1
|
Cheng LH, Wu CC, Huang CL, Wei YH, Wen PJ, Chiu SH, Chen CC, Lin CT, Liao PL. Safety evaluation of Limosilactobacillus fermentum PS150 for use as a commercial psychobiotic. Food Chem Toxicol 2025; 197:115312. [PMID: 39922479 DOI: 10.1016/j.fct.2025.115312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
The psychobiotic Limosilactobacillus fermentum PS150 (PS150), isolated from fermented meat sausage, has antidepressant, anxiolytic, and sleep-improving properties. This study investigated the safety of PS150 using a genome-based safety evaluation, antibiotic resistance profiles, mutagenicity, clastogenicity, 28-day subacute toxicity, and gastrointestinal tolerance. Bioinformatics analysis indicated that PS150 did not carry genes encoding antimicrobial resistance, virulence factors, or enzymes related to biogenic amine production. Additionally, PS150 was sensitive to the eight antibiotics tested. Ames test results showed no signs of increased reverse mutations following PS150 treatment. Further, PS150 treatment did not increase the frequency of chromosomal aberrations or number of micronuclei, and administration of PS150 (1.3 × 1011 CFU/kg, 2.6 × 1011 CFU/kg and 4.3 × 1011 CFU/kg) for 28 days did not cause any toxicity or mortality in mice. PS150 exhibited superior gastrointestinal tolerance both in vitro and in vivo, enabling it to endure and survive the digestive processes. In conclusion, our results suggest that L. fermentum PS150 is safe in mice, supporting its potential as a psychobiotic candidate for human use. The 28-day "No Observed Adverse Effect Level (NOAEL)" is defined at the highest dose of 4.3 × 1011 CFU/kg body weight/day for the PS150 powder under the test conditions employed.
Collapse
Affiliation(s)
- Li-Hao Cheng
- Research and Development Department, Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Chien-Chen Wu
- Research and Development Department, Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Chin-Lin Huang
- Research and Development Department, Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Yu-Hsuan Wei
- Research and Development Department, Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Pei-Jun Wen
- Research and Development Department, Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Shih-Hau Chiu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Ching-Ting Lin
- School of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Po-Lin Liao
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Toxicological Research Laboratory, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Singh A, Negi PS. Appraising the role of biotics and fermented foods in gut microbiota modulation and sleep regulation. J Food Sci 2025; 90:e17634. [PMID: 39750017 DOI: 10.1111/1750-3841.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
Sleep disturbances are increasingly prevalent, significantly impacting physical and mental health. Recent research reveals a bidirectional relationship between gut microbiota and sleep, mediated through the microbiota-gut-brain axis. This review examines the role of gut microbiota in sleep physiology and explores how biotics, including probiotics, prebiotics, synbiotics, postbiotics, and fermented foods, can enhance sleep quality. Drawing from animal and human studies, we discuss neurobiological mechanisms by which biotics may influence sleep, including modulation of neurotransmitters, immune responses, and hormonal regulation. Key microbial metabolites, such as short-chain fatty acids, are highlighted for their role in supporting sleep-related neurochemical processes. Additionally, this review presents dietary strategies and food processing technologies, like fermentation, as innovative approaches for sleep enhancement. Although promising, the available research has limitations, including small sample sizes, variability in biotic strains and dosages, and reliance on subjective sleep assessments. This review underscores the need for standardized protocols, objective assessments such as polysomnography, and personalized biotic interventions. Emerging findings highlight the therapeutic potential of gut microbiota modulation for sleep improvement, though further large-scale human trials are essential to refine strain selection, dosage, and formulation. This interdisciplinary exploration seeks to advance food-based interventions and holistic strategies for managing sleep disorders and improving quality of life.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
3
|
Kim M, Kim Y, Lee HW, Kim KM, Kim S, Oh S. The Improvement in Sleep Quality by Zizyphi Semen in Rodent Models Through GABAergic Transmission Regulation. Nutrients 2024; 16:4266. [PMID: 39770888 PMCID: PMC11677272 DOI: 10.3390/nu16244266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Sleep, a process physiologically vital for mental health, faces disruptions in various sleep disorders linked to metabolic and neurodegenerative risks. Zizyphus seed (Zizy) has long been recognized for its diverse pharmacological attributes, including analgesic, sedative, insomnia, and anxiety alleviation. Objectives: In this study, the sleep-prolonging effects of Zizy extract (100, 200 mg/kg), along with their characterizing compounds jujuboside A (JuA) (5, 10 mg/kg), were evaluated in a mouse model under a pentobarbital-induced sleep. Additionally, the efficacy of Zizy extract was examined on caffeine-induced insomnia in mice. Methods: To confirm the efficacy of Zizy extract on the structure and quality of sleep, an electroencephalogram (EEG) analysis of rats was performed using the MATLAB algorithm. Additionally, Western blot analysis and measurement of intracellular chloride influx were performed to confirm whether these effects acted through the gamma-aminobutyric acid (GABA)ergic system. Administration of Zizy extract showed no effect on the locomotor performance of mice, but the extract and their characteristic compounds significantly prolonged sleep duration in comparison to the pentobarbital alone group in the pentobarbital-induced sleep mouse model. Furthermore, this extract alleviated caffeine-induced insomnia in mice. Results: The administration of Zizy extract extended non-rapid eye movement sleep (NREMS) duration without inducing significant changes in the brain wave frequency. Zizy extract regulated the expression of GABAA receptor subunits and GAD65/67 in specific brain regions (frontal cortex, hippocampus, and hypothalamus). JuA increased intracellular chloride influx in human SH-SY5Y cells, and it was reduced by GABAA receptor antagonists. These results suggest that the sleep-maintaining effects of Zizy extract may entail GABAergic regulation. In summary, Zizy extract demonstrated sleep-prolonging properties, improved insomnia, and regulated sleep architecture through GABAergic system modulation. Conclusions: These findings suggest that Zizy extract has potential as a therapeutic agent for stress-related neuropsychiatric conditions such as insomnia.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea;
| | - YuJaung Kim
- Department of Neurology, Ewha Medical Research Institute, Seoul 07804, Republic of Korea; (Y.K.); (H.W.L.)
| | - Hyang Woon Lee
- Department of Neurology, Ewha Medical Research Institute, Seoul 07804, Republic of Korea; (Y.K.); (H.W.L.)
- Department of Neurology, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Kyung-Mi Kim
- Life Science Research Institute, NOVAREX Co., Ltd., Cheongju 28220, Republic of Korea; (K.-M.K.); (S.K.)
| | - Singeun Kim
- Life Science Research Institute, NOVAREX Co., Ltd., Cheongju 28220, Republic of Korea; (K.-M.K.); (S.K.)
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea;
| |
Collapse
|
4
|
Li C, Chen S, Wang Y, Su Q. Microbiome-Based Therapeutics for Insomnia. Int J Mol Sci 2024; 25:13208. [PMID: 39684918 DOI: 10.3390/ijms252313208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Insomnia poses considerable risks to both physical and mental health, leading to cognitive impairment, weakened immune function, metabolic dysfunction, cardiovascular issues, and reduced quality of life. Given the significant global increase in insomnia and the growing scientific evidence connecting gut microbiota to this disorder, targeting gut microbiota as an intervention for insomnia has gained popularity. In this review, we summarize current microbiome-based therapeutics for insomnia, including dietary modifications; probiotic, prebiotic, postbiotic, and synbiotic interventions; and fecal microbiota transplantation. Moreover, we assess the capabilities and weaknesses of these technologies to offer valuable insights for future studies.
