1
|
Sadowska-Bartosz I, Bartosz G. Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review. Int J Mol Sci 2024; 25:12001. [PMID: 39596068 PMCID: PMC11593439 DOI: 10.3390/ijms252212001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Anthocyanins are the main plant pigments responsible for the color of flowers, fruits, and vegetative organs of many plants, and are applied also as safe food colorants. They are efficient antioxidants. In this review, the reactivity of anthocyanins and their aglycones, anthocyanidins, in the main antioxidant assays, and their reactions with reactive oxygen and nitrogen species, effects of interactions with other compounds and metal ions on the antioxidant activity of anthocyanins and the electrochemical properties of anthocyanins are presented. Numerous cases of attenuation of oxidative stress at the cellular and organismal levels by anthocyanins are cited. The direct and indirect antioxidant action of anthocyanins, the question of the specificity of anthocyanin action in complex extracts, as well as limitations of cellular in vitro assays and biomarkers used for the detection of antioxidant effects of anthocyanins, are critically discussed.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
2
|
Cho EC, Kwon HS, Lee NY, Oh HJ, Choi YJ. Blood circulation effect of fermented citrus bioconversion product (FCBP) in EA.hy926 endothelial cells and high-fat diet-fed mouse model. Food Nutr Res 2024; 68:10682. [PMID: 39534464 PMCID: PMC11556378 DOI: 10.29219/fnr.v68.10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background The escalating global burden of cardiovascular diseases, largely driven by unhealthy lifestyle choices and dietary patterns, has intensified the search for effective and safe interventions. With current treatments often marred by significant side effects, the exploration of natural compounds such as flavonoids presents a compelling alternative. Objective This study investigated the effects of fermented citrus bioconversion product (FCBP), a fermented citrus bioflavonoid, on various markers of cardiovascular health in the context of a high-fat diet. Design In vivo, a high-fat diet-induced mouse model was used to assess the effects of FCBP on body weight, serum nitric oxide (NO) levels, activated partial thromboplastin time (aPTT), phosphatidylserine (PS) exposure on red blood cells, and the expression of inflammatory markers Intercellular Adhesion Molecule (ICAM)-1 and Vascular Cell Adhesion Molecule (VCAM)-1 in the thoracic aorta. In vitro, EA.hy926 endothelial cells were used to evaluate the compound's effects on cell viability, NO production, endothelial nitric oxide synthase (eNOS) expression, and cell adhesion molecule (CAM) levels to further understand the mechanisms behind the in vivo findings. Results In vivo, FCBP supplementation led to a dose-dependent reduction in weight gain, a significant decrease in serum NO levels at 10 mg/kg, and reduced ICAM-1 and VCAM-1 expressions in the thoracic aorta, indicating anti-inflammatory properties. PS exposure on red blood cells was also reduced, suggesting decreased procoagulant activity, while aPTT remained unchanged. In vitro, FCBP was non-cytotoxic to endothelial cells, showed a trend toward increased NO production and eNOS expression, and reduced the expression of ICAM-1 and VCAM-1, supporting its potential anti-inflammatory effects. Conclusions FCBP demonstrates potential as a bioactive compound for managing cardiovascular health by reducing inflammation, mitigating weight gain, and influencing blood circulation-related parameters under high-fat diet conditions. Further studies, including diverse models and human trials, are warranted to elucidate its mechanisms and compare its efficacy with established cardiovascular therapeutics.
