1
|
Wu P, Xue J, Zhu Z, Yu Y, Sun Q, Xie M, Wang B, Huang P, Feng Z, Zhao J. Puerariae lobatae Radix ameliorates chronic kidney disease by reshaping gut microbiota and downregulating Wnt/β‑catenin signaling. Mol Med Rep 2024; 30:117. [PMID: 38757304 PMCID: PMC11129539 DOI: 10.3892/mmr.2024.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Gut microbiota dysfunction is a key factor affecting chronic kidney disease (CKD) susceptibility. Puerariae lobatae Radix (PLR), a traditional Chinese medicine and food homologous herb, is known to promote the gut microbiota homeostasis; however, its role in renoprotection remains unknown. The present study aimed to investigate the efficacy and potential mechanism of PLR to alleviate CKD. An 8‑week 2% NaCl‑feeding murine model was applied to induce CKD and evaluate the therapeutic effect of PLR supplementary. After gavage for 8 weeks, The medium and high doses of PLR significantly alleviated CKD‑associated creatinine, urine protein increasement and nephritic histopathological injury. Moreover, PLR protected kidney from fibrosis by reducing inflammatory response and downregulating the canonical Wnt/β‑catenin pathway. Furthermore, PLR rescued the gut microbiota dysbiosis and protected against high salt‑induced gut barrier dysfunction. Enrichment of Akkermansia and Bifidobacterium was found after PLR intervention, the relative abundances of which were in positive correlation with normal maintenance of renal histology and function. Next, fecal microbiota transplantation experiment verified that the positive effect of PLR on CKD was, at least partially, exerted through gut microbiota reestablishment and downregulation of the Wnt/β‑catenin pathway. The present study provided evidence for a new function of PLR on kidney protection and put forward a potential therapeutic strategy target for CKD.
Collapse
Affiliation(s)
- Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jingwen Xue
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhangrui Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yao Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Sun
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Benlin Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhengyuan Feng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
2
|
Villela-Torres MDLL, Prado-Uribe MDC, Díaz MÁ, Pablo HQ, Soria-Castro E, Escofet NE, Maldonado CEF, Paniagua R. Effect of High Sodium Intake on Gut Tight Junctions' Structure and Permeability to Bacterial Toxins in a Rat Model of Chronic Kidney Disease. Arch Med Res 2024; 55:102969. [PMID: 38484487 DOI: 10.1016/j.arcmed.2024.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Uremic toxicity changes the gut structure and permeability, allowing bacterial toxins to translocate from the lumen to the blood during chronic kidney failure (CKD). Clinical fluid overload and tissue edema without uremia have similar effects but have not been adequately demonstrated and analyzed in CKD. AIMS To investigate the effect of sodium intake on the plasma concentration of gut-derived uremic toxins, indoxyl sulfate (IS), and p-cresyl sulfate (pCS) and the expression of genes and proteins of epithelial gut tight junctions in a rat model of CKD. METHODS Sham-operated (control group, CG) and five-sixths nephrectomized (5/6Nx) Sprague-Dawley rats were randomly assigned to low (LNa), normal (NNa), or high sodium (HNa) diets., Animals were then sacrificed at 8 and 12 weeks and analyzed for IS and pCS plasma concentrations, as well as for gene and protein expression of thigh junction proteins, and transmission electron microscopy (TEM) in colon fragments. RESULTS The HNa 5/6Nx groups had higher concentrations of IS and pCS than CG, NNa, and LNa at eight and twelve weeks. Furthermore, HNa 5/6Nx groups had reduced expression of the claudin-4 gene and protein than CG, NNa, and LNa. HNa had reduced occludin gene expression compared to CG. Occludin protein expression was more reduced in HNa than in CG, NNa, and LNa. The gut epithelial tight junctions appear dilated in HNa compared to NNa and LNa in TEM. CONCLUSION Dietary sodium intake and fluid overload have a significant role in gut epithelial permeability in the CKD model.
