1
|
Squires E, Walshe IH, Dodd A, Broadbelt E, Hayman O, McHugh MP, Howatson G. Acute Dosing Strategy with Vistula Tart Cherries for Recovery of Strenuous Exercise-A Feasibility Study. Nutrients 2024; 16:2709. [PMID: 39203845 PMCID: PMC11357489 DOI: 10.3390/nu16162709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Tart cherry (TC) consumption has become a popular nutritional strategy for recovery, particularly for the attenuation of markers associated with muscle damage. However, there are relatively few studies that have examined an acute dosing strategy. The aim of this pilot study was to explore the feasibility of using powdered Vistula TC for recovery following a bout of muscle-damaging exercise. Twenty-two recreationally active participants (mean ± SD age, stature, and mass were 23 ± 3 years old, 173 ± 10 cm, and 74 ± 17 kg, respectively) performed 40 (5 sets of 8 repetitions) maximal lengthening contractions of the elbow flexors. The participants were randomised to receive either a spray-dried TC extract or a calorie-matched placebo (12 TC, 10 placebo) for 4 days in total, starting on the day of exercise. Dependent measures of maximal voluntary contraction (MVC), muscle soreness (assessed via visual analogue scales; VAS), pain pressure threshold (PPT), range of motion (ROM), and upper arm limb girth were taken at baseline (pre), 24, 48, and 72 h post damaging exercise. There were significant changes over time among all the variables (MVC, VAS, PPT, ROM, and girth, p ≤ 0.014). There were no significant differences between the conditions for any of the variables (MVC, VAS, PPT, ROM, and girth, p > 0.3). The TC group did not recover at an accelerated rate compared to the placebo. This study provides initial insights into the use of powdered Vistula TC and its effect following strenuous (damaging) exercise bouts. Vistula TC did not improve recovery when taken acutely following a bout of damaging exercise to the elbow flexors.
Collapse
Affiliation(s)
- Emma Squires
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Ian H. Walshe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Alex Dodd
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Edward Broadbelt
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Oliver Hayman
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G11 6EW, UK
| | - Malachy P. McHugh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- Nicholas Institute of Sports Medicine and Athletic Trauma, New York, NY 10065, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- Water Research Group, North West University, Potchefstroom 2531, South Africa
| |
Collapse
|
2
|
Banaei P, Tadibi V, Amiri E, Machado DGDS. Concomitant dual-site tDCS and dark chocolate improve cognitive and endurance performance following cognitive effort under hypoxia: a randomized controlled trial. Sci Rep 2023; 13:16473. [PMID: 37777571 PMCID: PMC10542360 DOI: 10.1038/s41598-023-43568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Ten male cyclists were randomized into four experimental conditions in this randomized, cross-over, double-blind, and sham-controlled study to test the combined effect of acute dark chocolate (DC) ingestion and anodal concurrent dual-site transcranial direct current stimulation (a-tDCS) targeting M1 and left DLPFC on cognitive and whole-body endurance performance in hypoxia after performing a cognitive task. Two hours before the sessions, chocolate was consumed. After arriving at the lab, participants completed an incongruent Stroop task for 30 min in hypoxia (O2 = 13%) to induce mental fatigue, followed by 20 min of tDCS (2 mA) in hypoxia. Then, in hypoxia, they performed a time-to-exhaustion task (TTE) while measuring physiological and psychophysiological responses. Cognitive performance was measured at baseline, after the Stroop task, and during and after TTE. TTE in 'DC + a-tDCS' was significantly longer than in 'white chocolate (WC) + a-tDCS' and WC + sham-tDCS'. The vastus medialis muscle electromyography amplitude was significantly higher in 'DC + a-tDCS' and 'DC + sham-tDCS' than in 'WC + sh-tDCS'. During and after the TTE, choice reaction time was significantly lower in 'DC + a-tDCS' compared to 'WC + sh-tDCS'. Other physiological or psychophysiological variables showed no significant differences. The concurrent use of acute DC consumption and dual-site a-tDCS might improve cognitive and endurance performance in hypoxia.