Collapse
Affiliation(s)
- Eun-Chae Cho
- Department of Convergence Science, Sahmyook University, Seoul, Republic of Korea
| | - Hyuck Se Kwon
- R&D Team, Food & Supplement Health Claims, Vitech Co., Ltd., Wanju, Republic of Korea
| | - Na Young Lee
- R&D Team, Food & Supplement Health Claims, Vitech Co., Ltd., Wanju, Republic of Korea
| | - Hyun Jeong Oh
- R&D Team, Food & Supplement Health Claims, Vitech Co., Ltd., Wanju, Republic of Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zeng X, Li L, Tong L. Therapeutic Effects of Proanthocyanidins on Diabetic Erectile Dysfunction in Rats. Int J Mol Sci 2024; 25:11004. [PMID: 39456785 PMCID: PMC11506934 DOI: 10.3390/ijms252011004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The rising occurrence of erectile dysfunction related to diabetes mellitus (DMED) has led to the creation of new medications. Proanthocyanidins (PROs) is a potential agent for DMED. In this study, the DMED rat model was established using streptozotocin (STZ) and erectile function was assessed using apomorphine (APO) in rats. Following this, the rats were subjected to oral treatment with PRO. Then, we evaluated the influence of PROs on DMED rats. The findings suggest that PROs significantly enhance erectile function in DMED rats. PROs modulated glucose and lipid metabolism in DMED rats by decreasing blood glucose and lipid levels while increasing liver glycogen and serum insulin levels. Furthermore, PROs enhanced vascular endothelial function in DMED rats by augmenting nitric oxide (NO) levels and reducing the levels of endothelin-1 (ET-1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Additionally, PROs have been shown to elevate testosterone (T) levels, mitigate pathological testicular damage, and enhance sperm concentration and survival rates. Finally, the core targets were screened using network pharmacology, followed by validation through molecular docking, enzyme-linked immunoassay (ELISA), and real-time PCR methodologies. Our findings imply that PROs may treat DMED by elevating AKT1 levels while concurrently diminishing CASP3 levels, thereby effectively regulating the PI3K-Akt signaling pathway. Overall, these results support using PROs as a potential candidate for the treatment of DMED.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Qinghai University, Xining 810000, China; (X.Z.); (L.L.)
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| | - Lanlan Li
- Qinghai University, Xining 810000, China; (X.Z.); (L.L.)
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| | - Li Tong
- Qinghai University, Xining 810000, China; (X.Z.); (L.L.)
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| |
Collapse
|
4
|
Wang L, Zeng W, Wang C, Lu Y, Xiong X, Chen S, Huang Q, Yan F, Huang Q. SUMOylation and coupling of eNOS mediated by PIAS1 contribute to maintenance of vascular homeostasis. FASEB J 2024; 38:e23362. [PMID: 38102979 DOI: 10.1096/fj.202301963r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.
Collapse
Affiliation(s)
- Li Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Wenjing Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Chaowen Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanli Lu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Sheng Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qianqian Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Feixing Yan
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
5
|
Maqsood M, Anam Saeed R, Sahar A, Khan MI. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J Food Biochem 2022; 46:e14263. [PMID: 35642132 DOI: 10.1111/jfbc.14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Maqsood M, Khan MI, Sharif MK, Faisal MN. Phytochemical characterization of Morus nigra fruit ultrasound-assisted ethanolic extract for its cardioprotective potential. J Food Biochem 2022; 46:e14335. [PMID: 35848720 DOI: 10.1111/jfbc.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
The current work investigated the phytochemical profile of ultrasound-assisted ethanolic extract of Morus nigra (M. nigra) fruit. FTIR analysis of M. nigra fruit extract revealed the presence of alcohols (O-H), alkanes (C-H stretch), alkenes (C=C), and alkynes (C≡C). The HPLC analysis quantified the quercetin, gallic acid, vanillic acid, chlorogenic acid, syringic acid, cinnamic acid, sinapic acid, and kaempferol. Furthermore, the cardioprotective activity of ethanolic extract of M. nigra fruit was investigated. Cholesterol supplementation (2%) in the daily diet and exposure to cigarette smoke (2 cigarettes twice a day) were to induce hypertension in rats. The experimental animals were categorized into four groups: G0 (negative control), G1 (positive control), G2 (standard drug), and G3 (M. nigra fruit). The fruit extract administration at 300 mg/kg BW/day orally for 2 months significantly (p < .001) enhanced the activities of serum and cardiac tissue antioxidants in hypertensive rats. Meanwhile, the fruit extract reduced the elevated serum lipid profile while significantly increasing the high-density lipoproteins in G3 than G1 and G2. The increase in blood pressure, liver transaminases, and serum lactate dehydrogenase also reduced significantly in M. nigra fruit extract-treated rats. Histopathological findings revealed mild normalization of cardiac myocytes with central nuclei, branching, and cross-striations. Consequently, the M. nigra fruit extract exerted the cardioprotective potential via increasing the antioxidant enzymes and reducing the lipids, lactate dehydrogenase, liver transaminases, and blood pressure. The therapeutic potential of M. nigra fruit can be due to flavonols and phenolic acids. PRACTICAL APPLICATIONS: The present work quantified the Morus nigra fruit phytochemicals and its significant role in reducing lipid markers and blood pressure and improving antioxidant status in rats fed a hypercholesterolemic diet and exposed to cigarette smoke. Conclusively, the inclusion of M. nigra fruit in daily diet could improve the cardiac health of the individuals. Furthermore, the therapeutic potential of M. nigra fruit and its isolated constituents in modulating the gene expression against cardiac problems can explore after clinical trials and standardization in higher animals.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Anti-Inflammatory and Anti-Bacterial Potential of Mulberry Leaf Extract on Oral Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094984. [PMID: 35564380 PMCID: PMC9099889 DOI: 10.3390/ijerph19094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023]
Abstract
Mulberry leaves extract (Morus alba extracts; MAE) is known to have therapeutic potentials for numerous human diseases, including diabetes, neurological disorders, cardiovascular diseases, and cancers. However, there has not been sufficient research proving therapeutic effects on oral disease and its related oral risk factors. Thus, we investigated whether MAE has any anti-inflammatory and anti-bacterial effects on risk factors causing oral infectious diseases. To examine the anti-inflammatory response and bacterial inhibition of MAE, we measured intracellular reactive oxygen species (ROS) generation, production of pro-inflammatory cytokines, and the bacterial growth rate. Our study showed that MAE has anti-inflammatory activities, which inhibit the ROS generation and suppressed the production of pro-inflammatory cytokines (TNF-α and IL-6) in human monocyte THP-1 cells by stimulating lipopolysaccharide (LPS) and/or F. nucleatum, which are the virulent factors in periodontal diseases. Furthermore, MAE inhibited the bacterial growth on oral microorganisms (F. nucleatum and S. mutans) infected THP-1 cells. These findings suggested that MAE could be a potential natural source for therapeutic drugs in oral infectious disease.
Collapse
|
8
|
Ataie Z, Fatehi-Hassanabad Z, Nakhaee S, Foadoddini M, Farrokhfall K. Sex-specific endothelial dysfunction induced by high-cholesterol diet in rats: The role of protein tyrosine kinase and nitric oxide. Nutr Metab Cardiovasc Dis 2022; 32:745-754. [PMID: 35144857 DOI: 10.1016/j.numecd.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic process playing a crucial role in the pathogenesis of cardiovascular disease. Sex-specific differences in the incidence of atherosclerosis indicate that estrogen has a protective effect on the cardiovascular disease. However, the role of sex on endothelium responses in animal models of high cholesterol (HC) diet-induced atherosclerosis has not been fully investigated. This study was aimed to investigate vascular responses in HC-fed rats. METHODS AND RESULTS Male and female Sprague rats (12-week-old) were treated with either a standard diet (n = 12 of each sex) or an HC enriched diet (n = 12 of each sex) containing 2% cholesterol for 24 weeks. HC treated animals (both sexes) showed increased levels of total cholesterol, LDL-cholesterol, triglyceride and blood pressure (BP) compared to control rats. While the BP of control rats (both sexes) was increased following aminoguanidine administration (AG, 100 mg/kg i.p.), it was not changed in HC animals (both sexes). The hypotensive effect of acetylcholine was significantly impaired in male HC-treated rats. In vitro experiments demonstrated that aortic rings from HC group (both sexes) had an increased contractile response to phenylephrine and a decreased vasodilatory response to acetylcholine. The vasorelaxant effect of acetylcholine in HC rats (only male) was improved by applying 10-5 M genistein (tyrosine kinase inhibitor) or AG. CONCLUSION HC diet alters endothelium function through Nitric oxide (NO) and tyrosine kinase pathways in male rats.