Collapse
Affiliation(s)
- Chenyu Li
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sizhe Chen
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Wang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Liu L, Zhu JW, Wu JL, Li MZ, Lu ML, Yu Y, Pan L. Insomnia and intestinal microbiota: a narrative review. Sleep Breath 2024; 29:10. [PMID: 39589434 DOI: 10.1007/s11325-024-03206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE The intestinal microbiota and insomnia interact through the microbiota-gut-brain axis. The purpose of this review is to summarize and analyze the changes of intestinal microbiota in insomnia, the interaction mechanisms between intestinal microbiota and insomnia and the treatment methods based on the role of microbiota regulation in insomnia, in order to reveal the feasibility of artificial intervention of intestinal microbiota to improve insomnia. METHODS Pubmed/ Embase were searched through March 2024 to explore the relevant studies, which included the gut microbiota characteristics of insomnia patients, the mechanisms of interaction between insomnia and gut microbiota, and the relationship between gut microbiota and insomnia treatment. RESULTS Numerous studies implicated insomnia could induce intestinal microbiota disorder by activating the immune response, the hypothalamic-pituitary-adrenal axis, the neuroendocrine system, and affecting bacterial metabolites, resulting in intestinal ecological imbalance, intestinal barrier destruction and increased permeability. The intestinal microbiota exerted an influence on the central nervous system through its interactions with intestinal neurons, releasing neurotransmitters and inflammatory factors, which in turn, can exacerbate symptoms of insomnia. Artificial interventions of gut microbiota included probiotics, traditional Chinese medicine, fecal microbiota transplantation, diet and exercise, whose main pathway of action is to improve sleep by affecting the release of neurotransmitters and gut microbial metabolites. CONCLUSION There is an interaction between insomnia and gut microbiota, and it is feasible to diagnose and treat insomnia by focusing on changes in the gut microbiota of patients with insomnia. Large cross-sectional studies and fecal transplant microbiota studies are still needed in the future to validate its safety and efficacy.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Ji-Wei Zhu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Jing-Lin Wu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Ming-Zhen Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Man-Lu Lu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Yan Yu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China.
| | - Lei Pan
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China.
| |
Collapse
|
6
|
Ioachimescu OC. State of the art: Alternative overlap syndrome-asthma and obstructive sleep apnea. J Investig Med 2024; 72:589-619. [PMID: 38715213 DOI: 10.1177/10815589241249993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In the general population, Bronchial Asthma (BA) and Obstructive Sleep Apnea (OSA) are among the most prevalent chronic respiratory disorders. Significant epidemiologic connections and complex pathogenetic pathways link these disorders via complex interactions at genetic, epigenetic, and environmental levels. The coexistence of BA and OSA in an individual likely represents a distinct syndrome, that is, a collection of clinical manifestations attributable to several mechanisms and pathobiological signatures. To avoid terminological confusion, this association has been named alternative overlap syndrome (vs overlap syndrome represented by the chronic obstructive pulmonary disease-OSA association). This comprehensive review summarizes the complex, often bidirectional links between the constituents of the alternative overlap syndrome. Cross-sectional, population, or clinic-based studies are unlikely to elucidate causality or directionality in these relationships. Even longitudinal epidemiological evaluations in BA cohorts developing over time OSA, or OSA cohorts developing BA during follow-up cannot exclude time factors or causal influence of other known or unknown mediators. As such, a lot of pathophysiological interactions described here have suggestive evidence, biological plausibility, potential or actual directionality. By showcasing existing evidence and current knowledge gaps, the hope is that deliberate, focused, and collaborative efforts in the near-future will be geared toward opportunities to shine light on the unknowns and accelerate discovery in this field of health, clinical care, education, research, and scholarly endeavors.
Collapse
|
7
|
Barone M, Martucci M, Sciara G, Conte M, Medina LSJ, Iattoni L, Miele F, Fonti C, Franceschi C, Brigidi P, Salvioli S, Provini F, Turroni S, Santoro A. Towards a personalized prediction, prevention and therapy of insomnia: gut microbiota profile can discriminate between paradoxical and objective insomnia in post-menopausal women. EPMA J 2024; 15:471-489. [PMID: 39239112 PMCID: PMC11371979 DOI: 10.1007/s13167-024-00369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Background Insomnia persists as a prevalent sleep disorder among middle-aged and older adults, significantly impacting quality of life and increasing susceptibility to age-related diseases. It is classified into objective insomnia (O-IN) and paradoxical insomnia (P-IN), where subjective and objective sleep assessments diverge. Current treatment regimens for both patient groups yield unsatisfactory outcomes. Consequently, investigating the neurophysiological distinctions between P-IN and O-IN is imperative for devising novel precision interventions aligned with primary prediction, targeted prevention, and personalized medicine (PPPM) principles.Working hypothesis and methodology.Given the emerging influence of gut microbiota (GM) on sleep physiology via the gut-brain axis, our study focused on characterizing the GM profiles of a well-characterized cohort of 96 Italian postmenopausal women, comprising 54 insomniac patients (18 O-IN and 36 P-IN) and 42 controls, through 16S rRNA amplicon sequencing. Associations were explored with general and clinical history, sleep patterns, stress, hematobiochemical parameters, and nutritional patterns. Results Distinctive GM profiles were unveiled between O-IN and P-IN patients. O-IN patients exhibited prominence in the Coriobacteriaceae family, including Collinsella and Adlercreutzia, along with Erysipelotrichaceae, Clostridium, and Pediococcus. Conversely, P-IN patients were mainly discriminated by Bacteroides, Staphylococcus, Carnobacterium, Pseudomonas, and respective families, along with Odoribacter. Conclusions These findings provide valuable insights into the microbiota-mediated mechanism of O-IN versus P-IN onset. GM profiling may thus serve as a tailored stratification criterion, enabling the identification of women at risk for specific insomnia subtypes and facilitating the development of integrated microbiota-based predictive diagnostics, targeted prevention, and personalized therapies, ultimately enhancing clinical effectiveness. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00369-1.
Collapse
Affiliation(s)
- Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Giuseppe Sciara
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Lorenzo Iattoni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Filomena Miele
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Fonti
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Federica Provini
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Liu H, Liu D, Zhang C, Niu H, Xin X, Yi H, Liu D, Zhang J. Whole-genome analysis, evaluation and regulation of in vitro and in vivo GABA production from Levilactobacillus brevis YSJ3. Int J Food Microbiol 2024; 421:110787. [PMID: 38878704 DOI: 10.1016/j.ijfoodmicro.2024.110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Gamma-aminobutyric acid (GABA) produced by lactic acid bacteria (LAB) is safe and has several health benefits. Levilactobacillus brevis YSJ3 was selected from 110 LAB. It exhibited the highest in vitro GABA production level of 970.10 μg/mL. Whole-genome analysis revealed that L. brevis YSJ3 contained gadR, gadC, gadB and gadA. Furthermore, the Luedeking-Piret model was fitted, which indicated that GABA production was divided into three stages. The gadR 0079, gadC 0080, and gadB 0081 were confirmed to promote GABA synthesis. Moreover, 55 metabolites, particularly those involved in arginine metabolism, were significantly different at 6 and 20 h of cultivation. Notably, L. brevis YSJ3 significantly improved sleep in mice and increased GABA levels in the mice's gut compared with the control group. This suggests that the oral administration of L. brevis YSJ3 improves sleep quality, probably by increasing intestinal GABA levels. Overall, L. brevis YSJ3 was confirmed as a GABA-producing strain in vitro and in vivo, making it a promising probiotic candidate for its application in food and medicine.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Biological Fermentation, Zhejiang Yiming Food Co. Ltd, Wenzhou, 325000, China
| | - Daiyao Liu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Chengcheng Zhang
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China
| | - Haiyue Niu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China
| | - Xiaoting Xin
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Daqun Liu
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China.