Collapse
Affiliation(s)
- Parisa Banaei
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran.
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| |
Collapse
|
3
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
4
|
Kennedy DO, Wightman EL. Mental Performance and Sport: Caffeine and Co-consumed Bioactive Ingredients. Sports Med 2022; 52:69-90. [PMID: 36447122 PMCID: PMC9734217 DOI: 10.1007/s40279-022-01796-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
The plant defence compound caffeine is widely consumed as a performance enhancer in a sporting context, with potential benefits expected in both physiological and psychological terms. However, although caffeine modestly but consistently improves alertness and fatigue, its effects on mental performance are largely restricted to improved attention or concentration. It has no consistent effect within other cognitive domains that are important to sporting performance, including working memory, executive function and long-term memory. Although caffeine's central nervous system effects are often attributed to blockade of the receptors for the inhibitory neuromodulator adenosine, it also inhibits a number of enzymes involved both in neurotransmission and in cellular homeostasis and signal propagation. Furthermore, it modulates the pharmacokinetics of other endogenous and exogenous bioactive molecules, in part via interactions with shared cytochrome P450 enzymes. Caffeine therefore enjoys interactive relationships with a wide range of bioactive medicinal and dietary compounds, potentially broadening, increasing, decreasing, or modulating the time course of their functional effects, or vice versa. This narrative review explores the mechanisms of action and efficacy of caffeine and the potential for combinations of caffeine and other dietary compounds to exert psychological effects in excess of those expected following caffeine alone. The review focusses on, and indeed restricted its untargeted search to, the most commonly consumed sources of caffeine: products derived from caffeine-synthesising plants that give us tea (Camellia sinensis), coffee (Coffea genus), cocoa (Theabroma cacao) and guaraná (Paullinia cupana), plus multi-component energy drinks and shots. This literature suggests relevant benefits to mental performance that exceed those associated with caffeine for multi-ingredient energy drinks/shots and several low-caffeine extracts, including high-flavanol cocoa and guarana. However, there is a general lack of research conducted in such a way as to disentangle the relative contributions of the component parts of these products.
Collapse
Affiliation(s)
- David O. Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Emma L. Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| |
Collapse
|
5
|
Kung S, Vakula MN, Kim Y, England DL, Bergeson J, Bressel E, Lefevre M, Ward R. No effect of a dairy-based, high flavonoid pre-workout beverage on exercise-induced intestinal injury, permeability, and inflammation in recreational cyclists: A randomized controlled crossover trial. PLoS One 2022; 17:e0277453. [PMID: 36445874 PMCID: PMC9707743 DOI: 10.1371/journal.pone.0277453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Submaximal endurance exercise has been shown to cause elevated gastrointestinal permeability, injury, and inflammation, which may negatively impact athletic performance and recovery. Preclinical and some clinical studies suggest that flavonoids, a class of plant secondary metabolites, may regulate intestinal permeability and reduce chronic low-grade inflammation. Consequently, the purpose of this study was to determine the effects of supplemental flavonoid intake on intestinal health and cycling performance. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled crossover trial was conducted with 12 cyclists (8 males and 4 females). Subjects consumed a dairy milk-based, high or low flavonoid (490 or 5 mg) pre-workout beverage daily for 15 days. At the end of each intervention, a submaximal cycling trial (45 min, 70% VO2max) was conducted in a controlled laboratory setting (23°C), followed by a 15-minute maximal effort time trial during which total work and distance were determined. Plasma samples were collected pre- and post-exercise (0h, 1h, and 4h post-exercise). The primary outcome was intestinal injury, assessed by within-subject comparison of plasma intestinal fatty acid-binding protein. Prior to study start, this trial was registered at ClinicalTrials.gov (NCT03427879). RESULTS A significant time effect was observed for intestinal fatty acid binding protein and circulating cytokines (IL-6, IL-10, TNF-α). No differences were observed between the low and high flavonoid treatment for intestinal permeability or injury. The flavonoid treatment tended to increase cycling work output (p = 0.051), though no differences were observed for cadence or total distance. DISCUSSION Sub-chronic supplementation with blueberry, cocoa, and green tea in a dairy-based pre-workout beverage did not alleviate exercise-induced intestinal injury during submaximal cycling, as compared to the control beverage (dairy-milk based with low flavonoid content).