Collapse
Affiliation(s)
- Zomorrod Ataie
- Health Clinical Science Research Center, Zahedan Branch, Islamic Azad University, Zahedan, Iran; Student Research Committee, Islamic Azad University, Zahedan Branch, Zahedan, Iran
| | | | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mohsen Foadoddini
- Cardiovascular Disease Research Center, Department of Physiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Khadijeh Farrokhfall
- Cardiovascular Disease Research Center, Department of Physiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
9
|
The Effect of Dietary Polyphenols on Vascular Health and Hypertension: Current Evidence and Mechanisms of Action. Nutrients 2022; 14:nu14030545. [PMID: 35276904 PMCID: PMC8840535 DOI: 10.3390/nu14030545] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
The aim of this review was to explore existing evidence from studies conducted on humans and summarize the mechanisms of action of dietary polyphenols on vascular health, blood pressure and hypertension. There is evidence that some polyphenol-rich foods, including berry fruits rich in anthocyanins, cocoa and green tea rich in flavan-3-ols, almonds and pistachios rich in hydroxycinnamic acids, and soy products rich in isoflavones, are able to improve blood pressure levels. A variety of mechanisms can elucidate the observed effects. Some limitations of the evidence, including variability of polyphenol content in plant-derived foods and human absorption, difficulty disentangling the effects of polyphenols from other dietary compounds, and discrepancy of doses between animal and human studies should be taken into account. While no single food counteracts hypertension, adopting a plant-based dietary pattern including a variety of polyphenol-rich foods is an advisable practice to improve blood pressure.
Collapse
|
10
|
Tsurudome N, Minami Y, Kajiya K. Fisetin, a major component derived from mulberry (Morus australis Poir.) leaves, prevents vascular abnormal contraction. Biofactors 2022; 48:56-66. [PMID: 34687255 PMCID: PMC9298084 DOI: 10.1002/biof.1798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
Mulberry (Morus australis Poir.) leaves have long been consumed in the form of tea or tincture especially in Asia, owing to their high antioxidant and blood pressure-regulating properties. Although it is thought that vascular abnormal contraction may be involved in the blood pressure-suppressing effect, the effect of mulberry on vascular abnormal contraction is still unknown. Therefore, we investigated mulberry leaves as a potential source of bioactive compounds that prevent vascular abnormal contraction. Mulberry leaves were divided into fresh leaves and tea leaves and further classified according to the age of the tree: more or less than 20 years old, into roasted and unroasted. Mulberry fruits were also evaluated. We assessed the preventive effect of mulberry extracts on vascular abnormal contraction. Extracts from mulberry leaves of trees more than 20 years old showed a strong preventive effect on vascular abnormal contraction of human coronary artery smooth muscle cells. Therefore, to identify the active components in mulberry leaves, we fractionated the active fractions by gel filtration chromatography and reversed-phase high-performance liquid chromatography. The active fraction was further analyzed by mass spectrometry and nuclear magnetic resonance; an active component of the mulberry leaf extract was fisetin. In addition, our results indicated that the hydroxyl group at the C-3 position of fisetin is crucial for its activity. These results prove that fisetin is effective in preventing vascular abnormal contraction. Overall, mulberry leaves and fisetin are expected to be used in a wide range of fields such as functional foods, nutraceuticals, and drug targets.
