1
|
Otte CJ, Mantzioris E, Salagaras BS, Hill AM. Comparison of Australian Football League Women's athletes match day energy and nutrient intake to recommendations. Nutr Diet 2024; 81:325-334. [PMID: 38747095 DOI: 10.1111/1747-0080.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 06/04/2024]
Abstract
AIMS This cross-sectional observational study quantified Australian Football League Women's athletes' match volume, and compared match-day dietary intakes against recommendations. METHODS Self-report, direct observation, and fluid measurements determined dietary intake (n = 17, 25 ± 4.5 years, 22.8 ± 1.8 kg/m2) on five home match days (early or late starting). Global positioning system software captured match volume. Linear mixed effects models evaluated differences in early versus late match volume and nutrient intakes. Data are presented as mean ± standard deviation. RESULTS Athletes covered 6712 ± 622 m during matches, with similar numbers of very high-intensity running efforts over equal distances in early and late matches (early vs. late efforts [no.]: 8.5 ± 4.9 vs. 9.5 ± 5.5; distance [m]: 203 ± 127 vs. 212 ± 113). Across all match days, 71% (n = 12) of athletes met their predicted daily energy requirements. However, 82% (n = 14) failed to meet minimum daily carbohydrate recommendations; intake was lower on early compared with late match days (4.7 g/day vs. 5.4 g/kg/day, p = 0.027). On average, no athletes met carbohydrate recommendations in the 2 h prior to a match and only 24% (n = 4) met recommendations during matches. All athletes met post-match carbohydrate and protein requirements. CONCLUSION Athletes cover large distances during games with frequent bursts of high-intensity running. However, they do not adjust their intake to meet the energy demands of competition, with inadequate fuelling prior to and during matches. These findings emphasise the need for greater athlete education and dietary support to maximise strategic fuelling to optimise athletic performance.
Collapse
Affiliation(s)
- Chloe J Otte
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Evangeline Mantzioris
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Brianna S Salagaras
- Football Department, Adelaide Football Club, West Lakes, South Australia, Australia
| | - Alison M Hill
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Yang J, Han Q, Liu Q, Li T, Shao Y, Sui X, Wang Q. Effects of carbohydrate drinks ingestion on executive function in athletes: a systematic review and meta-analysis. Front Psychol 2023; 14:1183460. [PMID: 37637918 PMCID: PMC10448191 DOI: 10.3389/fpsyg.2023.1183460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background Carbohydrates are often used as boosters for endurance and high-intensity exercise. However, it is unclear whether carbohydrate drinks intake before or during exercise can affect specific domains of cognitive function, such as Executive Function (EF). Methods Following the guidance of PRISMA 2020, we searched six major databases including PubMed, WOS, SPORTDiscus, Cochrane, Embase, and Scopus. Outcomes were presented in the form of Reaction Time (RT), Accuracy (ACC), and Scores (Score) for performing EF tests. Effect sizes were calculated from the test results of EF and expressed as standardized mean differences (SMDs). After analyzing the overall results, we performed subgroup analyses based on the athletes' program characteristics. Results After retrieving a total of 5,355 articles, ten randomized controlled trials (RCTs) were identified and included in this review. The overall results showed that the intake of carbohydrate drinks before or during exercise did not have a significant effect on the reduction of EF after exercise (ACC (-0.05 [-0.27, 0.18]); RT (-0.18 [-0.45, 0.09]); Score (0.24 [-0.20, 0.68])). The subgroup analyses based on open skill sports and close skill sports also showed invalid results, but the results of RT ended up with different preference (ACC of open skill sports athletes (-0.10 [-0.34, 0.14]); RT of open skill athletes (-0.27 [-0.60, 0.07]); RT of close skill athletes (0.29 [-0.24, 0.82])). Conclusion The intake of 6-12% of single or mixed carbohydrates before or during exercise was not significantly effective in reducing the decline in EF after exercise. Our findings may have been influenced by the type of intervention, dose, mode of administration, or individual variability of the included subjects.