Collapse
Affiliation(s)
- Stephanie Kung
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Michael N. Vakula
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Youngwook Kim
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Derek L. England
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Janet Bergeson
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Eadric Bressel
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Michael Lefevre
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Robert Ward
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
6
|
Sulistyarto S, Irawan R, Kumaat NA, Rimawati N. Correlation of Delayed Onset Muscle Soreness and Inflammation Post-exercise Induced Muscle Damage. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND: Delayed Onset Muscle Soreness (DOMS) is a common injury resulting from abnormal intensive training in athletes, mainly the result of training involving eccentric contractions.
AIM: The aim of this study was to determine the correlation between the incidence of DOMS and HMGB1 as a marker of the occurrence of inflammation post Exercise Induces Muscle Damaged.
METHOD: 28 male recreational students of Sports Science Department, Universitas Negeri Surabaya who met all inclusion and exclusion criteria participated in this study. Participants completed a muscle damaging exercise which consists of a 10x10 drop jump (DRP) and a bout of 40×15 m sprints with a 5 m deceleration zone (SPR) to obtain a muscle damage effect. In this study, the stretching in the exercise session was not given, this was done to get the DOMS effect after exercise. DOMS and HMGB1 was carry out 1 hour before the exercise, 12 hours after the exercise, 24 hours after the exercise and 48 hours after the exercise.
RESULT: The result showed that there was a significant correlation (r=0.935, p<0.05) between DOMS and HMGB1 as a predictor of inflammation. The participants that were given EIMD eccentric exercise (DRP and SPR) showed the occurrence of DOMS and increasing of HMGB1. The result also showed that there was a correlation between DOMS and HMGB1.
CONCLUSION: This study concluded that there was a correlation between DOMS and HMGB1 as a marker of inflammation as the result of the eccentric exercise of the exercise Induced Muscle Damage (EIMD).
Collapse
|
7
|
Kruk J, Aboul-Enein BH, Duchnik E, Marchlewicz M. Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. J Physiol Sci 2022; 72:19. [PMID: 35931969 DOI: 10.1186/s12576-022-00845-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Extensive research has found strongly increased generation of reactive oxygen species, free radicals, and reactive nitrogen species during acute physical exercise that can lead to oxidative stress (OS) and impair muscle function. Polyphenols (PCs), the most abundant antioxidants in the human diet, are of increasing interest to athletes as antioxidants. Current literature suggests that antioxidants supplementation can effectively modulate these processes. This overview summarizes the actual knowledge of chemical and biomechanical properties of PCs and their impact as supplements on acute exercise-induced OS, inflammation control, and exercise performance. Evidence maintains that PC supplements have high potency to positively impact redox homeostasis and improve skeletal muscle's physiological and physical functions. However, many studies have failed to present improvement in physical performance. Eleven of 15 representative experimental studies reported a reduction of severe exercise-induced OS and inflammation markers or enhancement of total antioxidant capacity; four of eight studies found improvement in exercise performance outcomes. Further studies should be continued to address a safe, optimal PC dosage, supplementation timing during a severe training program in different sports disciplines, and effects on performance response and adaptations of skeletal muscle to exercise.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Al. Piastów 40b/6, 71-065, Szczecin, Poland.
