1
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2024; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Yu X, Pu H, Voss M. Overview of anti-inflammatory diets and their promising effects on non-communicable diseases. Br J Nutr 2024; 132:898-918. [PMID: 39411832 PMCID: PMC11576095 DOI: 10.1017/s0007114524001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 11/20/2024]
Abstract
An anti-inflammatory diet is characterised by incorporating foods with potential anti-inflammatory properties, including fruits, vegetables, whole grains, nuts, legumes, spices, herbs and plant-based protein. Concurrently, pro-inflammatory red and processed meat, refined carbohydrates and saturated fats are limited. This article explores the effects of an anti-inflammatory diet on non-communicable diseases (NCD), concentrating on the underlying mechanisms that connect systemic chronic inflammation, dietary choices and disease outcomes. Chronic inflammation is a pivotal contributor to the initiation and progression of NCD. This review provides an overview of the intricate pathways through which chronic inflammation influences the pathogenesis of conditions including obesity, type II diabetes mellitus, CVD, autoinflammatory diseases, cancer and cognitive disorders. Through a comprehensive synthesis of existing research, we aim to identify some bioactive compounds present in foods deemed anti-inflammatory, explore their capacity to modulate inflammatory pathways and, consequently, to prevent or manage NCD. The findings demonstrated herein contribute to an understanding of the interplay between nutrition, inflammation and chronic diseases, paving a way for future dietary recommendations and research regarding preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu610106, People’s Republic of China
| | - Haomou Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Margaret Voss
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY13244, USA
| |
Collapse
|
3
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
4
|
Laheij RLH, van Knippenberg YMW, Heil ALJ, Mannaerts BJW, Bruin KF, Lutgens MWMD, Sikkema M, de Wit U, Laheij RJF. The Efficacy of an Over-the-Counter Multivitamin and Mineral Supplement to Prevent Infections in Patients With Inflammatory Bowel Disease in Remission With Immunomodulators and/or Biological Agents: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Inflamm Bowel Dis 2024; 30:1510-1516. [PMID: 37793072 DOI: 10.1093/ibd/izad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) treated with immunomodulators or biologic therapy are at increased risk of infections. Malnutrition and vitamin or mineral deficiencies are common among patients with IBD. The results of various studies have indicate that vitamin deficiencies might increase the risk of infections. To evaluate the efficacy of a multivitamin and mineral supplement on the incidence of infections in patients with IBD treated with immunomodulators, biologic therapy, or combination therapy. METHODS This was a single-center, randomized, double-blind, placebo-controlled clinical trial to compare a multivitamin and mineral supplement (supplemented group) vs identical-in-appearance placebo (placebo group) in a total of 320 non-vitamin-deficient patients with IBD (Crohn's disease or ulcerative colitis) in remission with immunomodulators, biologic therapy, or combination therapy. Participants were asked to take a daily multivitamin and mineral supplement or placebo and report the occurrence of infections during a 24-week period of follow-up. RESULTS Treatment arms consisted of 162 and 158 patients for the supplement and placebo, respectively. In both treatment groups, 107 patients reported an infection during the 24-week follow-up period (unadjusted odds ratio, 0.93; 95% confidence interval, 0.56-1.48). In the supplemented group, 32 patients received antibiotics for an infection compared with 21 patients in the placebo group (unadjusted odds ratio, 1.61; 95% confidence interval, 0.88-2.93). CONCLUSIONS An over-the-counter multivitamin and mineral supplement did not reduce the risk of infection for patients with IBD in remission with immunomodulators, biologic therapy, or combination therapy.
Collapse
Affiliation(s)
- Robin L H Laheij
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Yara M W van Knippenberg
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Annelijn L J Heil
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Britt J W Mannaerts
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Karlien F Bruin
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Maurice W M D Lutgens
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Marjolein Sikkema
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Ulrike de Wit
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Robert J F Laheij
- From the Department of Gastroenterology and Hepatology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| |
Collapse
|
5
|
Li K, Leng Y, Lei D, Zhang H, Ding M, Lo WLA. Causal link between metabolic related factors and osteoarthritis: a Mendelian randomization investigation. Front Nutr 2024; 11:1424286. [PMID: 39206315 PMCID: PMC11349640 DOI: 10.3389/fnut.2024.1424286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Metabolic syndrome (MetS) is significantly associated with osteoarthritis (OA), especially in MetS patients with blood glucose abnormalities, such as elevated fasting blood glucose (FG), which may increase OA risk. Dietary modifications, especially the intake of polyunsaturated fatty acids (PUFAs), are regarded as a potential means of preventing MetS and its complications. However, regarding the effects of FG, Omega-3s, and Omega-6s on OA, the research conclusions are conflicting, which is attributed to the complexity of the pathogenesis of OA. Therefore, it is imperative to thoroughly evaluate multiple factors to fully understand their role in OA, which needs further exploration and clarification. Methods Two-sample univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) were employed to examine the causal effect of metabolic related factors on hip OA (HOA) or knee OA (KOA). The exposure and outcome datasets were obtained from Open GWAS IEU. All cases were independent European ancestry data. Three MR methods were performed to estimate the causal effect: inverse-variance weighting (IVW), weighted median method (WMM), and MR-Egger regression. Additionally, the intercept analysis in MR-Egger regression is used to estimate pleiotropy, and the IVW method and MR-Egger regression are used to test the heterogeneity. Results The UVMR analysis revealed a causal relationship between FG and HOA. By MVMR analysis, the study discovered a significant link between FG (OR = 0.79, 95%CI: 0.64∼0.99, p = 0.036) and KOA after accounting for body mass index (BMI), age, and sex hormone-binding globulin (SHBG). However, no causal effects of FG on HOA were seen. Omega-3s and Omega-6s did not have a causal influence on HOA or KOA. No significant evidence of pleiotropy was identified. Discussion The MR investigation showed a protective effect of FG on KOA development but no causal relationship between FG and HOA. No causal effect of Omega-3s and Omega-6s on HOA and KOA was observed. Shared genetic overlaps might also exist between BMI and age, SHBG and PUFAs for OA development. This finding offers a novel insight into the treatment and prevention of KOA from glucose metabolism perspective. The FG cutoff value should be explored in the future, and consideration should be given to demonstrating the study in populations other than Europeans.