Collapse
Affiliation(s)
- María de la Luz Villela-Torres
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María-Del-Carmen Prado-Uribe
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marcela Ávila Díaz
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Héctor Quezada Pablo
- Immunnology and Proteomics Research Lab, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Elizabeth Soria-Castro
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Nuria Esturau Escofet
- Physical Chemistry Department, Laboratorio Universitario de Resonancia Magnética Nuclear, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Ramón Paniagua
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
3
|
Chen R, Yang M, Peng C, Yin D, Zhang Y, Xu F. Pharmacodynamics Research on Danggui-Shaoyao-San through Body Fluid Indexes of Spleen Deficiency-water Dampness Rats using Bio-impedance Technology. Curr Pharm Biotechnol 2024; 25:1602-1616. [PMID: 37921128 DOI: 10.2174/0113892010243018231025065109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Spleen deficiency-water dampness symptom is closely related to body fluid-mediated organism metabolism and circulation. However, previous clinical evaluation of spleen deficiency-water dampness model was based only on body weight, D-xylose excretion rate, serum gastrin content, etc. Therefore, we established a large sample of normal rats and model rats experiment to verify the scientific nature of bio-impedance measuring body fluid indexes for evaluation of the modeling state. Pharmacodynamics research on Danggui-Shaoyao- San (DSS) was conducted through body fluid index changes of rats using bio-impedance technology. METHODS A spleen deficiency-water dampness symptom rat model was established through an inappropriate diet combined with excess fatigue. Experimental rats were divided into a normal control group, a model control group, a positive drug control group (hydrochlorothiazide), a blood-activating group, a water-disinhibiting group, and a DSS group. Total Body Water/Body Weight (TBW%), extracellular fluid/total body water content (ECF%), intracellular fluid/total body water content (ICF%), extracellular fluid/intracellular fluid (ECF/ICF), fat mass/body weight (FM%), fat-free mass/body weight (FFM%), and fat mass/fat-free mass (FM/FFM) of 150 rats were detected by a Bio-Imp Vet Body analyzer. RESULTS The TBW% of the model control group increased significantly, and the FM/FFM was significantly reduced compared with the normal group (P < 0.05) (P < 0.01), showing symptoms of spleen deficiency and diarrhea; the TBW% of the blood-activating group, and the waterdisinhibiting group decreased significantly, and the FM/FFM increased significantly (P < 0.05) (P < 0.01). The TBW% and FM/FFM in the water-disinhibiting group had returned to nearnormal values compared with the model control group. The blood-activating and waterdisinhibiting split prescriptions in DSS are both effective in treating spleen deficiency-water dampness rats. Comparatively, the fluid-regulating effect of split prescriptions in DSS was even stronger than that of DSS as shown in the present study. CONCLUSIONS These findings suggest that using bio-impedance technology to measure body fluid indexes can pave a road for further exploring the molecular mechanism of the reason why the blood-activating and disinhibit-water split prescriptions in DSS are both effective in treating spleen deficiency-water dampness rats.
Collapse
Affiliation(s)
- Ran Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China
| | - Mo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application
| | - Yunjing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China
| |
Collapse
|
4
|
Lew SQ, Asci G, Rootjes PA, Ok E, Penne EL, Sam R, Tzamaloukas AH, Ing TS, Raimann JG. The role of intra- and interdialytic sodium balance and restriction in dialysis therapies. Front Med (Lausanne) 2023; 10:1268319. [PMID: 38111694 PMCID: PMC10726136 DOI: 10.3389/fmed.2023.1268319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
The relationship between sodium, blood pressure and extracellular volume could not be more pronounced or complex than in a dialysis patient. We review the patients' sources of sodium exposure in the form of dietary salt intake, medication administration, and the dialysis treatment itself. In addition, the roles dialysis modalities, hemodialysis types, and dialysis fluid sodium concentration have on blood pressure, intradialytic symptoms, and interdialytic weight gain affect patient outcomes are discussed. We review whether sodium restriction (reduced salt intake), alteration in dialysis fluid sodium concentration and the different dialysis types have any impact on blood pressure, intradialytic symptoms, and interdialytic weight gain.