Collapse
Affiliation(s)
- Jingye Yang
- College of Exercise Science, Beijing Sport University, Beijing, China
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| | - Qi Han
- College of Exercise Science, Beijing Sport University, Beijing, China
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| | - Qi Liu
- College of Exercise Science, Beijing Sport University, Beijing, China
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| | - Tieying Li
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xuemei Sui
- Arnold School of Public Health, Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| |
Collapse
|
3
|
What Is Authentic Maple Water? A Twelve-Month Shelf-Life Study of the Chemical Composition of Maple Water and Its Biological Activities. Foods 2023; 12:foods12020239. [PMID: 36673331 PMCID: PMC9858213 DOI: 10.3390/foods12020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Maple water (maple sap) products are produced from sap tapped directly from maple trees, but there is confusion and lack of industry consensus and consumer knowledge as to what constitutes 'authentic' maple water. With an immense potential for growth in the multi-billion dollar functional beverage market, the market promotion of maple water products hinges on establishing standards of identity (SI), which are currently lacking. Herein, we aim to provide publishable SI and compositional chemistry findings of maple water. The chemical composition (including polyphenols, sugars, amino acids, and organic acids) of a pasteurized maple water was monitored over a 12-month (at 0, 4, 8, and 12 months) shelf-life. Furthermore, LC-MS/MS and molecular networking-based methods were developed to identify the phytochemical profile of a maple water extract (MWX) and to compare it to a previously chemically characterized phenolic-enriched maple syrup extract (MSX). Both MSX and MWX have similar phytochemical profiles and chemical characteristics. In addition, MSX and MWX showed moderate antioxidant capacity (in free radical scavenging and anti-tyrosinase assays) and anti-inflammatory effects (in soluble epoxide hydrolase and cyclooxygenase-2 inhibition assays). Our findings provide critical information on the SI and stability (in chemical composition) of maple water, which will help define, authenticate, and distinguish it from other functional beverages, thereby positioning the maple industry for promotion and growth in this market sector.
Collapse
|
4
|
Saraiva A, Carrascosa C, Ramos F, Raheem D, Lopes M, Raposo A. Maple Syrup: Chemical Analysis and Nutritional Profile, Health Impacts, Safety and Quality Control, and Food Industry Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13684. [PMID: 36294262 PMCID: PMC9603788 DOI: 10.3390/ijerph192013684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Maple syrup is a delicacy prepared by boiling the sap taken from numerous Acer species, primarily sugar maple trees. Compared to other natural sweeteners, maple syrup is believed to be preferable to refined sugar for its high concentration of phenolic compounds and mineral content. The presence of organic acids (malic acid), amino acids and relevant amounts of minerals, such as potassium, calcium, zinc and manganese, make maple syrup unique. Given the growing demand for naturally derived sweeteners over the past decade, this review paper deals with and discusses in detail the most important aspects of chemical maple syrup analyses, with a particular emphasis on the advantages and disadvantages of the different analytical approaches. A successful utilization on the application of maple syrup in the food industry, will rely on a better understanding of its safety, quality control, nutritional profile, and health impacts, including its sustainability issues.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Maria Lopes
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
5
|
Ramadan MF, Gad HA, Farag MA. Chemistry, processing, and functionality of maple food products: An updated comprehensive review. J Food Biochem 2021; 45:e13832. [PMID: 34180070 DOI: 10.1111/jfbc.13832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/26/2022]
Abstract
