1
|
Ferreira CSS, Venâncio C, Almeida M, Lopes I, Kille P, Oliveira M. Sub-chronic exposure to paroxetine disrupts ecologically relevant behaviours in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170405. [PMID: 38280602 DOI: 10.1016/j.scitotenv.2024.170405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The functional conservation of important selective serotonin reuptake inhibitor (SSRI) targets in non-target organisms raises concerns about their potential adverse effects on the ecosystems. Although the environmental levels of SSRIs like paroxetine (PAR) have risen, the knowledge regarding the effects of long-term exposure to PAR is limited. This study investigated the impact of sub-chronic exposure (21 days) to two sub-lethal concentrations of PAR (40 and 400 μg/L) on the behaviour of adult zebrafish in different scenarios: basal activity (under dark and light conditions), stress response (evoked by sudden light transitions) and stress response recovery. A new framework was employed for the integrative study of fish's swimming performance based on their innate ability to respond to light shifts. Several swimming-associated parameters (e.g., total swimming distance, time of inactivity, swimming angles) and thigmotaxis were monitored for an integrated analysis in each scenario. Data revealed reduced swimming activity, impaired behavioural response to stress and alterations in stress recovery of PAR-exposed fish. An anxiolytic effect was particularly noticeable in fish basal swimming activity in the dark at 400 μg/L and in the behavioural response to stress (from dark to light) and stress recovery (from light to dark) for organisms exposed to 40 μg/L. The detected PAR-induced behavioural modifications suggest a disruption of brain glucocorticoid signalling that may have implications at the individual level (e.g., changing behavioural responses to predators), with potential repercussions on the population and community levels. Therefore, the applied protocol proved sensitive in detecting behavioural changes induced by PAR.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cátia Venâncio
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mónica Almeida
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Ferreira CSS, Venâncio C, Kille P, Oliveira M. Are early and young life stages of fish affected by paroxetine? A case study with Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165706. [PMID: 37499832 DOI: 10.1016/j.scitotenv.2023.165706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Paroxetine (PAR) is a selective serotonin reuptake inhibitor (SSRI) antidepressant increasingly detected in surface waters worldwide. Its environmental presence raises concerns about the potential detrimental effects on non-target organisms. Thus, this study aimed to increase knowledge on PAR's potential environmental impacts, assessing the effects of commercial formulation (PAR-c) and active ingredient (PAR-a) on fish. Therefore, the short-term exposure effects of PAR-c and PAR-a were assessed on zebrafish (Danio rerio) embryos/larvae to determine the most toxic formulation [through median lethal (LC50) and effective concentrations (EC50)]. PAR-c and PAR-a induced morphological abnormalities (scoliosis) in a dose-dependent manner from 96 hours post-fertilization onwards, suggesting the involvement of a fully functional biotransformation system. As PAR-c exhibited higher toxicity, it was selected to be tested in the subsequent stage (juvenile stage), which was more sensitive (lower LC50). PAR-c significantly decreased fish swimming activity and disrupted fish stress response. Overall, the results highlight the ability of PAR-c to adversely affect fish swimming performance, an effect that persisted even after exposure ceases (21-day depuration), suggesting that PAR-c may impair individual fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Venâncio
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Introducing the Amphibious Mudskipper Goby as a Unique Model to Evaluate Neuro/Endocrine Regulation of Behaviors Mediated by Buccal Sensation and Corticosteroids. Int J Mol Sci 2020; 21:ijms21186748. [PMID: 32938015 PMCID: PMC7555618 DOI: 10.3390/ijms21186748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Some fish have acquired the ability to breathe air, but these fish can no longer flush their gills effectively when out of water. Hence, they have developed characteristic means for defense against external stressors, including thirst (osmolarity/ions) and toxicity. Amphibious fish, extant air-breathing fish emerged from water, may serve as models to examine physiological responses to these stressors. Some of these fish, including mudskipper gobies such as Periophthalmodon schlosseri, Boleophthalmus boddarti and our Periophthalmus modestus, display distinct adaptational behaviors to these factors compared with fully aquatic fish. In this review, we introduce the mudskipper goby as a unique model to study the behaviors and the neuro/endocrine mechanisms of behavioral responses to the stressors. Our studies have shown that a local sensation of thirst in the buccal cavity—this being induced by dipsogenic hormones—motivates these fish to move to water through a forebrain response. The corticosteroid system, which is responsive to various stressors, also stimulates migration, possibly via the receptors in the brain. We suggest that such fish are an important model to deepen insights into the stress-related neuro/endocrine-behavioral effects.