Collapse
Affiliation(s)
- Susie Q. Lew
- Department of Medicine, George Washington University, Washington, DC, United States
| | - Gulay Asci
- Department of Nephrology, Ege University Medical School, Izmir, Türkiye
| | - Paul A. Rootjes
- Department of Internal Medicine, Gelre Hospitals, Apeldoorn, Netherlands
| | - Ercan Ok
- Department of Nephrology, Ege University Medical School, Izmir, Türkiye
| | - Erik L. Penne
- Department of Nephrology, Northwest Clinics, Alkmaar, Netherlands
| | - Ramin Sam
- Division of Nephrology, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Antonios H. Tzamaloukas
- Research Service, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Todd S. Ing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Jochen G. Raimann
- Research Division, Renal Research Institute, New York City, NY, United States
- Katz School of Science and Health at Yeshiva University, New York City, NY, United States
| |
Collapse
|
5
|
Bernhardt A, Krause A, Reichardt C, Steffen H, Isermann B, Völker U, Hammer E, Geffers R, Philipsen L, Dhjamandi K, Ahmad S, Brandt S, Lindquist JA, Mertens PR. Excessive sodium chloride ingestion promotes inflammation and kidney fibrosis in aging mice. Am J Physiol Cell Physiol 2023; 325:C456-C470. [PMID: 37399499 DOI: 10.1152/ajpcell.00230.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In aging kidneys, a decline of function resulting from extracellular matrix (ECM) deposition and organ fibrosis is regarded as "physiological." Whether a direct link between high salt intake and fibrosis in aging kidney exists autonomously from arterial hypertension is unclear. This study explores kidney intrinsic changes (inflammation, ECM derangement) induced by a high-salt diet (HSD) in a murine model lacking arterial hypertension. The contribution of cold shock Y-box binding protein (YB-1) as a key orchestrator of organ fibrosis to the observed differences is determined by comparison with a knockout strain (Ybx1ΔRosaERT+TX). Comparisons of tissue from mice fed with normal-salt diet (NSD, standard chow) or high-salt diet (HSD, 4% NaCl in chow; 1% NaCl in water) for up to 16 mo revealed that with HSD tubular cell numbers decrease and tubulointerstitial scarring [periodic acid-Schiff (PAS), Masson's trichrome, Sirius red staining] prevails. In Ybx1ΔRosaERT+TX animals tubular cell damage, a loss of cell contacts with profound tubulointerstitial alterations, and tubular cell senescence was seen. A distinct tubulointerstitial distribution of fibrinogen, collagen type VI, and tenascin-C was detected under HSD, transcriptome analyses determined patterns of matrisome regulation. Temporal increase of immune cell infiltration was seen under HSD of wild type, but not Ybx1ΔRosaERT+TX animals. In vitro Ybx1ΔRosaERT+TX bone marrow-derived macrophages exhibited a defect in polarization (IL-4/IL-13) and abrogated response to sodium chloride. Taken together, HSD promotes progressive kidney fibrosis with premature cell aging, ECM deposition, and immune cell recruitment that is exacerbated in Ybx1ΔRosaERT+TX animals.NEW & NOTEWORTHY Short-term experimental studies link excessive sodium ingestion with extracellular matrix accumulation and inflammatory cell recruitment, yet long-term data are scarce. Our findings with a high-salt diet over 16 mo in aging mice pinpoints to a decisive tipping point after 12 mo with tubular stress response, skewed matrisome transcriptome, and immune cell infiltration. Cell senescence was aggravated in knockout animals for cold shock Y-box binding protein (YB-1), suggesting a novel protective protein function.
Collapse
Affiliation(s)
- Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hannes Steffen
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Kristin Dhjamandi
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Sohail Ahmad
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
Jiang L, Xu H. U-Shaped Relationship between Sleep Duration and CKD in US Adults: Data from National Health and Nutrition Examination Survey (NHANES) 2005-2014. Am J Nephrol 2023; 54:275-280. [PMID: 37307794 DOI: 10.1159/000531440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Short and long sleep durations have been associated with adverse health outcomes. The objective of this study was to examine the association between self-reported sleep duration and chronic kidney disease (CKD) in the general population on the basis of the National Health and Nutrition Examination Survey (NHANES) database. METHODS A total of 28,239 adults aged ≥18 years who participated in the 2005-2014 NHANES were analyzed. CKD was defined as an estimated glomerular filtration rate <60 mL/min per 1.73 m2 or urinary albumin/urine creatinine ratio ≥300 mg/g. Very short sleepers and short sleepers were defined as those who sleep ≤5 h or 5.1-6.9 h per day, respectively. Long sleepers and very long sleepers were defined as those who sleep 9.0-10.9 h or ≥11 h per day, respectively. Normal sleepers were defined as those who sleep 7.0-8.9 h. The association between sleep duration and CKD was assessed using a logistic regression model. RESULTS Very short (≤5 h) sleep duration was associated with higher odds of CKD (multiadjusted OR, 1.38; 95% confidence interval, 1.17-1.62 comparing normal categories of 7.0-8.9 h; P trend = 0.01), after adjusting for potential confounders. Participants with long (9-10.9 h) sleep duration also tended to have a higher odds of CKD (multiadjusted OR, 1.39; 95% confidence interval, 1.20-1.61 comparing normal categories of 7.0-8.9 h; P trend = 0.01). This risk was further increased in those whose sleep duration exceeded 11 h (multiadjusted OR, 2.35; 95% confidence interval, 1.64-3.37 comparing normal categories of 7.0-8.9; P trend = 0.01). However, there was no statistically significant association between short (≤6.0-7.9 h) sleep duration and CKD (multiadjusted OR, 1.05; 95% confidence interval, 0.96-1.14 comparing normal categories of 7.0-8.9 h; P trend = 0.32). CONCLUSION We demonstrated that the higher CKD prevalence estimates were found in very short (≤5 h) and long (9.0-10.9 h) sleep durations in an apparently healthy population aged ≥18 years in the USA. This prevalence of CKD is further increased in those whose sleep duration exceeds 11 h. Our cross-sectional analyses clarified the U-shaped temporal relationship between sleep duration and CKD.