Collapse
Affiliation(s)
- Kai Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Leng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haojie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Gáll Z, Boros B, Kelemen K, Urkon M, Zolcseak I, Márton K, Kolcsar M. Melatonin improves cognitive dysfunction and decreases gliosis in the streptozotocin-induced rat model of sporadic Alzheimer's disease. Front Pharmacol 2024; 15:1447757. [PMID: 39135795 PMCID: PMC11317391 DOI: 10.3389/fphar.2024.1447757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Alzheimer's disease (AD) and other forms of dementia have a devastating effect on the community and healthcare system, as neurodegenerative diseases are causing disability and dependency in older population. Pharmacological treatment options are limited to symptomatic alleviation of cholinergic deficit and accelerated clearance of β-amyloid aggregates, but accessible disease-modifying interventions are needed especially in the early phase of AD. Melatonin was previously demonstrated to improve cognitive function in clinical setting and experimental studies also. Methods In this study, the influence of melatonin supplementation was studied on behavioral parameters and morphological aspects of the hippocampus and amygdala of rats. Streptozotocin (STZ) was injected intracerebroventricularly to induce AD-like symptoms in male adult Wistar rats (n = 18) which were compared to age-matched, sham-operated animals (n = 16). Melatonin was administered once daily in a dose of 20 mg/kg body weight by oral route. Behavioral analysis included open-field, novel object recognition, and radial-arm maze tests. TNF-α and MMP-9 levels were determined from blood samples to assess the anti-inflammatory and neuroprotective effects of melatonin. Immunohistological staining of brain sections was performed using anti-NeuN, anti-IBA-1, and anti-GFAP primary antibodies to evaluate the cellular reorganization of hippocampus. Results and Discussion The results show that after 40 days of treatment, melatonin improved the cognitive performance of STZ-induced rats and reduced the activation of microglia in both CA1 and CA3 regions of the hippocampus. STZ-injected animals had higher levels of GFAP-labeled astrocytes in the CA1 region, but melatonin treatment reduced this to that of the control group. In conclusion, melatonin may be a potential therapeutic option for treating AD-like cognitive decline and neuroinflammation.
Collapse
Affiliation(s)
- Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Bernadett Boros
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Krisztina Kelemen
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Melinda Urkon
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - István Zolcseak
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Kincső Márton
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| | - Melinda Kolcsar
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mures, Romania
| |
Collapse
|
7
|
Warren A. The relationship between gender differences in dietary habits, neuroinflammation, and Alzheimer's disease. Front Aging Neurosci 2024; 16:1395825. [PMID: 38694261 PMCID: PMC11061392 DOI: 10.3389/fnagi.2024.1395825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Neurocognitive decline is one of the foremost dire issues in medicine today. The mechanisms by which dementia pathogenesis ensues are complicated and multifactorial, particularly in the case of Alzheimer's disease (AD). One irrefutable, yet unexplained factor is the gender disparity in AD, in which women are disproportionately affected by AD, both in the rate and severity of the disease. Examining the multifaceted contributing causes along with unique gender dynamics in modifiable risk factors, such as diet, may lend some insight into why this disparity exists and potential paths forward. The aim of this brief narrative review is to summarize the current literature of gender differences in dietary habits and how they may relate to neuroinflammatory states that contribute to AD pathogenesis. As such, the interplay between diet, hormones, and inflammation will be discussed, along with potential interventions to inform care practices.