| | - Jianming Zhang
- Institute of Food Science, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
9
|
Li K, Liu W, Wu C, Wang L, Huang Y, Li Y, Zheng H, Shang Y, Zhang L, Chen Z. The anti-fatigue and sleep-aiding effects vary significantly among different recipes containing Ganoderma lucidum extracts. Heliyon 2024; 10:e30907. [PMID: 38770283 PMCID: PMC11103526 DOI: 10.1016/j.heliyon.2024.e30907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Aims This study aims to delve into the anti-fatigue and sleep-aiding effects of various formulations containing Ganoderma lucidum extracts. Materials and methods PGB [incorporating Ganoderma lucidum extract (GE), broken Ganoderma lucidum spore powder (GB) and Paecilomyces hepiali mycelium (PH)] and GBS [composed of GE, GB, and Ganoderma sinense powder (GS)] were chosen as representative recipes for this study. Mice were treated with these recipes or key components of Ganoderma lucidum for 14 consecutive days. Subsequently, a weight-bearing swimming experiment was conducted to assess the mice's exhaustion time and evaluate the anti-fatigue properties of the recipes. Sleep-aiding effects were analyzed by measuring the sleep latency and duration. Furthermore, levels of blood lactic acid, serum urea nitrogen, hepatic glycogen, muscle glycogen, and malondialdehyde (MDA) were measured in the livers and muscles. Key findings The anti-fatigue abilities of the tested mice were significantly improved after treatment with PGB and their sleep quality improved as well with GBS treatment. PGB treatment for 14 days could significantly prolong the exhaustion time in weight-bearing swimming (from 10.1 ± 0.5 min to 15.2 ± 1.3 min). Meanwhile, glycogen levels in the livers and muscles were significantly increased, while the levels of serum lactic acid, serum urea nitrogen, and MDA in the livers and muscles were significantly decreased. In contrast, mice treated with GBS for 14 days experienced significant improvements in sleep quality, with shortened sleep latency (from 6.8 ± 0.7 min to 4.2 ± 0.4 min), extended sleep duration (from 88.3 ± 1.4 min to 152.5 ± 9.3 min), and decreased muscle MDA levels. These results indicated that Ganoderma lucidum extracts can be used for anti-fatigue and or aid in sleeping, depending on how they are prepared and administered. Significance This study provides experimental evidence and theoretical basis for the development of Ganoderma lucidum recipes that are specifically designed to help with anti-fatigue and sleep.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, Fujian, 350002, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350108, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co. Ltd., Fuzhou, Fujian, 350108, China
| | - Le Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350108, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co. Ltd., Fuzhou, Fujian, 350108, China
| | - Huimin Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanyu Shang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Zhao FY, Spencer SJ, Kennedy GA, Zheng Z, Conduit R, Zhang WJ, Xu P, Yue LP, Wang YM, Xu Y, Fu QQ, Ho YS. Acupuncture for primary insomnia: Effectiveness, safety, mechanisms and recommendations for clinical practice. Sleep Med Rev 2024; 74:101892. [PMID: 38232645 DOI: 10.1016/j.smrv.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Primary insomnia (PI) is an increasing concern in modern society. Cognitive-behavioral therapy for insomnia is the first-line recommendation, yet limited availability and cost impede its widespread use. While hypnotics are frequently used, balancing their benefits against the risk of adverse events poses challenges. This review summarizes the clinical and preclinical evidence of acupuncture as a treatment for PI, discussing its potential mechanisms and role in reliving insomnia. Clinical trials show that acupuncture improves subjective sleep quality, fatigue, cognitive impairments, and emotional symptoms with minimal adverse events. It also positively impacts objective sleep processes, including prolonging total sleep time, improving sleep efficiency, reducing sleep onset latency and wake after sleep onset, and enhancing sleep architecture/structure, including increasing N3% and REM%, and decreasing N1%. However, methodological shortcomings in some trials diminish the overall quality of evidence. Animal studies suggest that acupuncture restores circadian rhythms in sleep-deprived rodents and improves their performance in behavioral tests, possibly mediated by various clinical variables and pathways. These may involve neurotransmitters, brain-derived neurotrophic factors, inflammatory cytokines, the hypothalamic-pituitary-adrenal axis, gut microbiota, and other cellular events. While the existing findings support acupuncture as a promising therapeutic strategy for PI, additional high-quality trials are required to validate its benefits.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Gerard A Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia; Institute of Health and Wellbeing, Federation University, Mount Helen, Victoria, Australia; Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Zhen Zheng
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, 3000, Australia
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China
| | - Yan-Mei Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yan Xu
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China.
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
11
|
Tanihiro R, Yuki M, Sasai M, Haseda A, Kagami-Katsuyama H, Hirota T, Honma N, Nishihira J. Effects of Prebiotic Yeast Mannan on Gut Health and Sleep Quality in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 16:141. [PMID: 38201970 PMCID: PMC10780920 DOI: 10.3390/nu16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human gut health is closely related to sleep. We aimed to evaluate the efficacy of yeast mannan (YM) in improving bowel habits and sleep quality, along with metabolomics in fecal samples. A total of 40 healthy adults (age range, 22-64 years) with discomfort in defecation were enrolled and randomly allocated to receive either YM (n = 20; 1.1 g/day) or placebo (n = 20) for four weeks. Participants recorded their defecation habits throughout the test periods. Sleep electroencephalogram (EEG) recording using an EEG device and fecal sampling were performed pre- and post-treatment. The YM group significantly increased defecation frequency and stool volumes compared to the placebo group. After 4 weeks of treatment, the non-REM sleep stage 3 (N3) duration in the YM group was significantly higher than that in the placebo group. YM ingestion significantly lengthened total time in bed (TIB) and significantly shortened N3 latency compared to placebo intake during the trial. The metabolomics analysis found a total of 20 metabolite differences between the YM and placebo groups. As a result of stepwise linear regression, changes in fecal propionate and gamma-aminobutyric acid (GABA) levels were identified as the primary factors explaining changes in TIB and N3 latency, respectively. Our findings suggest that the prebiotic YM could be beneficial to gut health and sleep quality.
Collapse
Affiliation(s)
- Reiko Tanihiro
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Masahiro Yuki
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Masaki Sasai
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Akane Haseda
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Hiroyo Kagami-Katsuyama
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Tatsuhiko Hirota
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Naoyuki Honma
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| |
Collapse
|
12
|
Gil-Hernández E, Ruiz-González C, Rodriguez-Arrastia M, Ropero-Padilla C, Rueda-Ruzafa L, Sánchez-Labraca N, Roman P. Effect of gut microbiota modulation on sleep: a systematic review and meta-analysis of clinical trials. Nutr Rev 2023; 81:1556-1570. [PMID: 37023468 DOI: 10.1093/nutrit/nuad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
CONTEXT A bidirectional relationship between gut microbiota (GM) and circadian rhythms has been proposed. OBJECTIVE The aim of this study was to analyze the efficacy of probiotic or prebiotic intervention on sleep quality and quantity. DATA SOURCES A systematic review and meta-analysis were conducted using the databases PubMed (MEDLINE), Embase, CINAHL, and Web of Science. Only randomized clinical trials written in English or Spanish were considered. DATA EXTRACTION The initial search resulted in 219 articles. Following the removal of duplicates and consideration of the selection criteria, 25 articles were selected for the systematic review and 18 articles for the meta-analysis. DATA ANALYSIS Microbiota modulation was not demonstrated to be associated with significant improvement in sleep quality in the present meta-analysis (P = 0.31). In terms of sleep duration, the meta-analysis found no improvement due to GM modulation (P = 0.43). CONCLUSION The results of this meta-analysis indicate that there is still insufficient evidence to support the relationship between GM modulation and improved sleep quality. While several studies assume that including probiotics in the diet will undoubtedly improve sleep quality, more research is needed to fully understand this phenomenon. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021245118.