Collapse
Affiliation(s)
- Luojia Jiang
- Department of Nephrology, Jiujiang No. 1 People's Hospital, Jiujiang, China
| | - Haibo Xu
- Department of Hepatology, Jiujiang No. 1 People's Hospital, Jiujiang, China
| |
Collapse
|
7
|
Free TJ, Tucker RW, Simonson KM, Smith SA, Lindgren CM, Pitt WG, Bundy BC. Engineering At-Home Dilution and Filtration Methods to Enable Paper-Based Colorimetric Biosensing in Human Blood with Cell-Free Protein Synthesis. BIOSENSORS 2023; 13:104. [PMID: 36671942 PMCID: PMC9855769 DOI: 10.3390/bios13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Diagnostic blood tests can guide the administration of healthcare to save and improve lives. Most clinical biosensing blood tests require a trained technician and specialized equipment to process samples and interpret results, which greatly limits test accessibility. Colorimetric paper-based diagnostics have an equipment-free readout, but raw blood obscures a colorimetric response which has motivated diverse efforts to develop blood sample processing techniques. This work uses inexpensive readily-available materials to engineer user-friendly dilution and filtration methods for blood sample collection and processing to enable a proof-of-concept colorimetric biosensor that is responsive to glutamine in 50 µL blood drop samples in less than 30 min. Paper-based user-friendly blood sample collection and processing combined with CFPS biosensing technology represents important progress towards the development of at-home biosensors that could be broadly applicable to personalized healthcare.
Collapse
|
8
|
Arab A, Zabibah RS, Alshahrani SH, Karimi E, Askari G, Khorvash F. Is there a relationship between 24-hour urinary sodium and potassium and mental health in migraine patients?: A cross-sectional study. Medicine (Baltimore) 2022; 101:e31037. [PMID: 36281190 PMCID: PMC9592346 DOI: 10.1097/md.0000000000031037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is a lack of evidence and consensus in terms of the association between dietary intake of sodium (Na) and potassium (K) with mental health. By using 24-hours urinary samples as the gold standard method, we conducted a study to explore the association between dietary intake of Na and K with parameters of mental health including depression, anxiety, and stress among an Iranian population diagnosed with migraine. In the present study, 262 subjects (20-50 years old), with a confirmed diagnosis of migraine were enrolled. Mental health was investigated by the Depression, Anxiety, and Stress Scales (DASS-21) questionnaire. Dietary intake of Na and K was estimated by means of a 24-hour urine sample. Multinomial logistic regression analysis was implemented and odds ratio (OR) with 95% confidence interval (CI) was stated. After controlling for potential confounders, the 24-hour urinary Na was associated significantly with the risk of depression (OR = 0.55, 95% CI: 0.30, 1.00; P = .053). After adjustment for confounders, those in the highest tertile of the 24-hour urinary Na/K ratio had lower odds for having depression (OR = 0.54, 95% CI: 0.31, 0.93; P = .027), and marginally significantly lower risk of anxiety (OR = 0.58, 95% CI: 0.31, 1.06; P = .079) and stress (OR = 0.56, 95% CI: 0.31, 1.02; P = .061). In conclusion, higher 24-hour urine Na was associated with a significantly lower risk of depression. Moreover, the 24-hour Na/K ratio was significantly associated with lower risk of depression, anxiety, and stress.