Collapse
Affiliation(s)
- Natsuko Tsurudome
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Yuji Minami
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Katsuko Kajiya
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
11
|
Park SY, Jung H, Lin Z, Hwang KT, Kwak HK. Black raspberry (Rubus occidentalis) attenuates inflammatory markers and vascular endothelial dysfunction in Wistar rats fed a high-fat diet with fructose solution. J Food Biochem 2021; 45:e13917. [PMID: 34510490 DOI: 10.1111/jfbc.13917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023]
Abstract
A continuous high-fat/high-fructose diet induces inflammation and lowers vascular endothelial function in the body. This research examined the effects of black raspberry (BR) powder consumption on the inflammatory response and endothelial dysfunction in rats fed with a high-fat diet and fructose solution. Wistar rats were randomly divided into two groups as control (AIN-93G diet + distilled water) and HFF (high-fat diet + 20% fructose solution) groups, for 16 weeks. At 8 weeks, the HFF was further divided into three subgroups: HFF, HFFBR2.5 (2.5% BR in high-fat diet), and HFFBR5 (5% BR in high-fat diet). The BR-fed groups showed significantly higher high-density lipoprotein-cholesterol and lower triglycerides than the HFF group. Rats supplemented with BR showed decreased mRNA and protein expressions of inflammatory cytokines and adhesion molecules in the liver and aorta tissues. Furthermore, the aortic protein expression of endothelial nitroxide synthase was significantly greater in the HFFBR2.5 and HFFBR5 than HFF. PRACTICAL APPLICATIONS: Black raspberry (BR: Rubus occidentalis) is abundant in flavonoids and anthocyanins. BR displays various biological activities and has been used to alleviate inflammatory conditions. In our study, BR supplementation showed promising effects against high-fat/high-fructose diet-induced inflammation and endothelial dysfunction in rats by decreasing markers of inflammation and improving vascular endothelial function. These findings suggest that BR consumption could have beneficial effects on the risk factors of cardiovascular disease.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | | | - Zhaoyan Lin
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Korea.,BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, Korea
| | - Ho-Kyung Kwak
- Division of Human Ecology, Korea National Open University, Seoul, Korea
| |
Collapse
|
12
|
Huang S, Chen G, Sun J, Chen Y, Wang N, Dong Y, Shen E, Hu Z, Gong W, Jin L, Cong W. Histone deacetylase 3 inhibition alleviates type 2 diabetes mellitus-induced endothelial dysfunction via Nrf2. Cell Commun Signal 2021; 19:35. [PMID: 33736642 PMCID: PMC7977318 DOI: 10.1186/s12964-020-00681-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The mechanism underlying endothelial dysfunction leading to cardiovascular disease in type 2 diabetes mellitus (T2DM) remains unclear. Here, we show that inhibition of histone deacetylase 3 (HDAC3) reduced inflammation and oxidative stress by regulating nuclear factor-E2-related factor 2 (Nrf2), which mediates the expression of anti-inflammatory- and pro-survival-related genes in the vascular endothelium, thereby improving endothelial function. METHODS Nrf2 knockout (Nrf2 KO) C57BL/6 background mice, diabetic db/db mice, and control db/m mice were used to investigate the relationship between HDAC3 and Nrf2 in the endothelium in vivo. Human umbilical vein endothelial cells (HUVECs) cultured under high glucose-palmitic acid (HG-PA) conditions were used to explore the role of Kelch-like ECH-associated protein 1 (Keap1) -Nrf2-NAPDH oxidase 4 (Nox4) redox signaling in the vascular endothelium in vitro. Activity assays, immunofluorescence, western blotting, qRT-PCR, and immunoprecipitation assays were used to examine the effect of HDAC3 inhibition on inflammation, reactive oxygen species (ROS) production, and endothelial impairment, as well as the activity of Nrf2-related molecules. RESULTS HDAC3 activity, but not its expression, was increased in db/db mice. This resulted in de-endothelialization and increased oxidative stress and pro-inflammatory marker expression in cells treated with the HDAC3 inhibitor RGFP966, which activated Nrf2 signaling. HDAC3 silencing decreased ROS production, inflammation, and damage-associated tube formation in HG-PA-treated HUVECs. The underlying mechanism involved the Keap1-Nrf2-Nox4 signaling pathway. CONCLUSION The results of this study suggest the potential of HDAC3 as a therapeutic target for the treatment of endothelial dysfunction in T2DM. Video Abstract.