Collapse
Affiliation(s)
- Alison Warren
- The Department of Clinical Research and Leadership, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
8
|
Zare MJ, Masoumi SJ, Zare M. The association between energy-adjusted dietary inflammatory index and physical activity with sleep quality: a cross-sectional study. BMC Nutr 2024; 10:26. [PMID: 38310318 PMCID: PMC10838418 DOI: 10.1186/s40795-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The study aimed to assess the independent and interactive association of energy-adjusted dietary inflammatory index (E-DII) and physical activity (PA) with sleep quality. METHOD A cross-sectional study was conducted on the 2466 participants (60% women). A 116-item food frequency questionnaire (FFQ) was applied to calculate E-DII, the International Physical Activity Questionnaire (IPAQ) long form for PA, and the Pittsburgh sleep quality index (PSQI) to assess sleep quality were collected via interview. Multivariate logistic regression was applied to assess independent and interactive associations of E-DII and PA with sleep quality. RESULT No significant association was observed between E-DII and sleep quality (OR: 0.96, 95% CI: 0.92_1.01). Also, there was no significant association between the levels of PA and sleep quality. Women had 70% increased odds for poor sleep quality (OR: 1.7, 95% CI: 1.39_2.09) compared with men. No interactive association was observed between E-DII and PA levels with sleep quality. CONCLUSION No significant association was observed between E-DII and PA levels with sleep quality. The study indicates a gender difference in sleep quality. Future prospective studies are required to confirm these findings.
Collapse
Affiliation(s)
- Mohammad Javad Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran.
- Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Razi Boulevard, Shiraz, Iran
| |
Collapse
|
9
|
Cutuli D, Petrosini L, Gelfo F. Advance in Neurotoxicity Research from Development to Aging. Int J Mol Sci 2023; 24:15112. [PMID: 37894793 PMCID: PMC10606676 DOI: 10.3390/ijms242015112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
A substance capable of inducing a consistent pattern of neural dysfunction in the chemistry or structure of the nervous system may be defined as neurotoxic [...].
Collapse
Affiliation(s)
- Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| |
Collapse
|
10
|
Shaw AR, Key MN, Fikru S, Lofton S, Sullivan DK, Berkley-Patton J, Glover CM, Burns JM, Vidoni ED. Development of a Culturally Adapted Dietary Intervention to Reduce Alzheimer's Disease Risk among Older Black Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6705. [PMID: 37681845 PMCID: PMC10488073 DOI: 10.3390/ijerph20176705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The objective of this study is to identify and understand knowledge and attitudes that influence dietary practices among older Black adults using a community-engaged approach. This is a non-interventional mixed methods study designed to inform the development of an adapted brain-healthy soul food diet intervention. A purposive sampling approach was used to conduct seven semi-structured focus group discussions and an online quantitative survey. In total, 39 participants who self-identified as Black, aged 55 years and older, English speaking, and who were cognitively normal with an AD8 < 2; (25.6% men; 74.4% women) participated in the online survey and one of the seven 60 min virtual focus group discussions (5-7 per focus group). Quantitative frequency data from the online surveys were analyzed using descriptive statistics. Qualitative focus group data were analyzed using a 6-step thematic analysis process. Five themes emerged: dementia awareness; practices shaping food choices and consumption; barriers to eating healthy; instrumental support; and elements of a culturally adapted brain-healthy dietary intervention. Older Black adults perceived an adapted MIND dietary model as the most acceptable with the incorporation of salient cultural characteristics and strategies within both the design and delivery phases.
Collapse
Affiliation(s)
- Ashley R. Shaw
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| | - Mickeal N. Key
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| | - Samantha Fikru
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| | - Saria Lofton
- College of Nursing, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Jannette Berkley-Patton
- Department of Biomedical and Health Informatics, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - Crystal M. Glover
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Sciences, Rush Medical College, Chicago, IL 60612, USA;
- Department of Neurological Sciences, Rush Medical College, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.N.K.); (S.F.); (J.M.B.); (E.D.V.)
| |
Collapse
|
11
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
12
|
Ren J, Li H, Zeng G, Pang B, Wang Q, Wei J. Gut microbiome-mediated mechanisms in aging-related diseases: are probiotics ready for prime time? Front Pharmacol 2023; 14:1178596. [PMID: 37324466 PMCID: PMC10267478 DOI: 10.3389/fphar.2023.1178596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Chronic low-grade inflammation affects health and is associated with aging and age-related diseases. Dysregulation of the gut flora is an important trigger for chronic low-grade inflammation. Changes in the composition of the gut flora and exposure to related metabolites have an effect on the inflammatory system of the host. This results in the development of crosstalk between the gut barrier and immune system, contributing to chronic low-grade inflammation and impairment of health. Probiotics can increase the diversity of gut microbiota, protect the gut barrier, and regulate gut immunity, thereby reducing inflammation. Therefore, the use of probiotics is a promising strategy for the beneficial immunomodulation and protection of the gut barrier through gut microbiota. These processes might positively influence inflammatory diseases, which are common in the elderly.