Collapse
Affiliation(s)
- Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rahman S. Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Development Center, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Isfahan Neurosciences Research Center, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Brown RB. Non-Specific Low Back Pain, Dietary Salt Intake, and Posterior Lumbar Subcutaneous Edema. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159158. [PMID: 35954516 PMCID: PMC9368517 DOI: 10.3390/ijerph19159158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022]
Abstract
Low back pain is the world’s leading disability, but the etiology of the majority of low back pain is non-specific with no known cause. Moreover, overuse of opioids to treat low back pain is a widespread problem. This paper proposes that non-specific low back pain may be associated with excessive intake of dietary salt, potentially mediated by posterior lumbar subcutaneous edema. In addition to pain, symptoms of edema include swelling, tightness, and stiff joints, which are common complaints of people with low back pain, along with restricted lumbar range of motion and impaired mobility. Many global populations consume excess sodium chloride, which can lead to fluid overload in hypervolemia, and cause swelling and temporary weight gain associated with low back pain. Numerous conditions comorbid with low back pain are also potentially mediated by excessive salt intake, including migraine headache, hypertension, cardiovascular disease, venous thromboembolism, liver disease, respiratory disorders, chronic kidney disease, pregnancy complications, and multiple sclerosis. Novel approaches to identify and prevent the cause of non-specific low back pain have potential to reduce disability worldwide by reducing low back pain prevalence. More research is needed to confirm the involvement of dietary salt and posterior lumbar subcutaneous edema in non-specific low back pain.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
Wenstedt EFE, Peters Sengers H, Boekholdt SM, Khaw K, Wareham NJ, van den Born BH, Vogt L. Relationship of Sodium Intake With Granulocytes, Renal and Cardiovascular Outcomes in the Prospective EPIC-Norfolk Cohort. J Am Heart Assoc 2022; 11:e023727. [PMID: 35730648 PMCID: PMC9333397 DOI: 10.1161/jaha.121.023727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Experimental studies show that high-sodium intake affects the innate immune system, among others with increased circulating granulocytes. Whether this relationship exists on a population level and whether this relates to disease outcomes is unclear. We aimed to test the hypotheses that (1) sodium intake is associated with granulocytes on a population level; (2) granulocytes are associated with the presence of hypertension and both cardiovascular and renal outcomes; and (3) the relation between high-sodium intake and these outcomes is mediated by granulocytes. Methods and Results We performed an analysis in 13 804 participants from the prospective EPIC (European Prospective Investigation into Cancer)-Norfolk cohort, with a mean age of 58 years and median follow-up of 19.3 years. Analyses were carried out using calculated estimated sodium intake and sodium-to-potassium ratios from spot urines at baseline. The main outcomes were hypertension at baseline, and composite cardiovascular (mortality or cardiovascular events) and renal (mortality or renal events) outcomes during follow-up. Sodium intake and urine sodium-to-potassium ratio were positively associated with circulating granulocyte concentrations after adjustment for confounders (β=0.03; P=0.028 and β=0.06; P<0.001, respectively). Granulocytes significantly mediated the associations of, respectively, sodium intake and urine sodium-to-potassium ratio with hypertension at baseline, and cardiovascular and renal outcomes. Conclusions Sodium intake is positively associated with circulating granulocyte concentrations, and higher granulocyte concentrations associate with worse long-term cardiovascular and renal outcomes. Given the recently established immune-modulating effects of sodium and the role of immune cells in both cardiovascular and renal disease, causality for this pathway may need consideration in further studies.
Collapse
Affiliation(s)
- Eliane F. E. Wenstedt
- Department of Internal MedicineSection of NephrologyAmsterdam UMCUniversity of AmsterdamAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Hessel Peters Sengers
- Amsterdam UMCUniversity of AmsterdamCenter for Experimental and Molecular MedicineAmsterdamThe Netherlands,Amsterdam UMCThe Amsterdam Institute for Infection and ImmunityAmsterdamThe Netherlands
| | | | - Kay‐Tee Khaw
- Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom,MRC Epidemiology UnitCambridgeUnited Kingdom
| | | | - Bert‐Jan H. van den Born
- Department of Internal MedicineSection of Vascular MedicineAmsterdam UMCUniversity of AmsterdamAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Liffert Vogt
- Department of Internal MedicineSection of NephrologyAmsterdam UMCUniversity of AmsterdamAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| |
Collapse
|
11
|
Rohrscheib M, Sam R, Raj DS, Argyropoulos CP, Unruh ML, Lew SQ, Ing TS, Levin NW, Tzamaloukas AH. Edelman Revisited: Concepts, Achievements, and Challenges. Front Med (Lausanne) 2022; 8:808765. [PMID: 35083255 PMCID: PMC8784663 DOI: 10.3389/fmed.2021.808765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The key message from the 1958 Edelman study states that combinations of external gains or losses of sodium, potassium and water leading to an increase of the fraction (total body sodium plus total body potassium) over total body water will raise the serum sodium concentration ([Na]S), while external gains or losses leading to a decrease in this fraction will lower [Na]S. A variety of studies have supported this concept and current quantitative methods for correcting dysnatremias, including formulas calculating the volume of saline needed for a change in [Na]S are based on it. Not accounting for external losses of sodium, potassium and water during treatment and faulty values for body water inserted in the formulas predicting the change in [Na]S affect the accuracy of these formulas. Newly described factors potentially affecting the change in [Na]S during treatment of dysnatremias include the following: (a) exchanges during development or correction of dysnatremias between osmotically inactive sodium stored in tissues and osmotically active sodium in solution in body fluids; (b) chemical binding of part of body water to macromolecules which would decrease the amount of body water available for osmotic exchanges; and (c) genetic influences on the determination of sodium concentration in body fluids. The effects of these newer developments on the methods of treatment of dysnatremias are not well-established and will need extensive studying. Currently, monitoring of serum sodium concentration remains a critical step during treatment of dysnatremias.