| | - Basil Hassan Aboul-Enein
- Department of Health Science, Johnson & Wales University, College of Health & Wellness, 8 Abbott Park Place, Providence, RI, 02903, USA.,London School of Hygiene & Tropical Medicine, Faculty of Public Health and Policy, 15-17, Tavistock Place, London, WC1H 9SH, UK
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Mariola Marchlewicz
- Department of Dermatology and Venereology, Pomeranian Medical University, Siedlecka 2, 72-010, Police, Poland
| |
Collapse
|
8
|
Tabone M, García-Merino JA, Bressa C, Rocha Guzman NE, Herrera Rocha K, Chu Van E, Castelli FA, Fenaille F, Larrosa M. Chronic Consumption of Cocoa Rich in Procyanidins Has a Marginal Impact on Gut Microbiota and on Serum and Fecal Metabolomes in Male Endurance Athletes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1878-1889. [PMID: 35112856 DOI: 10.1021/acs.jafc.1c07547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cocoa is used in the sports world as a supplement, although there is no consensus on its use. We investigated the effect of cocoa intake on intestinal ischemia (intestinal fatty acid-binding protein (I-FABP)), serum lipopolysaccharide (LPS) levels, gastrointestinal symptoms, and gut microbiota in endurance athletes during their training period on an unrestricted diet. We also performed a metabolomics analysis of serum and feces after a bout of exercise before and after supplementation. Cocoa consumption had no effect on I-FABP, LPS, or gastrointestinal symptoms. Cocoa intake significantly increased the abundance of Blautia and Lachnospira genera and decreased the abundance of the Agathobacter genus, which was accompanied by elevated levels of polyphenol fecal metabolites 4-hydroxy-5-(phenyl)-valeric acid and O-methyl-epicatechin-O-glucuronide. Our untargeted approach revealed that cocoa had no significant effects on serum and fecal metabolites and that its consumption had little impact on the metabolome after a bout of physical exercise.
Collapse
Affiliation(s)
- Mariangela Tabone
- MAS Microbiota Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Jose Angel García-Merino
- MAS Microbiota Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Carlo Bressa
- MAS Microbiota Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Nuria Elizabeth Rocha Guzman
- Grupo de Investigación en Alimentos Funcionales y Nutracéuticos, Unidad de Posgrado, Investigación y Desarrollo Tecnológico, TecNM/Instituto Tecnológico de Durango, Durango 34080, México
| | - Karen Herrera Rocha
- Grupo de Investigación en Alimentos Funcionales y Nutracéuticos, Unidad de Posgrado, Investigación y Desarrollo Tecnológico, TecNM/Instituto Tecnológico de Durango, Durango 34080, México
| | - Emeline Chu Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Florence A Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Mar Larrosa
- MAS Microbiota Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
- Department of Nutrition and Food Science, School of Pharmacy, Complutense University of Madrid (UCM), Madrid 28040, Spain
| |
Collapse
|
9
|
Lorca C, Mulet M, Arévalo-Caro C, Sanchez MÁ, Perez A, Perrino M, Bach-Faig A, Aguilar-Martínez A, Vilella E, Gallart-Palau X, Serra A. Plant-derived nootropics and human cognition: A systematic review. Crit Rev Food Sci Nutr 2022; 63:5521-5545. [PMID: 34978226 DOI: 10.1080/10408398.2021.2021137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Substances with modulatory capabilities on certain aspects of human cognition have been revered as nootropics from the dawn of time. The plant kingdom provides most of the currently available nootropics of natural origin. Here, in this systematic review, we aim to provide state-of-the-art information regarding proven and unproven effects of plant-derived nootropics (PDNs) on human cognition in conditions of health and disease. Six independent searches, one for each neurocognitive domain (NCD), were performed in parallel using three independent scientific library databases: PubMed, Cochrane and Scopus. Only scientific studies and systematic reviews with humans published between January 2000 and November 2021 were reviewed, and 256 papers were included. Ginkgo biloba was the most relevant nootropic regarding perceptual and motor functions. Bacopa monnieri improves language, learning and memory. Withania somnifera (Ashwagandha) modulates anxiety and social-related cognitions. Caffeine enhances attention and executive functions. Together, the results from the compiled studies highlight the nootropic effects and the inconsistencies regarding PDNs that require further research.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.2021137.