Collapse
Affiliation(s)
| | | | - Miguel Rodriguez-Arrastia
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Carmen Ropero-Padilla
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Nuria Sánchez-Labraca
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Spain
- Research Group CTS-1114 Health Sciences, University of Almeria, Almeria, Spain
| |
Collapse
|
13
|
Li L, Liang T, Jiang T, Li Y, Yang L, Wu L, Yang J, Ding Y, Wang J, Chen M, Zhang J, Xie X, Wu Q. Gut microbiota: Candidates for a novel strategy for ameliorating sleep disorders. Crit Rev Food Sci Nutr 2023; 64:10772-10788. [PMID: 37477274 DOI: 10.1080/10408398.2023.2228409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The aim of this review was to evaluate the feasibility of treating sleep disorders using novel gut microbiota intervention strategies. Multiple factors can cause sleep disorders, including an imbalance in the gut microbiota. Studies of the microbiome-gut-brain axis have revealed bidirectional communication between the central nervous system and gut microbes, providing a more comprehensive understanding of mood and behavioral regulatory patterns. Changes in the gut microbiota and its metabolites can stimulate the endocrine, nervous, and immune systems, which regulate the release of neurotransmitters and alter the activity of the central nervous system, ultimately leading to sleep disorders. Here, we review the main factors affecting sleep, discuss possible pathways and molecular mechanisms of the interaction between sleep and the gut microbiota, and compare common gut microbiota intervention strategies aimed at improving sleep physiology.
Collapse
Affiliation(s)
- Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Huang CL, Chu HF, Wu CC, Deng FS, Wen PJ, Chien SP, Chao CH, Chen YT, Lu MK, Tsai YC. Exopolysaccharide is the potential effector of Lactobacillus fermentum PS150, a hypnotic psychobiotic strain. Front Microbiol 2023; 14:1209067. [PMID: 37469436 PMCID: PMC10352126 DOI: 10.3389/fmicb.2023.1209067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Psychobiotics are a class of probiotics that confer beneficial effects on the mental health of the host. We have previously reported hypnotic effects of a psychobiotic strain, Lactobacillus fermentum PS150 (PS150), which significantly shortens sleep latency in experimental mice, and effectively ameliorate sleep disturbances caused by either caffeine consumption or a novel environment. In the present study, we discovered a L. fermentum strain, GR1009, isolated from the same source of PS150, and found that GR1009 is phenotypically distinct but genetically similar to PS150. Compared with PS150, GR1009 have no significant hypnotic effects in the pentobarbital-induced sleep test in mice. In addition, we found that heat-killed PS150 exhibited hypnotic effects and altered the gut microbiota in a manner similar to live bacteria, suggesting that a heat-stable effector, such as exopolysaccharide (EPS), could be responsible for these effects. Our comparative genomics analysis also revealed distinct genetic characteristics in EPS biosynthesis between GR1009 and PS150. Furthermore, scanning electron microscopy imaging showed a sheet-like EPS structure in PS150, while GR1009 displayed no apparent EPS structure. Using the phenol-sulfate assay, we found that the sugar content value of the crude extract containing EPS (C-EPS) from PS150 was approximately five times higher than that of GR1009, indicating that GR1009 has a lower EPS production activity than PS150. Through the pentobarbital-induced sleep test, we confirmed the hypnotic effects of the C-EPS isolated from PS150, as evidenced by a significant reduction in sleep latency and recovery time following oral administration in mice. In summary, we utilized a comparative approach to delineate differences between PS150 and GR1009 and proposed that EPS may serve as a key factor that mediates the observed hypnotic effect.
Collapse
Affiliation(s)
- Chin-Lin Huang
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | | | | | - Shao-Ping Chien
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ying-Tsong Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Cao XL, Peng XM, Li GB, Ding WS, Wang KZ, Wang XL, Xiong YY, Xiong WJ, Li F, Song M. Chaihu-Longgu-Muli decoction improves sleep disorders by restoring orexin-A function in CKD mice. Front Endocrinol (Lausanne) 2023; 14:1206353. [PMID: 37441503 PMCID: PMC10333748 DOI: 10.3389/fendo.2023.1206353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Chaihu-Longgu-Muli decoction (CLMD) is a well-used ancient formula originally recorded in the "Treatise on Febrile Diseases" written by the founding theorist of Traditional Chinese Medicine, Doctor Zhang Zhongjing. While it has been used extensively as a therapeutic treatment for neuropsychiatric disorders, such as insomnia, anxiety and dementia, its mechanisms remain unclear. Methods In order to analyze the therapeutic mechanism of CLMD in chronic renal failure and insomnia, An adenine diet-induced chronic kidney disease (CKD) model was established in mice, Furthermore, we analyzed the impact of CLMD on sleep behavior and cognitive function in CKD mice, as well as the production of insomnia related regulatory proteins and inflammatory factors. Results CLMD significantly improved circadian rhythm and sleep disturbance in CKD mice. The insomnia related regulatory proteins, Orexin, Orexin R1, and Orexin R2 in the hypothalamus of CKD mice decreased significantly, while Orexin and its receptors increased remarkably after CLMD intervention. Following administration of CLMD, reduced neuron loss and improved learning as well as memory ability were observed in CKD mice. And CLMD intervention effectively improved the chronic inflflammatory state of CKD mice. Discussion Our results showed that CLMD could improve sleep and cognitive levels in CKD mice. The mechanism may be related to the up-regulation of Orexin-A and increased phosphorylation level of CaMKK2/AMPK, which further inhibits NF-κB downstream signaling pathways, thereby improving the disordered inflammatory state in the central and peripheral system. However, More research is required to confirm the clinical significance of the study.
Collapse
Affiliation(s)
- Xin-li Cao
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xue-mei Peng
- Department of Traditional Chinese Medicine, Chongqing General Hospital, Chongqing, China
| | - Gong-bo Li
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-sen Ding
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Kai-zhen Wang
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiao-lei Wang
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yan-ying Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Wei-jian Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Fan Li
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Min Song
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Yoon DW, Baik I. Oral Administration of Human-Gut-Derived Prevotella histicola Improves Sleep Architecture in Rats. Microorganisms 2023; 11:1151. [PMID: 37317125 DOI: 10.3390/microorganisms11051151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
(1) Background: The human gut microbiome may regulate sleep through the gut-brain axis. However, the sleep-promoting effects of gut microbiota remain unclear. (2) Methods: We obtained sleep-wake profiles from 25 rats receiving P. histicola (P. histicola group), 5 rats receiving P. stercorea (P. stercorea group), 4 rats not receiving bacteria (No administration group), and 8 rats receiving P. histicola extracellular vesicles (EV) (EV group) during the baseline, administration, and withdrawal periods. (3) Results: The P. histicola group showed increased total sleep, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep time during the administration and withdrawal periods; on the last day of administration, we found significant increases of 52 min for total sleep (p < 0.01), 13 min for REM sleep (p < 0.05), and 39 min for NREM sleep (p < 0.01) over the baseline. EV administration also increased NREM sleep time on Day 3 of administration (p = 0.05). We observed a linear trend in the dose-response relationship for total sleep and NREM sleep in the P. histicola group. However, neither the no-administration group nor the P. stercorea group showed significant findings. (4) Conclusions: Oral administration of probiotic P. histicola may improve sleep and could be a potential sleep aid. Further rigorous evaluations for the safety and efficacy of P. histicola supplementation are warranted.