Collapse
Affiliation(s)
- Mark Rohrscheib
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Ramin Sam
- Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Dominic S Raj
- Department of Medicine, George Washington University, Washington, DC, United States
| | - Christos P Argyropoulos
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Mark L Unruh
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Susie Q Lew
- Department of Medicine, George Washington University, Washington, DC, United States
| | - Todd S Ing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Nathan W Levin
- Mount Sinai Icahn School of Medicine, New York, NY, United States
| | - Antonios H Tzamaloukas
- Research Service, Department of Medicine, Raymond G. Murphy Veterans Affairs Medical Center and University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
12
|
Afsar B, Afsar RE, Ertuglu LA, Covic A, Kanbay M. Nutrition, Immunology, and Kidney: Looking Beyond the Horizons. Curr Nutr Rep 2022; 11:69-81. [PMID: 35080754 DOI: 10.1007/s13668-021-00388-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is epidemic throughout the word. Despite various novel therapeutic opportunities, CKD is still associated with high morbidity and mortality. In CKD, patient's chronic inflammation is frequent and related with adverse outcomes. Both innate and adaptive immunity are dysfunctional in CKD. Therefore, it is plausible to interfere with dysfunctional immunity in these patients. In the current review, we present the updated experimental and clinical data summarizing the effects of nutritional interventions including natural products and dietary supplements on immune dysfunction in the context of CKD. RECENT FINDINGS Nutritional interventions including natural products and dietary supplements (e.g., curcumin, sulforaphane, resistant starch, anthocyanin, chrysin, short chain fatty acids, fish oil resistant starch) slow down the inflammation by at least 6 mechanisms: (i) decrease nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); (ii) decrease NLR family pyrin domain containing 3 (NLRP3); (iii) decrease interleukin-1 (IL-1), decrease interleukin-6 (IL-6) secretion; (iv) decrease polymorphonuclear priming); (v) promote anti-inflammatory pathways (nuclear factor-erythroid factor 2-related factor 2 (NFR2); (vi) increase T regulatory (Tregs) cells). Natural products and dietary supplements may provide benefit in terms of kidney health. By modulation of nutritional intake, progression of CKD may be delayed.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Lale A Ertuglu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
13
|
Shin J, Lee CH. The roles of sodium and volume overload on hypertension in chronic kidney disease. Kidney Res Clin Pract 2021; 40:542-554. [PMID: 34922428 PMCID: PMC8685361 DOI: 10.23876/j.krcp.21.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with increased risk of cardiovascular (CV) events, and the disease burden is rising rapidly. An important contributor to CV events and CKD progression is high blood pressure (BP). The main mechanisms of hypertension in early and advanced CKD are renin-angiotensin system activation and volume overload, respectively. Sodium retention is well known as a factor for high BP in CKD. However, a BP increase in response to total body sodium or volume overload can be limited by neurohormonal modulation. Recent clinical trial data favoring intensive BP lowering in CKD imply that the balance between volume and neurohormonal control could be revisited with respect to the safety and efficacy of strict volume control when using antihypertensive medications. In hemodialysis patients, the role of more liberal use of antihypertensive medications with the concept of functional dry weight for intensive BP control must be studied.
Collapse
Affiliation(s)
- Jinho Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Chang Hwa Lee
- Division of Nephrology, Department of Internal Medicine, Hanyang University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
14
|
Wang CT, Tezuka T, Takeda N, Araki K, Arai S, Miyazaki T. High salt exacerbates acute kidney injury by disturbing the activation of CD5L/apoptosis inhibitor of macrophage (AIM) protein. PLoS One 2021; 16:e0260449. [PMID: 34843572 PMCID: PMC8629239 DOI: 10.1371/journal.pone.0260449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
The influence of excess salt intake on acute kidney injury (AKI) has not been examined precisely except for some clinical data, unlike in chronic kidney disease. Here, we addressed the influence of high salt (HS) on AKI and its underlying mechanisms in terms of the activity of circulating apoptosis inhibitor of macrophage (AIM, also called CD5L) protein, a facilitator of AKI repair. HS loading in mice subjected to ischemia/reperfusion (IR) resulted in high mortality with advanced renal tubular obstruction and marked exacerbation in biomarkers of proximal renal tubular damage. This AKI exacerbation appeared to be caused mainly by the reduced AIM dissociation from IgM pentamer in serum, as IgM-free AIM is indispensable for the removal of intratubular debris to facilitate AKI repair. Injection of recombinant AIM (rAIM) ameliorated the AKI induced by IR/HS, dramatically improving the tubular damage and mouse survival. The repair of lethal AKI by AIM was dependent on AIM/ kidney injury molecule-1 (KIM-1) axis, as rAIM injection was not effective in KIM-1 deficient mice. Our results demonstrate that the inhibition of AIM dissociation from IgM is an important reason for the exacerbation of AKI by HS, that AIM is a strong therapeutic tool for severe AKI.