Collapse
Affiliation(s)
- Jing Ren
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guixing Zeng
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxian Pang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Gu L, Yin X, Cheng Y, Wang X, Zhang M, Zou X, Wang L, Zhuge Y, Zhang F. Overweight/Obesity Increases the Risk of Overt Hepatic Encephalopathy after Transjugular Intrahepatic Portosystemic Shunt in Cirrhotic Patients. J Pers Med 2023; 13:jpm13040682. [PMID: 37109068 PMCID: PMC10141800 DOI: 10.3390/jpm13040682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The purpose of this study was to investigate the effect of body mass index (BMI) on the prevalence of overt hepatic encephalopathy (OHE) after the transjugular intrahepatic portosystemic shunt (TIPS) procedure in decompensated cirrhotic patients. A retrospective observational cohort study of 145 cirrhotic patients receiving TIPS was carried out in our department from 2017 to 2020. The relationships between BMI and clinical outcomes including OHE, as well as risk factors of developing post-TIPS OHE, were analyzed. BMI was categorized as normal weight (18.5 ≤ BMI < 23.0 kg/m2), underweight (BMI < 18.5 kg/m2), and overweight/obese (BMI ≥ 23.0 kg/m2). Among the 145 patients, 52 (35.9%) were overweight/obese and 50 (34%) had post-TIPS OHE. Overweight/obese patients more frequently had OHE compared with normal weight patients (OR: 2.754, 95% CI: 1.236-6.140; p = 0.013). Overweight/obesity (p = 0.013) and older age (p = 0.030) were independent risk factors for post-TIPS OHE according to the logistic regression analysis. Kaplan-Meier curve analysis suggested that overweight/obese patients had the highest cumulative incidence of OHE (log-rank p = 0.0118). In conclusion, overweight/obesity and older age may raise the risk of post-TIPS OHE in cirrhotic patients.
Collapse
Affiliation(s)
- Lihong Gu
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaochun Yin
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yang Cheng
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xixuan Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Ming Zhang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoping Zou
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Feng Zhang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
14
|
The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients 2023; 15:nu15061436. [PMID: 36986165 PMCID: PMC10057655 DOI: 10.3390/nu15061436] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Neurological diseases are recognized as major causes of disability and mortality worldwide. Due to the dynamic progress of diseases such as Alzheimer’s disease (AD), Parkinson’s Disease (PD), Schizophrenia, Depression, and Multiple Sclerosis (MD), scientists are mobilized to look for new and more effective methods of interventions. A growing body of evidence suggests that inflammatory processes and an imbalance in the composition and function of the gut microbiome, which play a critical role in the pathogenesis of various neurological diseases and dietary interventions, such as the Mediterranean diet the DASH diet, or the ketogenic diet can have beneficial effects on their course. The aim of this review was to take a closer look at the role of diet and its ingredients in modulating inflammation associated with the development and/or progression of central nervous system diseases. Presented data shows that consuming a diet abundant in fruits, vegetables, nuts, herbs, spices, and legumes that are sources of anti-inflammatory elements such as omega-3 fatty acids, polyphenols, vitamins, essential minerals, and probiotics while avoiding foods that promote inflammation, create a positive brain environment and is associated with a reduced risk of neurological diseases. Personalized nutritional interventions may constitute a non-invasive and effective strategy in combating neurological disorders.
Collapse
|
15
|
Metabolic Associated Fatty Liver Disease as a Risk Factor for the Development of Central Nervous System Disorders. LIVERS 2023. [DOI: 10.3390/livers3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MAFLD/NAFLD is the most ordinary liver disease categorized by hepatic steatosis with the increase of surplus fat in the liver and metabolic liver dysfunction, which is associated with bigger mortality and a high medical burden. An association between MAFLD/NAFLD and central nervous system disorders including psychological disorders has been demonstrated. Additionally, MAFLD/NAFLD has been correlated with various types of neurodegenerative disorders such as amyotrophic lateral sclerosis or Parkinson’s disease. Contrasted to healthy controls, patients with MAFLD/NAFLD have a greater prevalence risk of extrahepatic complications within multiple organs. Dietary interventions have emerged as effective strategies for MAFLD/NAFLD. The PI3K/AKT/mTOR signaling pathway involved in the regulation of Th17/Treg balance might promote the pathogenesis of several diseases including MAFLD/NAFLD. As extrahepatic complications may happen across various organs including CNS, cooperative care with individual experts is also necessary for managing patients with MAFLD/NAFLD.
