1
|
Churchward MA, Michaud ER, Mullish BH, Miguens Blanco J, Garcia Perez I, Marchesi JR, Xu H, Kao D, Todd KG. Short-chain fatty and carboxylic acid changes associated with fecal microbiota transplant communally influence microglial inflammation. Heliyon 2023; 9:e16908. [PMID: 37484415 PMCID: PMC10360965 DOI: 10.1016/j.heliyon.2023.e16908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
The intestinal microbiota has been proposed to influence human mental health and cognition through the gut-brain axis. Individuals experiencing recurrent Clostridioides difficile infection (rCDI) frequently report depressive symptoms, which are improved after fecal microbiota transplantation (FMT); however, mechanisms underlying this association are poorly understood. Short-chain fatty acids and carboxylic acids (SCCA) produced by the intestinal microbiota cross the blood brain barrier and have been proposed to contribute to gut-brain communication. We hypothesized that changes in serum SCCA measured before and after successful FMT for rCDI influences the inflammatory response of microglia, the resident immune cells of the central nervous system. Serum SCCA were quantified using gas chromatography-mass spectroscopy from 38 patients who participated in a randomized trial comparing oral capsule-vs colonoscopy-delivered FMT for rCDI, and quality of life was assessed by SF-36 at baseline, 4, and 12 weeks after FMT treatment. Successful FMT was associated with improvements in mental and physical health, as well as significant changes in a number of circulating SCCA, including increased butyrate, 2-methylbutyrate, valerate, and isovalerate, and decreased 2-hydroxybutyrate. Primary cultured microglia were treated with SCCA and the response to a pro-inflammatory stimulus was measured. Treatment with a combination of SCCA based on the post-FMT serum profile, but not single SCCA species, resulted in significantly reduced inflammatory response including reduced cytokine release, reduced nitric oxide release, and accumulation of intracellular lipid droplets. This suggests that both levels and diversity of SCCA may be an important contributor to gut-brain communication.
Collapse
Affiliation(s)
- Matthew A. Churchward
- Department of Biological and Environmental Sciences, Concordia University of Edmonton, AB, T5B 4E4, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Emily R. Michaud
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Jesús Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Isabel Garcia Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Huiping Xu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine Indianapolis, IN, USA, 46202
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Kathryn G. Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
2
|
He J, Wang ZZ, Li CH, Xu HL, Pan HZ, Zhao YX. Metabolic alteration of Tetrahymena thermophila exposed to CdSe/ZnS quantum dots to respond to oxidative stress and lipid damage. Biochim Biophys Acta Gen Subj 2023; 1867:130251. [PMID: 36244576 DOI: 10.1016/j.bbagen.2022.130251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
CdSe/ZnS Quantum dots (QDs) are possibly released to surface water due to their extensive application. Based on their high reactivity, even small amounts of toxicant QDs will disturb water microbes and pose a risk to aquatic ecology. Here, we evaluated CdSe/ZnS QDs toxicity to Tetrahymena thermophila (T. thermophila), a model organism of the aquatic environment, and performed metabolomics experiments. Before the omics experiment was conducted, QDs were found to induce inhibition of cell proliferation, and reactive oxygen species (ROS) production along with Propidium iodide labeled cell membrane damage indicated oxidative stress stimulation. In addition, mitochondrial ultrastructure alteration of T. thermophila was also confirmed by Transmission Electron Microscope results after 48 h of exposure to QDs. Further results of metabolomics detection showed that 0.1 μg/mL QDs could disturb cell physiological and metabolic metabolism characterized by 18 significant metabolite changes, of which twelve metabolites improved and three decreased significantly compared to the control. Kyoto Encyclopedia of Genes and Genomes analysis showed that these metabolites were involved in the ATP-binding cassette transporter and purine metabolism pathways, both of which respond to ROS-induced cell membrane damage. In addition, purine metabolism weakness might also reflect mitochondrial dysfunction associated with energy metabolism and transport abnormalities. This research provides deep insight into the potential risks of quantum dots in aquatic ecosystems.
Collapse
Affiliation(s)
- Jie He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Zheng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chen-Hong Li
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Hai-Long Xu
- Collaborative Scientific Research Centre, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Hong-Zhi Pan
- Collaborative Scientific Research Centre, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Yu-Xia Zhao
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
3
|
Wen Y, Sun Z, Xie S, Hu Z, Lan Q, Sun Y, Yuan L, Zhai C. Intestinal Flora Derived Metabolites Affect the Occurrence and Development of Cardiovascular Disease. J Multidiscip Healthc 2022; 15:2591-2603. [PMID: 36388628 PMCID: PMC9656419 DOI: 10.2147/jmdh.s367591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2023] Open
Abstract
In recent years, increasing evidence has shown that the gut microbiota and their metabolites play a pivotal role in human health and diseases, especially the cardiovascular diseases (CVDs). Intestinal flora imbalance (changes in the composition and function of intestinal flora) accelerates the progression of CVDs. The intestinal flora breaks down the food ingested by the host into a series of metabolically active products, including trimethylamine N-Oxide (TMAO), short-chain fatty acids (SCFAs), primary and secondary bile acids, tryptophan and indole derivatives, phenylacetylglutamine (PAGln) and branched chain amino acids (BCAA). These metabolites participate in the occurrence and development of CVDs via abnormally activating these signaling pathways more swiftly when the gut barrier integrity is broken down. This review focuses on the production and metabolism of TMAO and SCFAs. At the same time, we summarize the roles of intestinal flora metabolites in the occurrence and development of coronary heart disease and hypertension, pulmonary hypertension and other CVDs. The theories of "gut-lung axis" and "gut-heart axis" are provided, aiming to explore the potential targets for the treatment of CVDs based on the roles of the intestinal flora in the CVDs.