Collapse
|
4
|
Sterner ZR, Shewade LH, Mertz KM, Sturgeon SM, Buchholz DR. Glucocorticoid receptor is required for survival through metamorphosis in the frog Xenopus tropicalis. Gen Comp Endocrinol 2020; 291:113419. [PMID: 32032606 DOI: 10.1016/j.ygcen.2020.113419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Stress hormones, also known as glucocorticoids, are critical for survival at birth in mammals due at least in part to their importance in lung maturation. However, because air breathing is not always required for amphibian survival and because stress hormones have no known developmental impact except to modulate the developmental actions of thyroid hormone (TH), the requirement for stress hormone signaling during metamorphosis is not well understoodi. Here, we produced a glucocorticoid receptor knockout (GRKO) Xenopus line with a frameshift mutation in the first exon of the glucocorticoid receptor. Induction by exogenous corticosterone (CORT, the frog stress hormone) of the CORT response genes, klf9 (Krüppel-like factor 9, also regulated by TH) and ush1g (Usher's syndrome 1G), was completely abrogated in GRKO tadpoles. Surprisingly, GRKO tadpoles developed faster than wild-type tadpoles until forelimb emergence and then developed more slowly until their death at the climax of metamorphosis. Growth rate was not affected in GRKO tadpoles, but they achieved a smaller maximum size. Gene expression analysis of the TH response genes, thrb (TH receptor beta) and klf9 showed reduced expression in the tail at metamorphic climax consistent with the reduced development rate. These results indicate that glucocorticoid receptor is required for survival through metamorphosis and support dual roles for GR signaling in control of developmental rate.
Collapse
Affiliation(s)
- Zachary R Sterner
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leena H Shewade
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Kala M Mertz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Savannah M Sturgeon
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Baker ME, Katsu Y. Progesterone: An enigmatic ligand for the mineralocorticoid receptor. Biochem Pharmacol 2020; 177:113976. [PMID: 32305433 DOI: 10.1016/j.bcp.2020.113976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
The progesterone receptor (PR) mediates progesterone regulation of female reproductive physiology, as well as gene transcription in non-reproductive tissues, such as brain, bone, lung and vasculature, in both women and men. An unusual property of progesterone is its high affinity for the mineralocorticoid receptor (MR), which regulates electrolyte transport in the kidney in humans and other terrestrial vertebrates. In humans, rats, alligators and frogs, progesterone antagonizes activation of the MR by aldosterone, the physiological mineralocorticoid in terrestrial vertebrates. In contrast, in elephant shark, ray-finned fishes and chickens, progesterone activates the MR. Interestingly, cartilaginous fishes and ray-finned fishes do not synthesize aldosterone, raising the question of which steroid(s) activate the MR in cartilaginous fishes and ray-finned fishes. The simpler synthesis of progesterone, compared to cortisol and other corticosteroids, makes progesterone a candidate physiological activator of the MR in elephant sharks and ray-finned fishes. Elephant shark and ray-finned fish MRs are expressed in diverse tissues, including heart, brain and lung, as well as, ovary and testis, two reproductive tissues that are targets for progesterone, which together suggests a multi-faceted physiological role for progesterone activation of the MR in elephant shark and ray-finned fish. The functional consequences of progesterone as an antagonist of some terrestrial vertebrate MRs and as an agonist of fish and chicken MRs are not fully understood. The physiological activities of progesterone through binding to vertebrate MRs merits further investigation.
Collapse
Affiliation(s)
- Michael E Baker
- Division of Nephrology-Hypertension, Department of Medicine, 0735, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0735, United States.
| | - Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Brun NR, van Hage P, Hunting ER, Haramis APG, Vink SC, Vijver MG, Schaaf MJM, Tudorache C. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun Biol 2019; 2:382. [PMID: 31646185 PMCID: PMC6802380 DOI: 10.1038/s42003-019-0629-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
Plastic nanoparticles originating from weathering plastic waste are emerging contaminants in aquatic environments, with unknown modes of action in aquatic organisms. Recent studies suggest that internalised nanoplastics may disrupt processes related to energy metabolism. Such disruption can be crucial for organisms during development and may ultimately lead to changes in behaviour. Here, we investigated the link between polystyrene nanoplastic (PSNP)-induced signalling events and behavioural changes. Larval zebrafish exhibited PSNP accumulation in the pancreas, which coincided with a decreased glucose level. By using hyperglycemic and glucocorticoid receptor (Gr) mutant larvae, we demonstrate that the PSNP-induced disruption in glucose homoeostasis coincided with increased cortisol secretion and hyperactivity in challenge phases. Our work sheds new light on a potential mechanism underlying nanoplastics toxicity in fish, suggesting that the adverse effect of PSNPs are at least in part mediated by Gr activation in response to disrupted glucose homeostasis, ultimately leading to aberrant locomotor activity.
Collapse
Affiliation(s)
- Nadja R. Brun
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Patrick van Hage
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | | | - Suzanne C. Vink
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Martina G. Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|