Collapse
|
16
|
Jayapala HPS, Lim SY. N-3 Polyunsaturated Fatty Acids and Gut Microbiota. Comb Chem High Throughput Screen 2023; 26:892-905. [PMID: 35786331 DOI: 10.2174/1386207325666220701121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
For several decades, studies have reported that n-3 polyunsaturated fatty acids (PUFAs) play a beneficial role in cardiovascular, immune, cognitive, visual, mental and metabolic health. The mammalian intestine is colonized by microbiota, including bacteria, archaea, viruses, protozoans, and fungi. The composition of the gut microbiota is influenced by long-term dietary habits, disease-associated dysbiosis, and the use of antibiotics. Accumulating evidence suggests a relationship between n-3 PUFAs and the gut microbiota. N-3 PUFAs can alter the diversity and abundance of the gut microbiome, and gut microbiota can also affect the metabolism and absorption of n-3 PUFAs. Changes in the populations of certain gut microbiota can lead to negative effects on inflammation, obesity, and metabolic diseases. An imbalanced consumption of n-3/n-6 PUFAs may lead to gut microbial dysbiosis, in particular, a significant increase in the ratio of Firmicutes to Bacteroidetes, which eventually results in being overweight and obesity. N-3 PUFA deficiency disrupts the microbiota community in metabolic disorders. In addition, accumulating evidence indicates that the interplay between n-3 PUFAs, gut microbiota, and immune reactions helps to maintain the integrity of the intestinal wall and interacts with host immune cells. Supplementation with n-3 PUFAs may be an effective therapeutic measure to restore gut microbiota homeostasis and correct metabolic disturbances associated with modern chronic diseases. In particular, marine extracts from seaweed contain a considerable dry weight of lipids, including n-3 PUFAs such as eicosapentaenoic acid (EPA, C20: 5) and docosahexaenoic acid (DHA, C22: 6). This review describes how gut microbiota function in intestinal health, how n-3 PUFAs interact with the gut microbiota, and the potential of n-3 PUFAs to influence the gut-brain axis, acting through gut microbiota composition.
Collapse
Affiliation(s)
| | - Sun Young Lim
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, 49112, Korea
| |
Collapse
|
17
|
Therapeutic Potential of Combined Therapy of Vitamin A and Vitamin C in the Experimental Autoimmune Encephalomyelitis (EAE) in Lewis Rats. Mol Neurobiol 2022; 59:2328-2347. [PMID: 35072933 DOI: 10.1007/s12035-022-02755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Demyelination, inflammation, oxidative injury, and glial activation are the main pathological hallmarks of multiple sclerosis (MS). Vitamins, as essential micronutrients, seem to be crucial in the pathogenesis of MS, and particularly vitamins A and C were found to have a protective role in MS development or progression. In this study, the therapeutic potential of combined therapy of vitamins A and C on progression of experimental autoimmune encephalomyelitis (EAE) and myelin repair mechanisms was examined. EAE, an animal model of MS, was induced in female Lewis rats. The rats were treated with daily intraperitoneal injections of vitamins A and C and their combination. We found that co-supplementation of vitamins A and C mitigated neurological severity and EAE disease progression. Histological study confirmed a significant reduction in demyelination size, inflammation and immune cell infiltration as well as microglia and astrocyte activation following co-administration of vitamins A and C. Co-administration of vitamins A and C also decreased the levels of pro-inflammatory cytokines (TNF-α, IL1β) and iNOS and increased gene expressions of IL-10, Nrf-2, HO-1, and MBP. Combination therapy of vitamins A and C also increased the total antioxidant capacity and decreased levels of oxidative stress markers. Finally, we proved that co-administration of vitamins A and C has anti-apoptotic and neuroprotective impacts in EAE via decreasing caspase-3 and increasing BDNF and NeuN expressing cells. The present study suggests that combined therapy of vitamins A and C may be an effective strategy for development of alternative medicine in boosting myelin repair in demyelinating diseases.
Collapse
|
18
|
Lopes PKF, Engel DF, Bertolini NO, de Azevedo Martins MS, Pereira CA, Velloso LA, Thomasi SS, de Moura RF. Behavioral, neuroplasticity and metabolic effects of 7,8-dihydroxy-4-methylcoumarin associated with physical activity in mice. Metab Brain Dis 2021; 36:2425-2436. [PMID: 34599738 DOI: 10.1007/s11011-021-00849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/21/2021] [Indexed: 12/06/2022]
Abstract
The search for strategies to develop resilience against metabolic and neuropsychiatric disorders has motivated the clinical and experimental assessment of early life interventions such as lifestyle-based and use of unconventional pharmacological compounds. In this study, we assessed the effects of voluntary physical activity and 7,8-Dihydroxy-4-methylcoumarin (DHMC), independently or in combination, over mice physiological and behavioral parameters, adult hippocampal and hypothalamic neurogenesis, and neurotrophic factors expression in the hypothalamus. C57Bl/6J mice were submitted to a 29-day treatment with DHMC and allowed free access to a running wheel. We found that DHMC treatment alone reduced fasting blood glucose levels. Moreover, physical activity showed an anxiolytic effect in the elevated plus maze task and DHMC produced additional anxiolytic behavior, evidenced by reduced activity during the light cycle in the physical activity group. Although we did not find any differences in hypothalamic or hippocampal adult neurogenesis, DHMC increased gene expression levels of VEGF, which was correlated to the reduced fasting glucose levels. In conclusion, our data emphasize the potential of physical activity in reducing development of neuropsychiatric conditions, such as anxiety, and highlights DHMC as an attractive compound to be investigated in future studies addressing neuropsychiatric disorders associated with metabolic conditions.
Collapse
Affiliation(s)
| | - Daiane Fátima Engel
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil.