Collapse
Affiliation(s)
- Yinuo Wen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Zefan Sun
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Shuoyin Xie
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Zixuan Hu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Qicheng Lan
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Yupeng Sun
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Linbo Yuan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Changlin Zhai
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| |
Collapse
|
4
|
Lakshmanan AP, Mingione A, Pivari F, Dogliotti E, Brasacchio C, Murugesan S, Cusi D, Lazzaroni M, Soldati L, Terranegra A. Modulation of gut microbiota: The effects of a fruits and vegetables supplement. Front Nutr 2022; 9:930883. [PMID: 36211488 PMCID: PMC9537686 DOI: 10.3389/fnut.2022.930883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
The consumption of an optimal amount of fruits and vegetables is known to improve physical fitness and physiological body functions. Healthy eating habits, including intake of fruits and vegetables, can modify gut microbiota. This study aimed to demonstrate the effectiveness of a formulated fruit and vegetable supplement (FVS) in modulating the antioxidant capacity and the gut microbiota composition. We enrolled 30 healthy volunteer subjects, matched for age, gender, BMI, and smoking habits, and randomized them into the FVS and the placebo (PLA) groups. Among the serum vitamins, the folic acid level was significantly higher (p = 0.001) in the FVS group than in the PLA group, whereas the vitamin B2 level was significantly higher in the PLA group than in the FVS group (p = 0.028). The antioxidant capacity, measured by using the oxygen radical absorbance capacity (ORAC) method, was also slightly higher in the FVS group than in the PLA group but did not reach statistical significance. The dietary intake, assessed by 24-h recalls, did not show any significant changes after the supplementation in both the groups. The gut microbiome composition, measured by 16S rDNA sequencing, showed no difference in both alpha and beta diversities, whereas the LEfse analysis revealed a microbial shift after the treatment, with a decreased abundance of the genus Ruminococcus from the Lachnospiraceae family (p = 0.009), and the unclassified genus from the family Erysipelotrichaceae (UC36, p = 0.003) in the FVS group compared with the PLA group (confirmed by SIAMCAT analysis, AUC = 74.1%). With a minor effect, the genus Faecalibacterium and unclassified genus and family from the order Lactobacillales (UC31) were also increased in the FVS group compared with the PLA group (p = 0.0474, p = 0.0352, respectively). SCFA measurement by gas chromatography–mass spectrometry showed an increased level of 2-methylbutyrate in the FVS group compared with the PLA group (p = 0.0385). Finally, the Spearman correlation analysis showed that in the FVS group, the genus Faecalibacterium positively correlated with 2-methyl butyrate (p = 0.040). In the PLA group, none of the significant bacteria correlated with either SCFA or serum biomarkers. The network analysis confirmed the positive correlation between genus Faecalibacterium and 2-methyl butyrate. We can conclude that the FVS in healthy individuals modified the gut microbiota composition and metabolites, and it can potentially contribute to reduce the pro-inflammatory response along with the antioxidant capacity.