Collapse
Affiliation(s)
- Cristina Lorca
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
| | - Catalina Arévalo-Caro
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
| | - M Ángeles Sanchez
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - Ainhoa Perez
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - María Perrino
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - Anna Bach-Faig
- FoodLab Research Group (2017SGR 83), Faculty of Health Sciences, Open University of Catalonia (UOC), Barcelona, Spain
- Food and Nutrition Area, Barcelona Official College of Pharmacists, Barcelona, Spain
| | - Alicia Aguilar-Martínez
- FoodLab Research Group (2017SGR 83), Faculty of Health Sciences, Open University of Catalonia (UOC), Barcelona, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM), Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital Universitari Institut Pere Mata (HUIPM), Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Serra
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Hooshmand Moghadam B, Bagheri R, Ghanavati M, Khodadadi F, Cheraghloo N, Wong A, Nordvall M, Suzuki K, Shabkhiz F. The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys. Antioxidants (Basel) 2021; 10:1675. [PMID: 34829546 PMCID: PMC8614646 DOI: 10.3390/antiox10111675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Research has shown that both dark chocolate and exercise training may have favorable effects on antioxidant function in obese cohorts. However, their combined effect has not been established. We assessed the influences of six weeks of dark chocolate consumption combined with jump rope exercise on antioxidant markers in adolescent boys with obesity. Fifty adolescent boys with obesity (age = 15 ± 1 years) were randomly assigned into one of four groups; jump rope exercise + white chocolate consumption (JW; n = 13), jump rope exercise + dark chocolate consumption (JD; n = 13), dark chocolate consumption (DC; n = 12), or control (C; n = 12). Two participants dropped out of the study. Participants in JW and JD groups performed jump rope exercise three times per week for six weeks. Participants in the DC and JD groups consumed 30 g of dark chocolate containing 83% of cocoa during the same period. Serum concentrations of superoxide dismutase (SOD), total antioxidant capacity (TAC), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) were evaluated prior to and after the interventions. All 3 intervention groups noted significant (p < 0.01) increases in serum concentrations of TAC, SOD, and GPx from baseline to post-test. In contrast, all intervention groups showed significantly reduced serum concentrations of TBARS from pre- to post-test (p ≤ 0.01). Bonferroni post hoc analysis revealed that post-test serum concentrations of TAC in the JD group were significantly greater than C (p < 0.001), DC (p = 0.010), and JW (p < 0.001) groups. In addition, post-test serum concentrations of SOD in the JD group were significantly greater than C group (p = 0.001). Post-test serum concentrations of GPx in the JD group were significantly greater than C (p < 0.001), DC (p = 0.021), and JW (p = 0.032) groups. The post-test serum concentrations of TBARS in the JD group was significantly lower than C (p < 0.001). No other significant between-group differences were observed. The current study provides evidence that dark chocolate consumption in combination with jump rope exercise is more efficient in improving antioxidant capacity than dark chocolate consumption or jump rope exercise alone among obese adolescent boys.
Collapse
Affiliation(s)
- Babak Hooshmand Moghadam
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
- Department of Exercise Physiology, University of Tehran, Tehran 1961733114, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Fatemeh Khodadadi
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
| | - Neda Cheraghloo
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Fatemeh Shabkhiz
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
| |
Collapse
|
11
|
Gras S, Blasco A, Mòdol-Caballero G, Tarabal O, Casanovas A, Piedrafita L, Barranco A, Das T, Rueda R, Pereira SL, Navarro X, Esquerda JE, Calderó J. Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system. Aging (Albany NY) 2021; 13:18051-18093. [PMID: 34319911 PMCID: PMC8351677 DOI: 10.18632/aging.203336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Besides skeletal muscle wasting, sarcopenia entails morphological and molecular changes in distinct components of the neuromuscular system, including spinal cord motoneurons (MNs) and neuromuscular junctions (NMJs); moreover, noticeable microgliosis has also been observed around aged MNs. Here we examined the impact of two flavonoid-enriched diets containing either green tea extract (GTE) catechins or cocoa flavanols on age-associated regressive changes in the neuromuscular system of C57BL/6J mice. Compared to control mice, GTE- and cocoa-supplementation significantly improved the survival rate of mice, reduced the proportion of fibers with lipofuscin aggregates and central nuclei, and increased the density of satellite cells in skeletal muscles. Additionally, both supplements significantly augmented the number of innervated NMJs and their degree of maturity compared to controls. GTE, but not cocoa, prominently increased the density of VAChT and VGluT2 afferent synapses on MNs, which were lost in control aged spinal cords; conversely, cocoa, but not GTE, significantly augmented the proportion of VGluT1 afferent synapses on aged MNs. Moreover, GTE, but not cocoa, reduced aging-associated microgliosis and increased the proportion of neuroprotective microglial phenotypes. Our data indicate that certain plant flavonoids may be beneficial in the nutritional management of age-related deterioration of the neuromuscular system.