Collapse
Affiliation(s)
- Ching-Ting Wang
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Tezuka
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Division of Developmental Genetics, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Division of Developmental Genetics, Kumamoto University, Kumamoto, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Brown RB. Sodium Toxicity in the Nutritional Epidemiology and Nutritional Immunology of COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:739. [PMID: 34440945 PMCID: PMC8399536 DOI: 10.3390/medicina57080739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Dietary factors in the etiology of COVID-19 are understudied. High dietary sodium intake leading to sodium toxicity is associated with comorbid conditions of COVID-19 such as hypertension, kidney disease, stroke, pneumonia, obesity, diabetes, hepatic disease, cardiac arrhythmias, thrombosis, migraine, tinnitus, Bell's palsy, multiple sclerosis, systemic sclerosis, and polycystic ovary syndrome. This article synthesizes evidence from epidemiology, pathophysiology, immunology, and virology literature linking sodium toxicological mechanisms to COVID-19 and SARS-CoV-2 infection. Sodium toxicity is a modifiable disease determinant that impairs the mucociliary clearance of virion aggregates in nasal sinuses of the mucosal immune system, which may lead to SARS-CoV-2 infection and viral sepsis. In addition, sodium toxicity causes pulmonary edema associated with severe acute respiratory syndrome, as well as inflammatory immune responses and other symptoms of COVID-19 such as fever and nasal sinus congestion. Consequently, sodium toxicity potentially mediates the association of COVID-19 pathophysiology with SARS-CoV-2 infection. Sodium dietary intake also increases in the winter, when sodium losses through sweating are reduced, correlating with influenza-like illness outbreaks. Increased SARS-CoV-2 infections in lower socioeconomic classes and among people in government institutions are linked to the consumption of foods highly processed with sodium. Interventions to reduce COVID-19 morbidity and mortality through reduced-sodium diets should be explored further.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Manning JA, Shah SS, Nikolic A, Henshall TL, Khew-Goodall Y, Kumar S. The ubiquitin ligase NEDD4-2/NEDD4L regulates both sodium homeostasis and fibrotic signaling to prevent end-stage renal disease. Cell Death Dis 2021; 12:398. [PMID: 33854040 PMCID: PMC8046789 DOI: 10.1038/s41419-021-03688-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Kidney disease progression can be affected by Na+ abundance. A key regulator of Na+ homeostasis is the ubiquitin ligase NEDD4-2 and its deficiency leads to increased Na+ transport activity and salt-sensitive progressive kidney damage. However, the mechanisms responsible for high Na+ induced damage remain poorly understood. Here we show that a high Na+ diet compromised kidney function in Nedd4-2-deficient mice, indicative of progression toward end-stage renal disease. Injury was characterized by enhanced tubule dilation and extracellular matrix accumulation, together with sustained activation of both Wnt/β-catenin and TGF-β signaling. Nedd4-2 knockout in cortical collecting duct cells also activated these pathways and led to epithelial-mesenchymal transition. Furthermore, low dietary Na+ rescued kidney disease in Nedd4-2-deficient mice and silenced Wnt/β-catenin and TGF-β signaling. Our study reveals the important role of NEDD4-2-dependent ubiquitination in Na+ homeostasis and protecting against aberrant Wnt/β-catenin/TGF-β signaling in progressive kidney disease.