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
| | | | | | | | - Licio Augusto Velloso
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | | |
Collapse
|
19
|
Fontana L, Ghezzi L, Cross AH, Piccio L. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J Exp Med 2021; 218:211666. [PMID: 33416892 PMCID: PMC7802371 DOI: 10.1084/jem.20190086] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Recent and accumulating work in experimental animal models and humans shows that diet has a much more pervasive and prominent role than previously thought in modulating neuroinflammatory and neurodegenerative mechanisms leading to some of the most common chronic central nervous system (CNS) diseases. Chronic or intermittent food restriction has profound effects in shaping brain and peripheral metabolism, immunity, and gut microbiome biology. Interactions among calorie intake, meal frequency, diet quality, and the gut microbiome modulate specific metabolic and molecular pathways that regulate cellular, tissue, and organ homeostasis as well as inflammation during normal brain aging and CNS neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, among others. This review discusses these findings and their potential application to the prevention and treatment of CNS neuroinflammatory diseases and the promotion of healthy brain aging.
Collapse
Affiliation(s)
- Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.,Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy
| | - Laura Ghezzi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO.,University of Milan, Milan, Italy
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Laura Piccio
- Department of Neurology, Washington University in St. Louis, St. Louis, MO.,Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Lerner A. The intestinal luminal sources of α-synuclein: a gastroenterologist perspective. Nutr Rev 2021; 80:282-293. [PMID: 33942062 DOI: 10.1093/nutrit/nuab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is characterized by nonmotor/motor dysfunction, midbrain dopaminergic neuronal death, and α-synuclein (aSN) deposits. The current hypothesis is that aSN accumulates in the enteric nervous system to reach the brain. However, invertebrate, vertebrate, and nutritional sources of aSN reach the luminal compartment. Submitted to local amyloidogenic forces, the oligomerized proteins' cargo can be sensed and sampled by a specialized mucosal cell to be transmitted to the adjacent enteric nervous system, starting their upward journey to the brain. The present narrative review extends the current mucosal origin of Parkinson's disease, presenting the possibility that the disease starts in the intestinal lumen. If substantiated, eliminating the nutritional sources of aSN (eg, applying a vegetarian diet) might revolutionize the currently used dopaminergic pharmacologic therapy.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner is with the Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
21
|
Carotenoid Extract Derived from Euglena gracilis Overcomes Lipopolysaccharide-Induced Neuroinflammation in Microglia: Role of NF-κB and Nrf2 Signaling Pathways. Mol Neurobiol 2021; 58:3515-3528. [PMID: 33745115 PMCID: PMC8257518 DOI: 10.1007/s12035-021-02353-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Activation of microglia results in the increased production and release of a series of inflammatory and neurotoxic mediators, which play essential roles in structural and functional neuronal damage and in the development and progression of a number of neurodegenerative diseases. The microalga Euglena gracilis (Euglena), rich in vitamins, minerals, and other nutrients, has gained increasing attention due to its antimicrobial, anti-viral, antitumor, and anti-inflammatory activities. In particular, anti-inflammatory properties of Euglena could exert neuroprotective functions in different neurodegenerative diseases related to inflammation. However, the mechanisms underlying the anti-inflammatory effect of Euglena are not fully understood. In this study, we investigated whether Euglena could attenuate microglia activation and we also studied the mechanism of its anti-inflammatory activity. Our results showed that non-cytotoxic concentrations of a Euglena acetone extract (EAE) downregulated the mRNA expression levels and release of pro-inflammatory mediators, including NO, IL-1β, and TNF-α in LPS-stimulated microglia. EAE also significantly blocked the LPS-induced nuclear translocation of NF-κB p65 subunit and increased the mRNA expression of nuclear factor erythroid 2–related factor (Nrf2) and heme oxygenase-1 (HO-1). Furthermore, the release of pro-inflammatory mediators and NF-κB activation were also blocked by EAE in the presence of ML385, a specific Nrf2 inhibitor. Together, these results show that EAE overcomes LPS-induced microglia pro-inflammatory responses through downregulation of NF-κB and activation of Nrf2 signaling pathways, although the two pathways seem to get involved in an independent manner.