Collapse
Affiliation(s)
- Shuai Huang
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Yunjie Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Yetong Dong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| |
Collapse
|
13
|
Lee G, Hoang T, Jung E, Jung S, Han S, Chung M, Chae S, Chae H. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell 2020; 19:e13279. [PMID: 33274583 PMCID: PMC7744959 DOI: 10.1111/acel.13279] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Endothelial dysfunction is one of the main age‐related arterial phenotypes responsible for cardiovascular disease (CVD) in older adults. This endothelial dysfunction results from decreased bioavailability of nitric oxide (NO) arising downstream of endothelial oxidative stress. In this study, we investigated the protective effect of anthocyanins and the underlying mechanism in rat thoracic aorta and human vascular endothelial cells in aging models. In vitro, cyanidin‐3‐rutinoside (C‐3‐R) and cyanidin‐3‐glucoside (C‐3‐G) inhibited the d‐galactose (d‐gal)‐induced senescence in human endothelial cells, as indicated by reduced senescence‐associated‐β‐galactosidase activity, p21, and p16INK4a. Anthocyanins blocked d‐gal‐induced reactive oxygen species (ROS) formation and NADPH oxidase activity. Anthocyanins reversed d‐gal‐mediated inhibition of endothelial nitric oxide synthase (eNOS) serine phosphorylation and SIRT1 expression, recovering NO level in endothelial cells. Also, SIRT1‐mediated eNOS deacetylation was shown to be involved in anthocyanin‐enhanced eNOS activity. In vivo, anthocyanin‐rich mulberry extract was administered to aging rats for 8 weeks. In vivo, mulberry extract alleviated endothelial senescence and oxidative stress in the aorta of aging rats. Consistently, mulberry extract also raised serum NO levels, increased phosphorylation of eNOS, increased SIRT1 expression, and reduced nitrotyrosine in aortas. The eNOS acetylation was higher in the aging group and was restored by mulberry extract treatment. Similarly, SIRT1 level associated with eNOS decreased in the aging group and was restored in aging plus mulberry group. These findings indicate that anthocyanins protect against endothelial senescence through enhanced NO bioavailability by regulating ROS formation and reducing eNOS uncoupling.
Collapse
Affiliation(s)
- Geum‐Hwa Lee
- Non‐Clinical Evaluation Center Biomedical Research Institute Jeonbuk National University Hospital Jeonju Korea
| | - The‐Hiep Hoang
- Non‐Clinical Evaluation Center Biomedical Research Institute Jeonbuk National University Hospital Jeonju Korea
| | - Eun‐Soo Jung
- Clinical Trial Center for Functional Foods (CTCF2) Jeonbuk National University Hospital Jeonju Korea
| | - Su‐Jin Jung
- Clinical Trial Center for Functional Foods (CTCF2) Jeonbuk National University Hospital Jeonju Korea
| | - Seong‐Kyu Han
- Department of Oral Physiology School of Dentistry & Institute of Oral Bioscience Jeonbuk National University Jeonju Korea
| | - Myoung‐Ja Chung
- Department of Pathology Jeonbuk National University Medical School Jeonju Korea
| | - Soo‐Wan Chae
- Clinical Trial Center for Functional Foods (CTCF2) Jeonbuk National University Hospital Jeonju Korea
| | - Han‐Jung Chae
- Non‐Clinical Evaluation Center Biomedical Research Institute Jeonbuk National University Hospital Jeonju Korea
- School of Pharmacy Jeonbuk National University Jeonju Korea
- Research Institute of Clinical Medicine of Jeonbuk National University‐Biomedical Research Institute of Jeonbuk National University Hospital Jeonju Korea
| |
Collapse
|
14
|
Xie Y, Wang H, He Z. Recent advances in polyphenols improving vascular endothelial dysfunction induced by endogenous toxicity. J Appl Toxicol 2020; 41:701-712. [PMID: 33251608 DOI: 10.1002/jat.4123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yixi Xie
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Hui Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Zhiyou He
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
| |
Collapse
|
15
|
Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C. Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6381380. [PMID: 33133348 PMCID: PMC7593735 DOI: 10.1155/2020/6381380] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, the dramatically increased prevalence of metabolic diseases, such as obesity and diabetes mellitus and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death worldwide. Dietary nutrients together with healthy lifestyles have a crucial role in the endothelium health-promoting effects. From a growing body of evidence, active natural compounds from food, including polyphenols and carotenoids, have attracted particular attention as a complementary therapy on atherosclerosis and cardiovascular disease, as well as preventive approaches through the attenuation of inflammation and oxidative stress. They mainly act as radical scavengers by promoting a variety of biological mechanisms, such as improvements in endothelial function, blood pressure, platelet activity, and insulin sensitivity, and by modulating various known biomarkers. The present review highlights the role of polyphenols and carotenoids in early endothelial dysfunction with attention to their beneficial effect in modulating both classical and recent technologically generated emerging biomarkers. These, alone or in combination, can play an important role in the prediction, diagnosis, and evolution of cardiovascular disease. However, a main challenge is to speed up early and prompt new interventions in order to prevent or slow down disease progression, even with an adequate intake of bioactive compounds. Hence, there is an urgent need of new more validated, appropriate, and reliable diagnostic and therapeutic biomarkers useful to diagnose endothelial dysfunction at an earlier stage.