Collapse
Affiliation(s)
- Dae Wui Yoon
- Department of Biomedical Laboratory Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Inkyung Baik
- Department of Foods and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
17
|
Kim M, Kim Y, Lee HW, Jung JC, Oh S. Chrysanthemum morifolium and Its Bioactive Substance Enhanced the Sleep Quality in Rodent Models via Cl - Channel Activation. Nutrients 2023; 15:1309. [PMID: 36986039 PMCID: PMC10059900 DOI: 10.3390/nu15061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Dried Chrysanthemum morifolium (Chry) flowers have been used in Korea as a traditional insomnia treatment. In this study, the sleep-promoting activity and improving sleep quality of Chry extract (ext) and its active substance linarin were analyzed by pentobarbital-induced sleep experiment in mice and electroencephalography (EEG), electromyogram (EMG) analysis in rats. In a dose-dependent manner, Chry ext and linarin promoted longer sleep duration in the pentobarbital-induced sleep test compared to pentobarbital-only groups at both hypnotic and subhypnotic doses. Chry ext administration also significantly improved sleep quality, as seen in the relative power of low-frequency (delta) waves when compared with the control group. Linarin increased Cl- uptake in the SH-SY5Y human cell line and chloride influx was reduced by bicuculline. After administration of Chry ext, the hippocampus, frontal cortex, and hypothalamus from rodents were collected and blotted for glutamic acid decarboxylase (GAD)65/67 and gamma-aminobutyric acid (GABA)A receptors subunit expression levels. The expression of α1-subunits, β2-subunits, and GAD65/67 of the GABAA receptor was modulated in the rodent brain. In conclusion, Chry ext augments pentobarbital-induced sleep duration and enhances sleep quality in EEG waves. These effects might be due to the activation of the Cl- channel.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - YuJaung Kim
- Department of Neurology, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyang Woon Lee
- Department of Neurology, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
- Graduate Programs in Artificial Intelligence Convergence, Computational Medicine, System Health Science and Engineering, Ewha Womans University, Seoul 03765, Republic of Korea
| | - Jae-Chul Jung
- Life Science Research Institute, NOVAREX Co., Ltd., Cheongju 28220, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
18
|
DÜDÜKÇÜ N, ÖĞÜT S. Psychobiotics and Elderly Health. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2022. [DOI: 10.18863/pgy.1033628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
While aging with physiological dimensions refers to the changes seen with chronological age, on the other hand, aging with psychological dimensions refers to the change of humans’ capacity to adaptively. Such as learning, psychomotor, problem-solving and personality traits. With the improvement of life quality in recent years, the average life expectancy and therefore the incidence of neurodegenerative diseases among the elderly have also increased. Although the aging process is universal, progressive, gradual and unstoppable, human gut microbiota-targeted aging management is a new approach to health and anti-aging. Nutrition plays a big factor in the elderly population with providing adequate cognitive and physical functions and when taking the right nutrition it also reduces the risk of chronic diseases. When adding functional foods into the diet, it can play a significant role to reduce the risk of diet-related diseases. Such as probiotics and prebiotics. In recent years, a new subclass of probiotics called ‘psychobiotics’ has emerged. These psychobiotics are defined as probiotics that, when taken in appropriate amounts, it creates positive psychiatric effects in human psychopathology. Examination of this new class of probiotics provides a glimmer of hope for the effective management of neurodegenerative diseases and various psychiatric disorders, especially with increasing life expectancy. Also, recommending the use of probiotics in old age will contribute to the treatment of some health problems related to aging.
Collapse
|
19
|
The Role of Gut Bacteriome in Asthma, Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnoea. Microorganisms 2022; 10:microorganisms10122457. [PMID: 36557710 PMCID: PMC9781820 DOI: 10.3390/microorganisms10122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The human body contains a very complex and dynamic ecosystem of bacteria. The bacteriome interacts with the host bi-directionally, and changes in either factor impact the entire system. It has long been known that chronic airway diseases are associated with disturbances in the lung bacteriome. However, less is known about the role of gut bacteriome in the most common respiratory diseases. Here, we aim to summarise the evidence concerning the role of the intestinal bacteriome in the pathogenesis and disease course of bronchial asthma, chronic obstructive pulmonary disease, and obstructive sleep apnea. Furthermore, we discuss the consequences of an altered gut bacteriome on the most common comorbidities of these lung diseases. Lastly, we also reflect on the therapeutic potential of influencing the gut microbiome to improve disease outcomes.
Collapse
|
20
|
Liu D, Zhang J, Chen J, Zhang C, Yi H, Liu D. Carrot-based fermentation juice rich in sleep-promoting components improved sleep in mice. Front Nutr 2022; 9:1043055. [PMID: 36523330 PMCID: PMC9745110 DOI: 10.3389/fnut.2022.1043055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
The impact of fermentation by Levilactobacillus brevis YSJ3 on sleep-promoting components (SPCs) of carrot juice was evaluated. The contents of acetic acid, isovaleric acid, butyric acid, and γ-aminobutyric acid (GABA) significantly increased after fermentation. The beneficial effects of fermented carrot juice (FCJ) on sleep were evaluated in animal experiments. Behavioral test reveal SPCs-enriched FCJ could effectively relieve anxiety. The sleep duration in the FCJ group were extended compared to the control (NC) group and the unfermented carrot juice (UCJ) group. Moreover, the relative abundances of Ruminiclostridium and Akkermansia in the FCJ group and PC group, respectively, increased significantly, compared to the NC group the UCJ group. The contents of gut short-chain fatty acids in the FCJ group were significantly higher than that in the NC group and the UCJ group. The levels of GABA and 5-hydroxytryptamine in the brain for the FCJ group also increased significantly, compared to the NC group and the UCJ group. It indicated that SPCs-enriched FCJ effectively improved sleep in mice, which might be related to the fermentation of carrot juice and the compounds produced during the fermentation.
Collapse
Affiliation(s)
- Daiyao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Juan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chengcheng Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Daqun Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
A Combination of Rosa Multiflora and Zizyphus Jujuba Enhance Sleep Quality in Anesthesia-Induced Mice. Int J Mol Sci 2022; 23:ijms232214177. [PMID: 36430653 PMCID: PMC9696267 DOI: 10.3390/ijms232214177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep is an essential component of quality of life. The majority of people experience sleep problems that impact their quality of life. Melatonin is currently a representative sleep aid. However, it is classified as a prescription drug in most countries, and consumers cannot purchase it to improve their sleep. This sleep induction experiment in mice aimed to identify a natural combination product (NCP) that can create synergistic sleep-promoting effects. Based on the mechanism of action of sleep, we investigated whether phenomenological indicators of sleep quality change according to the intake of NCP. The sleep onset and sleep time of the mice that consumed the NCP found by this study were improved compared to the existing sleep aids. The mean melatonin level in the blood increased by 197% compared to the control. To our knowledge, this is the first study to demonstrate that Rosa multiflora Thunb. (Yeongsil) can promote sleep similarly to Zizyphus jujuba Miller (Sanjoin). The results indicate a preclinical study of NCPs containing Rosa multiflora Thunb and Zizyphus jujuba Miller developed by us showed significant differences in sleep incubation and duration depending on melatonin concentrations. Our results also suggest that increased melatonin concentrations in the blood are likely to improve sleep quality, especially regarding incubation periods.