Collapse
Affiliation(s)
- Sílvia Gras
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Guillem Mòdol-Caballero
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Alejandro Barranco
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tapas Das
- Abbott Nutrition, Research and Development, Columbus, OH 43215, USA
| | - Ricardo Rueda
- Abbott Nutrition, Research and Development, Granada, Spain
| | | | - Xavier Navarro
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
| | - Josep E. Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
12
|
Abstract
Mitochondrial dysfunction is observed in a broad range of human diseases, including rare genetic disorders and complex acquired pathologies. For this reason, there is increasing interest in identifying safe and effective strategies to mitigate mitochondrial impairments. Natural compounds are widely used for multiple indications, and their broad healing properties suggest that several may improve mitochondrial function. This review focuses on (-)-epicatechin, a monomeric flavanol, and its effects on mitochondria. The review summarizes the available data on the effects of acute and chronic (-)-epicatechin supplementation on mitochondrial function, outlines the potential mechanisms involved in mitochondrial biogenesis induced by (-)-epicatechin supplementation and discusses some future therapeutic applications.
Collapse
Affiliation(s)
- Frédéric N Daussin
- Université de Lille, Université d'Artois, Université de Littoral Côte d'Opale, ULR 7369 - URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Elsa Heyman
- Université de Lille, Université d'Artois, Université de Littoral Côte d'Opale, ULR 7369 - URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ontario; and Department of Molecular and Cellular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Flavonoid Containing Polyphenol Consumption and Recovery from Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. Sports Med 2021; 51:1293-1316. [PMID: 33687663 DOI: 10.1007/s40279-021-01440-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Flavonoid polyphenols are bioactive phytochemicals found in fruits and teas among other sources. It has been postulated that foods and supplements containing flavonoid polyphenols may enhance recovery from exercise-induced muscle damage (EIMD) through upregulation of cell signalling stress response pathways, particularly the nuclear factor erythroid 2-related factor 2 (NRF2) pathway. OBJECTIVES This study aims to investigate the ability of polyphenol treatments containing flavonoids to enhance recovery of skeletal muscle strength, soreness and creatine kinase post EIMD. METHODS Medline (Pubmed), Embase and SPORTdiscus were searched from inception to August 2020 for randomised placebo-controlled trials which assessed the impact of 6 or more days of flavonoid containing polyphenol ingestion on skeletal muscle recovery in the 96-h period following a single bout of EIMD. A total of 2983 studies were screened in duplicate resulting in 26 studies included for analysis. All meta-analyses were undertaken using a random-effects model. RESULTS The pooled results of these meta-analyses show flavonoid polyphenol treatments can enhance recovery of muscle strength by 7.14% (95% CI [5.50-8.78], P < 0.00001) and reduce muscle soreness by 4.12% (95% CI [- 5.82 to - 2.41] P = 0.00001), no change in the recovery of creatine kinase concentrations was observed. CONCLUSION These results indicate that ingestion of polyphenol treatments which contain flavonoids has significant potential to improve recovery of muscular strength and reduce muscle soreness in the 4-day period post EIMD. However, the characterisation of polyphenol dosage and composition of study treatments should be prioritised in future research to facilitate the development of specific guidelines for the inclusion of flavonoid-rich foods in the diet of athletes and active individuals.