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
16
|
Arraki K, Totoson P, Attia R, Zedet A, Pudlo M, Messaoud C, Demougeot C, Girard C. Arginase inhibitory properties of flavonoid compounds from the leaves of Mulberry (Morus alba, Moraceae). J Pharm Pharmacol 2020; 72:1269-1277. [PMID: 32496585 DOI: 10.1111/jphp.13297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We aimed to isolate and identify bioactive molecules from Morus alba (Moraceae) leaves having arginase inhibitory activity towards the combat of clinical outcomes related to endothelial dysfunction. METHOD Extraction and isolation were carried out by successive macerations, prepurification by using a Solid Phase Extraction (SPE) and separation using preparative PLC. The structures of the isolated components were established and confirmed by spectroscopic analyses, including the ESI-HRMS and NMR spectroscopic investigations. Biological evaluation was performed by using an in vitro assay with liver bovine purified arginase and by an ex vivo aortic ring study. KEY FINDINGS We demonstrated that a phenolic extract from the leaves of M. alba possesses mammalian arginase inhibitory capacities. Investigation of the chemical constituents of its leaves results in the isolation and identification of ten compounds investigated in vitro for their arginase inhibitory capacities. Four compounds showed significant inhibition of arginase, with percentage inhibition ranging from 54% to 83% at 100 µm. In isolated rat aortic rings incubated with NO synthase inhibitor, Luteolin-7-diglucoside compound (2) was able to increase acetylcholine-induced relaxation. CONCLUSIONS These results demonstrated the attractive ability of M. alba to be a potential source for the discovery of new active products on vascular system.
Collapse
Affiliation(s)
- Kamel Arraki
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Perle Totoson
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Rym Attia
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, Besançon, France.,Laboratory of Nanobiotechnology and Medicinal Plants, Department of Biology, National Institute of Applied Science and Technology (INSAT), University of Carthage, Tunis Cedex, Tunisia
| | - Andy Zedet
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Marc Pudlo
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Chokri Messaoud
- Laboratory of Nanobiotechnology and Medicinal Plants, Department of Biology, National Institute of Applied Science and Technology (INSAT), University of Carthage, Tunis Cedex, Tunisia
| | | | - Corine Girard
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
17
|
de Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu Rev Food Sci Technol 2020; 11:145-182. [PMID: 32126181 DOI: 10.1146/annurev-food-032519-051729] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing consumer demand for natural colors in foods. However, there is a limited number of available natural food sources for use by the food industry because of technical and regulatory limitations. Natural colors are less stable and have less vibrant hues compared to their synthetic color counterparts. Natural pigments also have known health benefits that are seldom leveraged by the food industry. Betalains, carotenoids, phycocyanins, and anthocyanins are major food colorants used in the food industry that have documented biological effects, particularly in the prevention and management of chronic diseases such as diabetes, obesity, and cardiovascular disease. The color industry needs new sources of stable, functional, and safe natural food colorants. New opportunities include sourcing new colors from microbial sources and via the use of genetic biotechnology. In all cases, there is an imperative need for toxicological evaluation to pave the way for their regulatory approval.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801, USA;
| | - Qiaozhi Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kayla Penta
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing & Nutrition Sciences and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| |
Collapse
|