Collapse
|
22
|
Wu SI, Wu CC, Cheng LH, Noble SW, Liu CJ, Lee YH, Lin CJ, Hsu CC, Chen WL, Tsai PJ, Kuo PH, Tsai YC. Psychobiotic supplementation of HK-PS23 improves anxiety in highly stressed clinical nurses: a double-blind randomized placebo-controlled study. Food Funct 2022; 13:8907-8919. [PMID: 35924970 DOI: 10.1039/d2fo01156e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nurses often experience adverse health effects associated with increasing levels of work-related stress. Stress may induce systemic effects through the HPA axis, glucocorticoid responses, and inflammatory cascades. Psychobiotics may help alleviate stress through associations of the microbiota, anti-inflammation factors, and the gut-brain axis. We aimed to investigate whether interventions with a psychobiotic, heat-killed (HK)-PS23 cells, may help improve perceived stress, anxiety, and related biological markers among highly stressed clinical nurses. This double-blind, randomized, placebo-controlled study included seventy clinical nurses from a medical center in Northern Taiwan who scored 27 or higher on the 10-item version of the Perceived Stress Scale (PSS), and participants were randomized into either taking HK-PS23 or a placebo for 8 weeks. Baseline and endpoint results of the PSS, Job Stress Scale, State and Trait Anxiety Index (STAI), emotional questionnaires, gastrointestinal severity questionnaires, Trails Marking Tests, blood biological markers, and sleep data were analyzed. While both groups demonstrated improvements in most measures over time, only the blood cortisol measure demonstrated significant group differences after the 8-week trial. Further analyses of the subgroup with higher anxiety (nurses with STAI ≥ 103) revealed that anxiety states had improved significantly in the HK-PS23 group but not in the placebo group. In summary, this placebo-controlled trial found significant reduction in the level of blood cortisol after 8 weeks of HK-PS23 use. The distinctive anxiolytic effects of HK-PS23 may be beneficial in improving perceived anxiety and stress hormone levels in female nurses under pressure. Clinical trial registration: https://clinicaltrials.gov/, identifier: NCT04452253-sub-project 1.
Collapse
Affiliation(s)
- Shu-I Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan. .,Section of Psychiatry and Suicide Prevention Center, MacKay Memorial Hospital, Taipei, Taiwan
| | | | | | | | - Chih-Ju Liu
- Department of Nursing, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hsia Lee
- Department of Nursing, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Ju Lin
- Section of Psychiatry and Suicide Prevention Center, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Wan-Lin Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev 2022; 65:101691. [DOI: 10.1016/j.smrv.2022.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
24
|
Influence of warm acupuncture on gut microbiota and metabolites in rats with insomnia induced by PCPA. PLoS One 2022; 17:e0267843. [PMID: 35482778 PMCID: PMC9049555 DOI: 10.1371/journal.pone.0267843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Insomnia is the most common of the sleep disorders. Current pharmacotherapy treatment options are usually associated with adverse effects and withdrawal phenomena. Therapeutic alternatives with a more favorable safety profile for patients are needed. Mongolian medical warm acupuncture (MMWA) is an emerging therapeutic option for treating insomnia. However, the underlying mechanisms responsible for the anti-insomnia efficacy of the MMWA remain unclear. This study aims to investigate the effect of the MMWA on the alterations of the gut microbiota and serum metabolome in rats with insomnia. Results We found that the relative abundances of gut bacteria and the concentrations of several serum metabolites were obviously altered in PCPA-induced insomnia rats. The MMWA treatment exerted an anti-insomnia effect. In addition, the dysbiosis of the gut microbiota and the serum metabolites were ameliorated by the MMWA. Correlation analysis between the gut microbiota and metabolites suggested that the levels of Amide c18, Benzoyl chloride, Cytosine, and N, n-dimethylarginine were positively correlated with the relative abundance of Clostridium XlVa and Blautia, which characterized the insomnia rats. KEGG enrichment analysis identified the cAMP signaling pathway involving anti-insomnia effect of the MMWA. Moreover, the MMWA intervention significantly increased contents of butyrate in feces, while effectively inhibited the expression level of GAT-1 in brain tissues. Conclusion This study reveals that the MMWA intervention might have a major impact on the modulation of host gut microbiota and metabolites, which in turn have a crucial role in the regulation of the host’s signaling pathways associated with insomnia. The present study could provide useful ideas for the study of the intervention mechanisms of the MMWA in insomnia rat models.
Collapse
|
25
|
Tian Y, Yang W, Chen G, Men C, Gu Y, Song X, Zhang R, Wang L, Zhang X. An important link between the gut microbiota and the circadian rhythm: imply for treatments of circadian rhythm sleep disorder. Food Sci Biotechnol 2022; 31:155-164. [PMID: 35186346 PMCID: PMC8817960 DOI: 10.1007/s10068-021-01015-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, gut microbiota living in the gastrointestinal tract, plays an important role in regulating host's sleep and circadian rhythms. As a tool, gut microbiota has great potential for treating circadian disturbance and circadian insomnia. However, the relationship between gut microbiota and circadian rhythms is still unclear, and the mechanism of action has still been the focus of microbiome research. Therefore, this article summarizes the current evidences associating gut microbiota with factors that impact host circadian rhythms neurology sleep disorder. Moreover, we discuss the changes to these systems in sleep disorder and the potential mechanism of intestinal microbiota in regulating circadian rhythms neurology sleep disorder via microbial metabolites. Meanwhile, based on the role of intestinal flora, it is provided a novel insight into circadian related insomnia and will be benefit the dietary treatment of circadian disturbance and the circadian related insomnia.
Collapse
Affiliation(s)
- Yufei Tian
- grid.203507.30000 0000 8950 5267Department of Food Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211 People’s Republic of China
| | - Wei Yang
- grid.203507.30000 0000 8950 5267Department of Food Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211 People’s Republic of China
| | - Gang Chen
- grid.203507.30000 0000 8950 5267Department of Food Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211 People’s Republic of China
| | - Chuanlong Men
- grid.203507.30000 0000 8950 5267Department of Food Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211 People’s Republic of China
| | - Yifan Gu
- grid.203507.30000 0000 8950 5267Department of Food Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211 People’s Republic of China
| | - Xiaoran Song
- grid.203507.30000 0000 8950 5267Department of Food Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211 People’s Republic of China
| | - Ruilin Zhang
- grid.203507.30000 0000 8950 5267Department of Food Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211 People’s Republic of China
| | - Laiyou Wang
- grid.410643.4Department of Clinical Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 Guangdong People’s Republic of China
| | - Xin Zhang
- grid.203507.30000 0000 8950 5267Department of Food Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211 People’s Republic of China
| |
Collapse
|
26
|
Kang Y, Kang X, Cai Y. The gut microbiome as a target for adjuvant therapy in insomnia disorder. Clin Res Hepatol Gastroenterol 2022; 46:101834. [PMID: 34800683 DOI: 10.1016/j.clinre.2021.101834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
Insomnia is a type of sleep disorder which has negative impacts on the quality of life, mood, cognitive function and health of humans. The etiology of insomnia may be related to many factors such as genetics, biochemistry, neuroendocrine, immune, and psychosocial factors. However, the detailed pathological aspects of insomnia remain unclear. Recent investigation of the microbiome-gut-brain axis enhances our understanding of the role of the gut microbiota in brain-related diseases. Gut microbiome has been shown to be associated with insomnia. However, the available data in this field remain limited and the relevant scientific work has only recently begun. This review aims to summarize the recent literature as an aid to better understanding how the alteration of gut microbiota composition contributes to insomnia while evaluating and prospecting the therapeutic effect of modulating gut microbiota in the treatment of insomnia based on previous publications.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xing Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
27
|
Comprehensive 16S rDNA Sequencing and LC-MS/MS-Based Metabolomics to Investigate Intestinal Flora and Metabolic Profiles of the Serum, Hypothalamus and Hippocampus in p‑Chlorophenylalanine-Induced Insomnia Rats Treated with Lilium brownie. Neurochem Res 2021; 47:574-589. [PMID: 34661797 DOI: 10.1007/s11064-021-03466-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Gut microbiota homeostasis in the organism and insomnia have been reported to influence each other. In the study, a method of 16S rRNA gene sequencing combined with ultra-high performance liquid chromatography-mass/mass spectrometry was adopted to evaluate the effects of Lilium brownie (LB) on intestinal flora and metabolic profiles of serum, hypothalamus and hippocampus in insomnia rat induced by p‑chlorophenylalanine (PCPA). It was observed that the imbalance in the diversity and abundance of gut microbiota induced by PCPA was restored after LB intervention. Among these, the Porphyromonadaceae, Lactobacillus and Escherichia were significantly adjusted at the genus level by PCPA and LB, respectively. It was also found that the most of metabolic phenotypes in serum, hypothalamus and hippocampus perturbed by PCPA were regulated towards normal after LB intervention, especially 5-hydroxy-L-tryptophan of the hypothalamus involving in 5-HT metabolism. Moreover, the arachidonic acid metabolism in serum, hypothalamus and hippocampus, and the serotonergic synapse in hypothalamus and hippocampus were the most fundamentally and significantly affected pathways after LB intervention. The results of correlation analysis showed that several floras including Pseudoruegeria have an outstanding contribution to the change of differential metabolites. In brief, the results confirm that gut microbiota is significantly returned to normal and may interact with the corresponding metabolites to relieve insomnia under LB intervention.