Collapse
|
22
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
23
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
24
|
Islam MT, Quispe C, Martorell M, Docea AO, Salehi B, Calina D, Reiner Ž, Sharifi-Rad J. Dietary supplements, vitamins and minerals as potential interventions against viruses: Perspectives for COVID-19. INT J VITAM NUTR RES 2021; 92:49-66. [DOI: 10.1024/0300-9831/a000694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract. The novel coronavirus (SARS-CoV-2) causing COVID-19 disease pandemic has infected millions of people and caused more than thousands of deaths in many countries across the world. The number of infected cases is increasing day by day. Unfortunately, we do not have a vaccine and specific treatment for it. Along with the protective measures, respiratory and/or circulatory supports and some antiviral and retroviral drugs have been used against SARS-CoV-2, but there are no more extensive studies proving their efficacy. In this study, the latest publications in the field have been reviewed, focusing on the modulatory effects on the immunity of some natural antiviral dietary supplements, vitamins and minerals. Findings suggest that several dietary supplements, including black seeds, garlic, ginger, cranberry, orange, omega-3 and -6 polyunsaturated fatty acids, vitamins (e.g., A, B vitamins, C, D, E), and minerals (e.g., Cu, Fe, Mg, Mn, Na, Se, Zn) have anti-viral effects. Many of them act against various species of respiratory viruses, including severe acute respiratory syndrome-related coronaviruses. Therefore, dietary supplements, including vitamins and minerals, probiotics as well as individual nutritional behaviour can be used as adjuvant therapy together with antiviral medicines in the management of COVID-19 disease.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico (UDT), Concepción, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Romania
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
25
|
Yu J, Zhu H, Taheri S, Mondy W, Perry S, Kindy MS. Plant-Based Nutritional Supplementation Attenuates LPS-Induced Low-Grade Systemic Activation. Int J Mol Sci 2021; 22:ijms22020573. [PMID: 33430045 PMCID: PMC7826722 DOI: 10.3390/ijms22020573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
Plant-based nutritional supplementation has been shown to attenuate and reduce mortality in the processes of both acute and chronic disorders, including diabetes, obesity, cardiovascular disease, cancer, inflammatory diseases, and neurological and neurodegenerative disorders. Low-level systemic inflammation is an important contributor to these afflictions and diets enriched in phytochemicals can slow the progression. The goal of this study was to determine the impact of lipopolysaccharide (LPS)-induced inflammation on changes in glucose and insulin tolerance, performance enhancement, levels of urinary neopterin and concentrations of neurotransmitters in the striatum in mouse models. Both acute and chronic injections of LPS (2 mg/kg or 0.33 mg/kg/day, respectively) reduced glucose and insulin tolerance and elevated neopterin levels, which are indicative of systemic inflammatory responses. In addition, there were significant decreases in striatal neurotransmitter levels (dopamine and DOPAC), while serotonin (5-HT) levels were essentially unchanged. LPS resulted in impaired execution in the incremental loading test, which was reversed in mice on a supplemental plant-based diet, improving their immune function and maintaining skeletal muscle mitochondrial activity. In conclusion, plant-based nutritional supplementation attenuated the metabolic changes elicited by LPS injections, causing systemic inflammatory activity that contributed to both systemic and neurological alterations.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - William Mondy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | | | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33620, USA
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
26
|
Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models. Nutrients 2020; 13:nu13010001. [PMID: 33374894 PMCID: PMC7821920 DOI: 10.3390/nu13010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Fructose consumption has drastically increased during the last decades due to the extensive commercial use of high-fructose corn syrup as a sweetener for beverages, snacks and baked goods. Fructose overconsumption is known to induce obesity, dyslipidemia, insulin resistance and inflammation, and its metabolism is considered partially responsible for its role in several metabolic diseases. Indeed, the primary metabolites and by-products of gut and hepatic fructolysis may impair the functions of extrahepatic tissues and organs. However, fructose itself causes an adenosine triphosphate (ATP) depletion that triggers inflammation and oxidative stress. Many studies have dealt with the effects of this sugar on various organs, while the impact of fructose on brain function is, to date, less explored, despite the relevance of this issue. Notably, fructose transporters and fructose metabolizing enzymes are present in brain cells. In addition, it has emerged that fructose consumption, even in the short term, can adversely influence brain health by promoting neuroinflammation, brain mitochondrial dysfunction and oxidative stress, as well as insulin resistance. Fructose influence on synaptic plasticity and cognition, with a major impact on critical regions for learning and memory, was also reported. In this review, we discuss emerging data about fructose effects on brain health in rodent models, with special reference to the regulation of food intake, inflammation, mitochondrial function and oxidative stress, insulin signaling and cognitive function.
Collapse
|
27
|
Henriques JF, Serra D, Dinis TCP, Almeida LM. The Anti-Neuroinflammatory Role of Anthocyanins and Their Metabolites for the Prevention and Treatment of Brain Disorders. Int J Mol Sci 2020; 21:E8653. [PMID: 33212797 PMCID: PMC7696928 DOI: 10.3390/ijms21228653] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Anthocyanins are naturally occurring polyphenols commonly found in fruits and vegetables. Numerous studies have described that anthocyanin-rich foods may play a crucial role in the prevention and treatment of different pathological conditions, which have encouraged their consumption around the world. Anthocyanins exhibit a significant neuroprotective role, mainly due to their well-recognized antioxidant and anti-inflammatory properties. Neuroinflammation is an intricate process relevant in both homeostatic and pathological circumstances. Since the progression of several neurological disorders relies on neuroinflammatory process, targeting brain inflammation has been considered a promising strategy in those conditions. Recent data have shown the anti-neuroinflammatory abilities of many anthocyanins and of their metabolites in the onset and development of several neurological disorders. In this review, it will be discussed the importance and the applicability of these polyphenolic compounds as neuroprotective agents and it will be also scrutinized the molecular mechanisms underlying the modulation of neuroinflammation by these natural compounds in the context of several brain diseases.