Collapse
|
14
|
de Andrade Soares R, de Oliveira BC, de Bem GF, de Menezes MP, Romão MH, Santos IB, da Costa CA, de Carvalho LCDRM, Nascimento ALR, de Carvalho JJ, Ognibene DT, de Moura RS, Resende AC. Açaí (Euterpe oleracea Mart.) seed extract improves aerobic exercise performance in rats. Food Res Int 2020; 136:109549. [PMID: 32846601 DOI: 10.1016/j.foodres.2020.109549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to examine whether the supplementation with an açai (Euterpe oleracea Mart.) seed extract (ASE) would affect the aerobic exercise performance in rats and correlate with the vascular function, muscle oxidative stress and mitochondrial biogenesis. Male Wistar rats were divided into five groups: Sedentary, Sedentary with chronic supplementation of ASE, Training, Training with chronic (200 mg/Kg/day intragastric gavage for 5 weeks) or acute (30 min before the maximal treadmill stress test (MST) supplementation with ASE. The exercise training was performed on a treadmill (30 min/day; 5 days/week) for 4 weeks. The chronic supplementation with ASE increased the exercise time (58%) and the running distance (129%) in relation to the MST, while the Training group increased 40% and 78% and the Training with acute ASE group increased 30% and 63%, respectively. The training-induced increase of ACh vasodilation was not changed by ASE, but the norepinephrine-induced vasoconstriction was reduced by chronic and acute supplementation with ASE. The increased levels of malondialdehyde in soleus muscle homogenates from the Training group was reduced only by chronic supplementation with ASE. The muscle antioxidant defense, NO2 levels, and expression of the mitochondrial biogenesis-related proteins (PGC1α, SIRT-1, p-AMPK/AMPK, Nrf-2) were not different between Training and Sedentary groups, but all these parameters were increased in the Training with Chronic ASE compared with the Sedentary groups. In conclusion, chronic supplementation with ASE improves aerobic physical performance by increasing the vascular function, reducing the oxidative stress, and up-regulating the mitochondrial biogenesis key proteins.
Collapse
Affiliation(s)
- Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Beatriz Cardoso de Oliveira
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Matheus Pontes de Menezes
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Matheus Henrique Romão
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Ana Lúcia Rosa Nascimento
- Department of Histology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Jorge José de Carvalho
- Department of Histology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Bo S, Fadda M, Fedele D, Pellegrini M, Ghigo E, Pellegrini N. A Critical Review on the Role of Food and Nutrition in the Energy Balance. Nutrients 2020; 12:E1161. [PMID: 32331288 PMCID: PMC7231187 DOI: 10.3390/nu12041161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The mass media has increasingly frequently suggested to the general population that specific foods or nutritional schemes are able to affect both human metabolism and energy expenditure, thus facilitating weight loss. This critical review is aimed at assessing available evidence on the roles of nutrients, food and dietary regimens in energy intake and energy expenditure. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASEand the Cumulative Index to Nursing and Allied Health Literature database, and a search strategy was performed by using database-specific subject headings and keywords. We found that available scientific evidence on these topics is scarce, and that the limited number of available studies often have poor methodological quality. Only a few foods show beneficial effects on metabolism and energy expenditure, as the human energy balance is complex and multifactorial. Finally, microbiota may interfere with the intake, use and expenditure of energy in the human body. Conclusive evidence is still lacking, and, at present, it is not possible to identify a food or a diet with a significant impact on human energy expenditure.
Collapse
Affiliation(s)
- Simona Bo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Maurizio Fadda
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Debora Fedele
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Marianna Pellegrini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| |
Collapse
|
16
|
Cocoa, Chocolate, and Human Health. Nutrients 2020; 12:nu12030698. [PMID: 32151002 PMCID: PMC7146487 DOI: 10.3390/nu12030698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
|