Maple sap is a rich nutrient matrix collected from Acer trees to produce several food products (i.e., sap, water, extract, syrup, and sugar), of which syrup is the most famous in the food industry for its distinct taste and flavor. Maple syrup is produced from the sap of several species (Acer saccharum, Acer nigrum, and Acer rubrum) of maple. Maple syrup is chiefly produced through the concentration of sap via thermal evaporation (pan evaporation) or membrane separation. Each processing technique affects the quality and characteristics of processed maple products. The chemistry of maple products is dominated by a myriad of other phytoconstituents other than sugar, that is, phenolics, to mediate for its many health benefits. The health-promoting effects of maple products included antioxidant, antimicrobial, antimutagenic, anti-inflammatory, and antiproliferative activities. This review capitalizes on maple food products focusing on their chemistry, processing, and health benefits compared with other sugar sweeteners. The impact of processing on maple syrup composition and biological effects in relation to original maple sap are further presented. PRACTICAL APPLICATIONS: Maple food products are natural sweeteners of significant importance due to their economic, nutritional, and health benefits. Apart from the predominant ingredient sucrose, the chemical composition of maple products comprises phenolics, pyrazines, vitamins, minerals, organic acids, and phytohormones. These bioactive compounds are of potential value owing to their health-promoting benefits, including antioxidant, antiproliferative, and antimutagenic effects. Quebecol, lariciresinol, and secoisolariciresinol are suggested as distinct markers for maple products and not common in other plant-derived syrups. Several factors, including the processing parameters and the phytochemical profile, affect maple products' flavor and color. In addition, microbial contamination of maple sap can also affect maple product quality. Further research on the effect of processing techniques and environmental conditions on the phytochemicals profile and biological effects of maple food products should now follow. Application of other omics tools, that is, genomics, proteomics, and metabolomics, to understand maple syrup effects on the human body can help reveal its exact action mechanisms or points for any potential health hazards for certain ailments.
Collapse
Affiliation(s)
- Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haidy A Gad
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
6
|
Nutrition and physical activity interventions for the general population with and without cardiometabolic risk: a scoping review. Public Health Nutr 2021; 24:4718-4736. [PMID: 34030758 DOI: 10.1017/s1368980021002184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this scoping review was to examine the research question: In the adults with or without cardiometabolic risk, what is the availability of literature examining interventions to improve or maintain nutrition and physical activity-related outcomes? Sub-topics included: (1) behaviour counseling or coaching from a dietitian/nutritionist or exercise practitioner, (2) mobile applications to improve nutrition and physical activity and (3) nutritional ergogenic aids. DESIGN The current study is a scoping review. A literature search of the Medline Complete, CINAHL Complete, Cochrane Database of Systematic Reviews and other databases was conducted to identify articles published in the English language from January 2005 until May 2020. Data were synthesised using bubble charts and heat maps. SETTING Out-patient, community and workplace. PARTICIPANTS Adults with or without cardiometabolic risk factors living in economically developed countries. RESULTS Searches resulted in 19 474 unique articles and 170 articles were included in this scoping review, including one guideline, thirty systematic reviews (SR), 134 randomised controlled trials and five non-randomised trials. Mobile applications (n 37) as well as ergogenic aids (n 87) have been addressed in several recent studies, including SR. While primary research has examined the effect of individual-level nutrition and physical activity counseling or coaching from a dietitian/nutritionist and/or exercise practitioner (n 48), interventions provided by these practitioners have not been recently synthesised in SR. CONCLUSION SR of behaviour counseling or coaching provided by a dietitian/nutritionist and/or exercise practitioner are needed and can inform practice for practitioners working with individuals who are healthy or have cardiometabolic risk.