Collapse
Affiliation(s)
- Jantina A. Manning
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Sonia S. Shah
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Andrej Nikolic
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Tanya L. Henshall
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Yeesim Khew-Goodall
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Sharad Kumar
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| |
Collapse
|
17
|
Burnier M, Fouque D. The unsolved challenge of implementing sustained reductions of sodium intake in patients with chronic kidney disease. Nephrol Dial Transplant 2020; 36:gfaa268. [PMID: 33367776 DOI: 10.1093/ndt/gfaa268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michel Burnier
- Service of Nephrology and Hypertension, University Hospital, Lausanne, Switzerland
- Hypertension Research Foundation, St-Légier, Switzerland
| | - Denis Fouque
- Department of Nephrology, Nutrition and Dialysis, University of Lyon, Hospital Lyon-SUD, Pierre-Bénite, France
| |
Collapse
|
18
|
Garofalo C, Provenzano M, Andreucci M, Pisani A, De Nicola L, Conte G, Borrelli S. Predictive effect of salt intake on patient and kidney survival in non-dialysis CKD: competing risk analysis in older versus younger patients under nephrology care. Nephrol Dial Transplant 2020; 36:2232-2240. [PMID: 33877358 DOI: 10.1093/ndt/gfaa252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The optimal level of salt intake remains ill-defined in non-dialysis chronic kidney disease (CKD) patients under regular nephrology care. This unanswered question becomes critical in older patients who are exposed to higher risk of worsening of cardiorenal disease due to volemic changes. METHODS In this pooled analysis of four prospective studies in CKD, we compared the risk of all-cause mortality and end-stage kidney disease (ESKD) between patients ≤65 and >65 years of age stratified by salt intake level (<6, 6-8 and >8 g/day) estimated from two measurements of 24-h urinary sodium. RESULTS The cohort included 1785 patients. The estimated glomerular filtration rate was 37 ± 21 mL/min/1.73 m2 overall, 41 ± 25 in younger patients and 34 ± 16 in older patients (P < 0.001). The median 24-h urinary sodium excretion was 143 mEq [interquartile range (IQR) 109-182] in all, 147 (112-185) in younger patients and 140 (106-179) in older patients (P = 0.012). Salt intake was ≤6, 6-8 and >8 g sodium chloride/day in 21.9, 26.2 and 52.0% of older patients and 18.6, 25.2 and 56.2% in younger patients, respectively (P = 0.145). During a median follow-up of 4.07 years we registered 383 ESKD and 260 all-cause deaths. In the whole cohort, the risks of ESKD and all-cause death did not differ by salt intake level. In older patients, ESKD risk [multi-adjusted hazard ratio (HR) and 95% confidence interval (CI)] was significantly lower at salt intakes of 6-8 g/day [HR 0.577 (95% CI 0.361-0.924)] and >8 g/day [HR 0.564 (95% CI 0.382-0.833)] versus the reference group (<6 g/day). Mortality risk was higher in older versus younger patients, with no difference across salt intake categories. No effect of salt intake on ESKD and mortality was observed in younger patients. CONCLUSIONS CKD patients under nephrology care show a moderate salt intake (8.4 g/day) that is lower in older versus younger patients. In this context, older patients are not exposed to higher mortality across different levels of salt intake, while salt intake <6 g/day poses a greater risk of ESKD.
Collapse
Affiliation(s)
- Carlo Garofalo
- Nefrology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | | | - Luca De Nicola
- Nefrology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Conte
- Nefrology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvio Borrelli
- Nefrology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
19
|
Nista F, Gatto F, Albertelli M, Musso N. Sodium Intake and Target Organ Damage in Hypertension-An Update about the Role of a Real Villain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2811. [PMID: 32325839 PMCID: PMC7215960 DOI: 10.3390/ijerph17082811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Salt intake is too high for safety nowadays. The main active ion in salt is sodium. The vast majority of scientific evidence points out the importance of sodium restriction for decreasing cardiovascular risk. International Guidelines recommend a large reduction in sodium consumption to help reduce blood pressure, organ damage, and cardiovascular risk. Regulatory authorities across the globe suggest a general restriction of sodium intake to prevent cardiovascular diseases. In spite of this seemingly unanimous consensus, some researchers claim to have evidence of the unhealthy effects of a reduction of sodium intake, and have data to support their claims. Evidence is against dissenting scientists, because prospective, observational, and basic research studies indicate that sodium is the real villain: actual sodium consumption around the globe is far higher than the safe range. Sodium intake is directly related to increased blood pressure, and independently to the enlargement of cardiac mass, with a possible independent role in inducing left ventricular hypertrophy. This may represent the basis of myocardial ischemia, congestive heart failure, and cardiac mortality. Although debated, a high sodium intake may induce initial renal damage and progression in both hypertensive and normotensive subjects. Conversely, there is general agreement about the adverse role of sodium in cerebrovascular disease. These factors point to the possible main role of sodium intake in target organ damage and cardiovascular events including mortality. This review will endeavor to outline the existing evidence.
Collapse
Affiliation(s)
| | | | | | - Natale Musso
- Unit of Hypertension, Clinical Endocrinology, Department of Internal Medicine, Ospedale Policlinico San Martino Genova, University of Genoa Medical School, 6-16132 Genoa, Italy; (F.N.); (F.G.); (M.A.)
| |
Collapse
|