Collapse
|
28
|
Zhang W, Miao R, Tang J, Su Q, Li P, Pi H. Low temperature exerts protective effects by inhibiting mitochondria-mediated apoptosis pathway following pressure injury to rat muscle. Rev Esc Enferm USP 2021; 55:e20200319. [PMID: 34528993 DOI: 10.1590/1980-220x-reeusp-2020-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/08/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE We aimed to determine the effect of different low-temperature range interventions at different time-points in a rat model of pressure injury (PI) produced by Ischemia/Reperfusion (I/R) injury. METHODS Sprague-Dawley rats were randomly assigned to blank control, injury control, and temperature intervention groups. Rats in the injury control and temperature intervention groups (involving exposure to different temperature range at different time-points) were subjected to three cycles of I/R injury with 2-h ischemia and 0.5-h reperfusion to induce PI. RESULTS The muscle tissues exhibited degenerative changes after compression. Low temperature intervention of 16-18°C in the ischemia period resulted in the lowest degree of tissue damage and significantly decreased levels of Bcl-2-associated X protein (Bax), caspase-9, and caspase-3. Moreover, it resulted in the highest expression level of B-cell lymphoma 2 (Bcl-2) and lowest expression levels of Bax, caspase-9, and caspase-3 in muscle tissues among all intervention groups. CONCLUSION Low-temperature intervention at 16-18°C during the ischemia period showed optimal effects on the expressions of apoptotic factors during the development of PI with I/R-induced tissue damage.
Collapse
Affiliation(s)
- Wenyu Zhang
- Capital Medical University School of Nursing, Beijing, China.,Medical School of Chinese PLA, Beijing, China.,College of Social Administration, Department of Senior Citizens Welfare, Beijing, China
| | - Ran Miao
- Capital Medical University, Beijing Chao-Yang Hospital, Medical Research Center, Beijing, 100853, China
| | | | - Qingqing Su
- Medical School of Chinese PLA, Beijing, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Hongying Pi
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
29
|
Neroni B, Evangelisti M, Radocchia G, Di Nardo G, Pantanella F, Villa MP, Schippa S. Relationship between sleep disorders and gut dysbiosis: what affects what? Sleep Med 2021; 87:1-7. [PMID: 34479058 DOI: 10.1016/j.sleep.2021.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022]
Abstract
Sleep plays a fundamental role in maintaining good psycho-physical health, it can influence hormone levels, mood, and weight. Recent studies, focused on the interconnection between intestinal microbiome and sleep disorders, have shown the growing importance of a healthy and balanced intestinal microbiome for the hosts health. Normally, gut microbiota and his host are linked by mutualistic relationship, that in some conditions, can be compromised by shifts in microbiota's composition, called dysbiosis. Both sleep problems and dysbiosis of the gut microbiome can lead to metabolic disorders and, in this review, we will explore what is present in literature on the link between sleep pathologies and intestinal dysbiosis.
Collapse
Affiliation(s)
- Bruna Neroni
- Department of Public Health and Infection Disease, Microbiology Section Sapienza University of Rome, Italy
| | | | - Giulia Radocchia
- Department of Public Health and Infection Disease, Microbiology Section Sapienza University of Rome, Italy
| | - Giovanni Di Nardo
- Sant'Andrea Hospital, NESMOS Department, Sapienza University of Rome, Italy
| | - Fabrizio Pantanella
- Department of Public Health and Infection Disease, Microbiology Section Sapienza University of Rome, Italy
| | - Maria Pia Villa
- Sant'Andrea Hospital, NESMOS Department, Sapienza University of Rome, Italy
| | - Serena Schippa
- Department of Public Health and Infection Disease, Microbiology Section Sapienza University of Rome, Italy.
| |
Collapse
|
30
|
Lin A, Shih CT, Chu HF, Chen CW, Cheng YT, Wu CC, Yang CCH, Tsai YC. Lactobacillus fermentum PS150 promotes non-rapid eye movement sleep in the first night effect of mice. Sci Rep 2021; 11:16313. [PMID: 34381098 PMCID: PMC8357945 DOI: 10.1038/s41598-021-95659-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
The first night effect (FNE) is a type of sleep disturbance caused by an unfamiliar environment, which leads to difficulty falling asleep and reduced sleep duration. Previously, we reported that Lactobacillus fermentum PS150 (PS150) improves sleep conditions in a pentobarbital-induced sleep mouse model. In this study, we aimed to evaluate the effect of PS150 on the FNE in mice. Briefly, mice were implanted with electrodes and orally administered PS150 for four weeks, and then the FNE was induced by cage changing. Analysis of polysomnographic signals revealed that intervention with PS150 restored non-rapid eye movement (NREM) sleep length under the FNE. Compared to diphenhydramine, a commonly used sleep aid, PS150 had no unwanted side effects, such as rapid eye movement (REM) sleep deprivation and fragmented sleep. Moreover, temporal analysis revealed that PS150 efficiently reduced both sleep latency and time spent restoring normal levels of REM sleep. Taken together, these results suggest that PS150 efficiently ameliorates sleep disturbance caused by the FNE. Additionally, V3–V4 16S rRNA sequencing revealed significant increases in Erysipelotrichia, Actinobacteria, and Coriobacteriia in fecal specimens of the PS150-treated group, indicating that PS150 induces gut microbiota remodeling.
Collapse
Affiliation(s)
- Alexander Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Chung Mei Biopharma Co., Ltd., Taichung, Taiwan
| | | | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan
| | - Chieh-Wen Chen
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Cheng
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | - Cheryl C H Yang
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan. .,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.
| |
Collapse
|
31
|
Chen CM, Wu CC, Huang CL, Chang MY, Cheng SH, Lin CT, Tsai YC. Lactobacillus plantarum PS128 Promotes Intestinal Motility, Mucin Production, and Serotonin Signaling in Mice. Probiotics Antimicrob Proteins 2021; 14:535-545. [PMID: 34327633 PMCID: PMC9076750 DOI: 10.1007/s12602-021-09814-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/27/2022]
Abstract
Lactobacillus plantarum PS128 has been reported as a psychobiotic to improve mental health through the gut–brain axis in experimental animal models. To explore its mechanism of action in the gut, this study aimed to analyze the effects of L. plantarum PS128 ingestion on naïve and loperamide (Lop)-induced constipation mice. We found that, in the two mouse models, the weight, number, and water content of feces in the L. plantarum PS128 group were higher than those in the vehicle control group. Histological observation revealed that L. plantarum PS128 increased the level of colonic mucins including the major mucin MUC2. In addition, the charcoal meal test showed that L. plantarum PS128 significantly increased the small intestine transit in naïve mice, but not in the Lop-treated mice. Since intestinal serotonin has been found to modulate motility, we further analyzed the expression of genes related to serotonin signal transduction in the small intestine of naïve mice. The results showed that L. plantarum PS128 significantly altered the expression levels of Tph1, Chga, Slc6a4, and Htr4, but did not affect the expression levels of Tph2, Htr3a, and Maoa. Furthermore, immunohistochemistry revealed that L. plantarum PS128 significantly increased the number of serotonin-containing intestinal cells in mice. Taken together, our results suggest that L. plantarum PS128 could promote intestinal motility, mucin production, and serotonin signal transduction, leading to a laxative effect in mice.
