power-driven reproducibility. Sci Rep 2020; 10:5039. [PMID: 32193395 PMCID: PMC7081340 DOI: 10.1038/s41598-020-60900-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
With >70,000 yearly publications using mouse data, mouse models represent the best engrained research system to address numerous biological questions across all fields of science. Concerns of poor study and microbiome reproducibility also abound in the literature. Despite the well-known, negative-effects of data clustering on interpretation and study power, it is unclear why scientists often house >4 mice/cage during experiments, instead of ≤2. We hypothesized that this high animal-cage-density practice abounds in published literature because more mice/cage could be perceived as a strategy to reduce housing costs. Among other sources of 'artificial' confounding, including cyclical oscillations of the 'dirty-cage/excrement microbiome', we ranked by priority the heterogeneity of modern husbandry practices/perceptions across three professional organizations that we surveyed in the USA. Data integration (scoping-reviews, professional-surveys, expert-opinion, and 'implementability-score-statistics') identified Six-Actionable Recommendation Themes (SART) as a framework to re-launch emerging protocols and intuitive statistical strategies to use/increase study power. 'Cost-vs-science' discordance was a major aspect explaining heterogeneity, and scientists' reluctance to change. With a 'housing-density cost-calculator-simulator' and fully-annotated statistical examples/code, this themed-framework streamlines the rapid analysis of cage-clustered-data and promotes the use of 'study-power-statistics' to self-monitor the success/reproducibility of basic and translational research. Examples are provided to help scientists document analysis for study power-based sample size estimations using preclinical mouse data to support translational clinical trials, as requested in NIH/similar grants or publications.
Collapse
Affiliation(s)
- Abigail R Basson
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexandria LaSalla
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gretchen Lam
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Danielle Kulpins
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erika L Moen
- Department of Biomedical Data Science, Geisel School of Medicine, The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| | - Mark S Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Sanja Ilic
- Department of Human Sciences and Nutrition, The Ohio State University, Columbus, OH, USA
| | | | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, USA
- Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, USA.
- Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
22
|
Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients 2020; 12:nu12020548. [PMID: 32093202 PMCID: PMC7071363 DOI: 10.3390/nu12020548] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that patients with kidney stone disease, and particularly calcium oxalate nephrolithiasis, exhibit dysbiosis in their fecal and urinary microbiota compared with controls. The alterations of microbiota go far beyond the simple presence and representation of Oxalobacter formigenes, a well-known symbiont exhibiting a marked capacity of degrading dietary oxalate and stimulating oxalate secretion by the gut mucosa. Thus, alterations of the intestinal microbiota may be involved in the pathophysiology of calcium kidney stones. However, the role of nutrition in this gut-kidney axis is still unknown, even if nutritional imbalances, such as poor hydration, high salt, and animal protein intake and reduced fruit and vegetable intake, are well-known risk factors for kidney stones. In this narrative review, we provide an overview of the gut-kidney axis in nephrolithiasis from a nutritional perspective, summarizing the evidence supporting the role of nutrition in the modulation of microbiota composition, and their relevance for the modulation of lithogenic risk.
Collapse
|
23
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:E381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|
24
|
Elajnaf T, Iamartino L, Mesteri I, Müller C, Bassetto M, Manhardt T, Baumgartner-Parzer S, Kallay E, Schepelmann M. Nutritional and Pharmacological Targeting of the Calcium-Sensing Receptor Influences Chemically Induced Colitis in Mice. Nutrients 2019; 11:E3072. [PMID: 31888253 PMCID: PMC6950720 DOI: 10.3390/nu11123072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is the main regulator of extracellular Ca2+ homeostasis. It has diverse functions in different tissues, including the intestines. Intestine-specific knockout of the CaSR renders mice more susceptible to dextran sulphate sodium (DSS)-induced colitis. To test our hypothesis that the CaSR reduces intestinal inflammation, we assessed the effects of nutritional and pharmacological agonists of the CaSR in a colitis model. We treated female Balb/C mice with dietary calcium and protein (nutritional agonists of the CaSR) or pharmacological CaSR modulators (the agonists cinacalcet and GSK3004774, and the antagonist NPS-2143; 10 mg/kg), then induced colitis with DSS. The high-protein diet had a strong pro-inflammatory effect-it shortened the colons (5.3 ± 0.1 cm vs. 6.1 ± 0.2 cm normal diet, p < 0.05), lowered mucin expression and upregulated pro-inflammatory cytokines, such as interferon-γ, (4.2-fold, p < 0.05) compared with the normal diet. Cinacalcet reduced mucin expression, which coincided with an increase in tumor necrosis factor-α (4.4-fold, p < 0.05) and IL-6 (4.9-fold, p < 0.05) in the plasma, compared with vehicle. The CaSR antagonist, NPS-2143, significantly reduced the cumulative inflammation score compared with the vehicle control (35.3 ± 19.1 vs. 21.9 ± 14.3 area under the curve, p < 0.05) and reduced infiltration of inflammatory cells. While dietary modulation of the CaSR had no beneficial effects, pharmacological inhibition of the CaSR may have the potential of a novel add-on therapy in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Taha Elajnaf
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | - Luca Iamartino
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | | | - Christian Müller
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, CF10 3NB Cardiff, UK
- Department of Chemistry, College of Science, Swansea University, SA2 8PP Swansea, UK
| | - Teresa Manhardt
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | | | - Enikö Kallay
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| | - Martin Schepelmann
- Center of Pathophysiology Infectiology and Immunology, Medical University of Vienna, Pathophysiology and Allergy Research, Währinger Gürtel, 18-20, 1090 Vienna, Austria; (T.E.); (L.I.); (C.M.); (T.M.); (M.S.)
| |
Collapse
|
25
|
Diet and Nutrition in IBD-Progress and Gaps. Nutrients 2019; 11:nu11081740. [PMID: 31357648 PMCID: PMC6723079 DOI: 10.3390/nu11081740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
The incidence and prevalence of Inflammatory Bowel Disease (IBD) has rapidly increased worldwide and now is a global disease with some of the highest rates observed in North America [...].
Collapse
|