Collapse
Affiliation(s)
- Joana F. Henriques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diana Serra
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Teresa C. P. Dinis
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Leonor M. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
28
|
Zhu L, Hua F, Ding W, Ding K, Zhang Y, Xu C. The correlation between the Th17/Treg cell balance and bone health. IMMUNITY & AGEING 2020; 17:30. [PMID: 33072163 PMCID: PMC7557094 DOI: 10.1186/s12979-020-00202-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
With the ageing of the world population, osteoporosis has become a problem affecting quality of life. According to the traditional view, the causes of osteoporosis mainly include endocrine disorders, metabolic disorders and mechanical factors. However, in recent years, the immune system and immune factors have been shown to play important roles in the occurrence and development of osteoporosis. Among these components, regulatory T (Treg) cells and T helper 17 (Th17) cells are crucial for maintaining bone homeostasis, especially osteoclast differentiation. Treg cells and Th17 cells originate from the same precursor cells, and their differentiation requires involvement of the TGF-β regulated signalling pathway. Treg cells and Th17 cells have opposite functions. Treg cells inhibit the differentiation of osteoclasts in vivo and in vitro, while Th17 cells promote the differentiation of osteoclasts. Therefore, understanding the balance between Treg cells and Th17 cells is anticipated to provide a new idea for the development of novel treatments for osteoporosis.
Collapse
Affiliation(s)
- Lei Zhu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Fei Hua
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Wenge Ding
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Kai Ding
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Yige Zhang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Chenyang Xu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| |
Collapse
|
29
|
The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation. Nutrients 2020; 12:nu12082402. [PMID: 32796608 PMCID: PMC7468753 DOI: 10.3390/nu12082402] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic low-grade inflammation negatively impacts health and is associated with aging and obesity, among other health outcomes. A large number of immune mediators are present in the digestive tract and interact with gut bacteria to impact immune function. The gut microbiota itself is also an important initiator of inflammation, for example by releasing compounds such as lipopolysaccharides (LPS) that may influence cytokine production and immune cell function. Certain nutrients (e.g., probiotics, ω-3 fatty acids [FA]) may increase gut microbiota diversity and reduce inflammation. Lactobacilli and Bifidobacteria, among others, prevent gut hyperpermeability and lower LPS-dependent chronic low-grade inflammation. Furthermore, ω-3 FA generate positive effects on inflammation-related conditions (e.g., hypertriglyceridemia, diabetes) by interacting with immune, metabolic, and inflammatory pathways. Ω-3 FA also increase LPS-suppressing bacteria (i.e., Bifidobacteria) and decrease LPS-producing bacteria (i.e., Enterobacteria). Additionally, ω-3 FA appear to promote short-chain FA production. Therefore, combining probiotics with ω-3 FA presents a promising strategy to promote beneficial immune regulation via the gut microbiota, with potential beneficial effects on conditions of inflammatory origin, as commonly experienced by aged and obese individuals, as well as improvements in gut-brain-axis communication.
Collapse
|
30
|
Arivazhagan L, Ruiz HH, Wilson R, Manigrasso M, Gugger PF, Fisher EA, Moore KJ, Ramasamy R, Schmidt AM. An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circ Res 2020; 126:1565-1589. [PMID: 32437306 PMCID: PMC7250004 DOI: 10.1161/circresaha.120.315900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The escalating problem of obesity and its multiple metabolic and cardiovascular complications threatens the health and longevity of humans throughout the world. The cause of obesity and one of its chief complications, insulin resistance, involves the participation of multiple distinct organs and cell types. From the brain to the periphery, cell-intrinsic and intercellular networks converge to stimulate and propagate increases in body mass and adiposity, as well as disturbances of insulin sensitivity. This review focuses on the roles of the cadre of innate immune cells, both those that are resident in metabolic organs and those that are recruited into these organs in response to cues elicited by stressors such as overnutrition and reduced physical activity. Beyond the typical cast of innate immune characters invoked in the mechanisms of metabolic perturbation in these settings, such as neutrophils and monocytes/macrophages, these actors are joined by bone marrow-derived cells, such as eosinophils and mast cells and the intriguing innate lymphoid cells, which are present in the circulation and in metabolic organ depots. Upon high-fat feeding or reduced physical activity, phenotypic modulation of the cast of plastic innate immune cells ensues, leading to the production of mediators that affect inflammation, lipid handling, and metabolic signaling. Furthermore, their consequent interactions with adaptive immune cells, including myriad T-cell and B-cell subsets, compound these complexities. Notably, many of these innate immune cell-elicited signals in overnutrition may be modulated by weight loss, such as that induced by bariatric surgery. Recently, exciting insights into the biology and pathobiology of these cell type-specific niches are being uncovered by state-of-the-art techniques such as single-cell RNA-sequencing. This review considers the evolution of this field of research on innate immunity in obesity and metabolic perturbation, as well as future directions.
Collapse
Affiliation(s)
- Lakshmi Arivazhagan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Henry H. Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Robin Wilson
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Michaele Manigrasso
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Edward A. Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Langone Medical Center, New York 10016
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, New York 10016
| | - Kathryn J. Moore
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Langone Medical Center, New York 10016
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, New York 10016
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| |
Collapse
|