Collapse
|
7
|
Ingestion of maple-based and other carbohydrate sports drinks: effect on sensory perceptions during prolonged exercise. J Int Soc Sports Nutr 2020; 17:63. [PMID: 33298104 PMCID: PMC7724719 DOI: 10.1186/s12970-020-00384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Taste and appreciation of sports drinks can affect perceived exertion during exercise. Anecdotal evidence shows that maple products are regularly consumed by recreational and professional athletes but very few studies have reported on their effects during exercise. The purpose of the current study is to report the taste, appreciation and perceived exertion following the ingestion of maple-based sports drinks and other carbohydrate drinks during prolonged exercise. Methods Recreationally and competitively active male subjects (n = 76, mass = 73.7 ± 10.3 kg, maximum oxygen consumption (VO2max) = 4.4 ± 0.5 L/min, maximal aerobic power (MAP) = 309 ± 42 W) ingested one of four carbohydrate solutions (all at 60 g CHO/L): concentrated maple sap (MW), diluted maple syrup (MS), glucose (G), a commercial sports drink (CSD), or a placebo (P; water sweetened with stevia) at every 30 min during 120 min of steady-state exercise (SSE) on a cycle ergometer at 66% MAP. Ratings of perceived exertion (RPE, Borg CR-10) were recorded at each 30 min throughout SSE. A questionnaire was administered to assess sensory characteristics (sweetness, acidity, refreshing, and overall taste on a visual analogue scale, converted to decimals from 0 to 1) and appreciation (sweet, acid and overall on a 9-point hedonic scale) 30 min before (immediately after the first ingestion) and immediately after SSE. Results Sweetness was perceived to be higher for MW than G and P (pre: 0.60 ± 0.19, 0.51 ± 0.17 and 0.50 ± 0.17 and post: 0.69 ± 0.19, 0.34 ± 0.18 and 0.48 ± 0.22; p < 0.05, respectively) and MS was rated higher than MW for the appreciation of the sweet taste (pre: 6.5 ± 1.5 vs. 4.6 ± 1.8 and post: 6.8 ± 1.8 and 4.1 ± 1.8; p < 0.05, respectively). Furthermore, subjects that had ingested MW, reported a significantly lower RPE than those with P at 120 min (14.1 ± 2.2 vs. 16.0 ± 2.0, respectively). Conclusions A sports drink containing maple syrup is well appreciated during prolonged exercise and appears to be a viable alternatives to more common sources of carbohydrates. Trial registration NCT02880124. Registered on 26 August 2016.
Collapse
|
8
|
Whitaker AA, Alwatban M, Freemyer A, Perales-Puchalt J, Billinger SA. Effects of high intensity interval exercise on cerebrovascular function: A systematic review. PLoS One 2020; 15:e0241248. [PMID: 33119691 PMCID: PMC7595421 DOI: 10.1371/journal.pone.0241248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022] Open
Abstract
High intensity interval exercise (HIIE) improves aerobic fitness with decreased exercise time compared to moderate continuous exercise. A gap in knowledge exists regarding the effects of HIIE on cerebrovascular function such as cerebral blood velocity and autoregulation. The objective of this systematic review was to ascertain the effect of HIIE on cerebrovascular function in healthy individuals. We searched PubMed and the Cumulative Index to Nursing and Allied Health Literature databases with apriori key words. We followed the Preferred Reporting Items for Systematic Reviews. Twenty articles were screened and thirteen articles were excluded due to not meeting the apriori inclusion criteria. Seven articles were reviewed via the modified Sackett’s quality evaluation. Outcomes included middle cerebral artery blood velocity (MCAv) (n = 4), dynamic cerebral autoregulation (dCA) (n = 2), cerebral de/oxygenated hemoglobin (n = 2), cerebrovascular reactivity to carbon dioxide (CO2) (n = 2) and cerebrovascular conductance/resistance index (n = 1). Quality review was moderate with 3/7 to 5/7 quality criteria met. HIIE acutely lowered exercise MCAv compared to moderate intensity. HIIE decreased dCA phase following acute and chronic exercise compared to rest. HIIE acutely increased de/oxygenated hemoglobin compared to rest. HIIE acutely decreased cerebrovascular reactivity to higher CO2 compared to rest and moderate intensity. The acute and chronic effects of HIIE on cerebrovascular function vary depending on the outcomes measured. Therefore, future research is needed to confirm the effects of HIIE on cerebrovascular function in healthy individuals and better understand the effects in individuals with chronic conditions. In order to conduct rigorous systematic reviews in the future, we recommend assessing MCAv, dCA and CO2 reactivity during and post HIIE.
Collapse
Affiliation(s)
- Alicen A. Whitaker
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Mohammed Alwatban
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Andrea Freemyer
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Jaime Perales-Puchalt
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Sandra A. Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, United States of America
- * E-mail:
| |
Collapse
|