Collapse
Affiliation(s)
| | | | | | - Min-Yu Chang
- Bened Biomedical Co., Ltd, Taipei, 10448, Taiwan
| | | | - Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
32
|
Yao C, Wang Z, Jiang H, Yan R, Huang Q, Wang Y, Xie H, Zou Y, Yu Y, Lv L. Ganoderma lucidum promotes sleep through a gut microbiota-dependent and serotonin-involved pathway in mice. Sci Rep 2021; 11:13660. [PMID: 34211003 PMCID: PMC8249598 DOI: 10.1038/s41598-021-92913-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Ganoderma lucidum is a medicinal mushroom used in traditional Chinese medicine with putative tranquilizing effects. However, the component of G. lucidum that promotes sleep has not been clearly identified. Here, the effect and mechanism of the acidic part of the alcohol extract of G. lucidum mycelia (GLAA) on sleep were studied in mice. Administration of 25, 50 and 100 mg/kg GLAA for 28 days promoted sleep in pentobarbital-treated mice by shortening sleep latency and prolonging sleeping time. GLAA administration increased the levels of the sleep-promoting neurotransmitter 5-hydroxytryptamine and the Tph2, Iptr3 and Gng13 transcripts in the sleep-regulating serotonergic synapse pathway in the hypothalamus during this process. Moreover, GLAA administration reduced lipopolysaccharide and raised peptidoglycan levels in serum. GLAA-enriched gut bacteria and metabolites, including Bifidobacterium, Bifidobacterium animalis, indole-3-carboxylic acid and acetylphosphate were negatively correlated with sleep latency and positively correlated with sleeping time and the hypothalamus 5-hydroxytryptamine concentration. Both the GLAA sleep promotion effect and the altered faecal metabolites correlated with sleep behaviours disappeared after gut microbiota depletion with antibiotics. Our results showed that GLAA promotes sleep through a gut microbiota-dependent and serotonin-associated pathway in mice.
Collapse
Affiliation(s)
- Chunyan Yao
- Key Laboratory of Nutrition of Zhejiang Province, Institute of Health Food, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiyuan Wang
- Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianfei Huang
- Key Laboratory of Nutrition of Zhejiang Province, Institute of Health Food, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- Key Laboratory of Nutrition of Zhejiang Province, Institute of Health Food, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hui Xie
- Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Zou
- The Second Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Yu
- Key Laboratory of Nutrition of Zhejiang Province, Institute of Health Food, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Wu SI, Wu CC, Tsai PJ, Cheng LH, Hsu CC, Shan IK, Chan PY, Lin TW, Ko CJ, Chen WL, Tsai YC. Psychobiotic Supplementation of PS128 TM Improves Stress, Anxiety, and Insomnia in Highly Stressed Information Technology Specialists: A Pilot Study. Front Nutr 2021; 8:614105. [PMID: 33842519 PMCID: PMC8032933 DOI: 10.3389/fnut.2021.614105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Information technology (IT) is an industry related to the production of computers, information processing, and telecommunications. Such industries heavily rely on the knowledge and solutions provided by IT specialists. Previous reports found that the subjective stress scores were higher in IT specialists who developed diabetes, hypertension, and depression. Specific probiotics, known as psychobiotics, may alleviate stress and mood symptoms. This study aimed to examine whether an 8-week intervention of a novel psychobiotic, Lactobacillus plantarum PS128TM (PS128TM), improved self-perceived stress and mood symptoms among high-stress IT specialists. Methods: This open-label, single-arm, baseline-controlled study included IT specialists from a large IT company in Northern Taiwan. Participants with a Perceived Stress Scale (PSS) 10-item version score of 27 or higher were included. Participants were asked to take two capsules containing PS128TM powder, equivalent to 20 billion colony-forming units, daily. Self-report measures, such as the Job Stress Scale, Visual Analog Scale of Stress, the Insomnia Severity Index, the State and Trait Anxiety Index, the Questionnaire for Emotional Trait and State, the Patient Health Questionnaire, the Quality of Life Enjoyment and Satisfaction Questionnaire, and Gastrointestinal Severity Index were compared at baseline and at the end of the trial period. The primary outcome was a 20% reduction in the PSS score at endpoint. Objective measures included salivary levels of stress biomarkers, including cortisol, α-amylase, immunoglobulin A, lactoferrin, and lysozymes, as well as results of the Test of Attentional Performance. Results: Of the 90 eligible IT specialists, 36 met the inclusion criteria. After the 8-week trial period, significant improvements in self-perceived stress, overall job stress, job burden, cortisol level, general or psychological health, anxiety, depression, sleep disturbances, quality of life, and both positive and negative emotions were found. Conclusion: Our results suggest that PS128TM has the distinct advantage of providing stress relief and can improve mental health for people with a high-stress job. Future placebo-controlled studies are warranted to explore the effect and underlying mechanisms of action of PS128TM. Clinical Trial Registration:https://clinicaltrials.gov/ (identifier: NCT04452253-sub-project 2).
Collapse
Affiliation(s)
- Shu-I Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Section of Psychiatry and Suicide Prevention Center, MacKay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | - Ian-Kai Shan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Ying Chan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ting-Wei Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chih-Jung Ko
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Wan-Lin Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
34
|
The Microbiota-Gut-Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame? Nutrients 2020; 13:nu13010037. [PMID: 33374235 PMCID: PMC7824474 DOI: 10.3390/nu13010037] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Collapse
|
35
|
Update on Persistent Excessive Daytime Sleepiness in OSA. Chest 2020; 158:776-786. [PMID: 32147246 DOI: 10.1016/j.chest.2020.02.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/31/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
OSA is a highly prevalent sleep disorder, and subjective excessive daytime sleepiness (EDS) is the cardinal symptom for which many individuals seek medical advice. Positive airway pressure (PAP) devices, first-line treatment for OSA, eliminates EDS in most patients. However, a subset of patients suffers from persistent EDS despite adherence to therapy. Multiple conditions, some reversible, could account for the residual sleepiness and need to be explored, requiring detailed history, review of PAP data from the smart card, and sometimes additional testing. When all known causes of EDS are excluded, in adequately treated subjects, the purported mechanisms could relate to long-term exposure to the OSA-related sleep fragmentation, sleep deprivation, and hypoxic injury to the arousal system, shifts in melatonin secretion, or altered microbiome. Independent of the mechanism, in well-treated OSA, pharmacological therapy with approved drugs can be considered. Modafinil is commonly prescribed to combat residual EDS, but more recently two drugs, solriamfetol, a dual dopamine-norepinephrine reuptake inhibitor, and pitolisant, a histamine H3 receptor inverse agonist, were approved for EDS. Solriamfetol has undergone randomized controlled trials for treatment of EDS associated with both OSA and narcolepsy, exhibiting robust efficacy. Solriamfetol is renally excreted, with no known drug interactions. Pitolisant, which is nonscheduled, has undergone multiple RCTs in narcolepsy, showing improvement in subjective and objective EDS and one OSA trial showing improvement in subjective EDS.
Collapse
|