Collapse
Affiliation(s)
| | - Alessandra Mingione
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Francesca Pivari
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | - Selvasankar Murugesan
- Microbiome and Host-Microbes Interactions Lab, Research Department, Sidra Medicine, Doha, Qatar
| | - Daniele Cusi
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
- Bio4Dreams Scientific Unit, Bio4Dreams-Business Nursery for Life Sciences, Bio4Dreams S.p.A., Milan, Italy
| | - Monica Lazzaroni
- Laboratory of Clinical Pathology, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Annalisa Terranegra
- Precision Nutrition, Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Annalisa Terranegra,
| |
Collapse
|
5
|
Lian WS, Wang FS, Chen YS, Tsai MH, Chao HR, Jahr H, Wu RW, Ko JY. Gut Microbiota Ecosystem Governance of Host Inflammation, Mitochondrial Respiration and Skeletal Homeostasis. Biomedicines 2022; 10:biomedicines10040860. [PMID: 35453611 PMCID: PMC9030723 DOI: 10.3390/biomedicines10040860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis and osteoarthritis account for the leading causes of musculoskeletal dysfunction in older adults. Senescent chondrocyte overburden, inflammation, oxidative stress, subcellular organelle dysfunction, and genomic instability are prominent features of these age-mediated skeletal diseases. Age-related intestinal disorders and gut dysbiosis contribute to host tissue inflammation and oxidative stress by affecting host immune responses and cell metabolism. Dysregulation of gut microflora correlates with development of osteoarthritis and osteoporosis in humans and rodents. Intestinal microorganisms produce metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide, and liposaccharides, affecting mitochondrial function, metabolism, biogenesis, autophagy, and redox reactions in chondrocytes and bone cells to regulate joint and bone tissue homeostasis. Modulating the abundance of Lactobacillus and Bifidobacterium, or the ratio of Firmicutes and Bacteroidetes, in the gut microenvironment by probiotics or fecal microbiota transplantation is advantageous to suppress age-induced chronic inflammation and oxidative damage in musculoskeletal tissue. Supplementation with gut microbiota-derived metabolites potentially slows down development of osteoarthritis and osteoporosis. This review provides latest molecular and cellular insights into the biological significance of gut microorganisms and primary and secondary metabolites important to cartilage and bone integrity. It further highlights treatment options with probiotics or metabolites for modulating the progression of these two common skeletal disorders.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
| | - How-Ran Chao
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Correspondence: ; Tel.: +88-67-731-7123
| |
Collapse
|
6
|
Casas R, Ribó-Coll M, Ros E, Fitó M, Lamuela-Raventos RM, Salas-Salvadó J, Zazpe I, Martínez-González MA, Sorlí JV, Estruch R, Sacanella E. Change to a healthy diet in people over 70 years old: the PREDIMED experience. Eur J Nutr 2022; 61:1429-1444. [PMID: 34839386 PMCID: PMC8921045 DOI: 10.1007/s00394-021-02741-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE It is difficult to change dietary habits and maintain them in the long run, particularly in elderly people. We aimed to assess whether adherence to the Mediterranean diet (MedDiet) and cardiovascular risk factor were similar in the middle-aged and oldest participants in the PREDIMED study. METHODS We analyzed participants belonging to the first and fourth quartiles of age (Q1 and Q4, respectively) to compare between-group differences in adherence to the nutritional intervention and cardiovascular risk factor (CRF) control during a 3-year follow-up. All participants underwent yearly clinical, nutritional, and laboratory assessments during the following. RESULTS A total of 2278 patients were included (1091 and 1187 in Q1 and Q4, respectively). At baseline, mean ages were 59.6 ± 2.1 years in Q1 and 74.2 ± 2.6 years in Q4. In Q4, there were more women, greater prevalence of hypertension and diabetes, and lower obesity and smoking rates than the younger cohort (P ≤ 0.001, all). Adherence to the MedDiet was similar in Q1 and Q4 at baseline (mean 8.7 of 14 points for both) and improved significantly (P < 0.01) and to a similar extent (mean 10.2 and 10.0 points, respectively) during follow-up. Systolic blood pressure, low density-lipoprotein cholesterol, and body weight were similarly reduced at 3 years in Q1 and Q4 participants. CONCLUSION The youngest and oldest participants showed improved dietary habits and CRFs to a similar extent after 3 years' intervention. Therefore, it is never too late to improve dietary habits and ameliorate CRF in high-risk individuals, even those of advanced age. REGISTRATION The trial is registered in the London-based Current Controlled Trials Registry (ISRCTN number 35739639).
Collapse
Affiliation(s)
- Rosa Casas
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 170 Villarroel, 08036, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Margarida Ribó-Coll
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 170 Villarroel, 08036, Barcelona, Spain
| | - Emilio Ros
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Lipid Clinic, Service of Endocrinology and Nutrition, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Montserrat Fitó
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Risk and Nutrition and REGICOR Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rosa-María Lamuela-Raventos
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition and Food Science School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jordi Salas-Salvadó
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Human Nutrition Unit, Hospital Universitari de Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Itziar Zazpe
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
- Department of Epidemiology and Department of Biochemistry and Molecular Biology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Miguel-Angel Martínez-González
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
| | - Jose V Sorlí
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
| | - Ramon Estruch
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 170 Villarroel, 08036, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Sacanella
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 170 Villarroel, 08036, Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Gu W, Zhang L, Han T, Huang H, Chen J. Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. J Inflamm Res 2022; 15:2631-2647. [PMID: 35494313 PMCID: PMC9049869 DOI: 10.2147/jir.s358807] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background An animal model of DSS-induced UC has been widely used in basic research, and the dysbiosis of gut microbiome is one of the important pathogenetic mechanisms of DSS-induced UC, but its dynamic changes and correlation with inflammatory factors are not clear yet. Methods Clinical signs and tissue damage degree of C57BL/6 ulcerative colitis mice model induced by different concentrations of DSS were compared with that of normal mice, and finally the optimal concentration of DSS was determined. Then we analyzed the sequencing results of gut microbiome and inflammatory factors to determine the dynamic patterns of gut microbiome and their correlation with the inflammatory factors. Results DSS at 2.5% and 3.0% concentration could cause intestinal injury and induce colitis. However, 3.0% DSS resulted in higher mortality. In addition, there were dynamic changes of gut microbiome in DSS-induced UC model: the relative abundance of intestinal flora increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and then increased in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium, Coriobacteriaceae_UCG-002 and Enterorhabdus did not change in the first 14 days but increased significantly on day 21. Moreover, inflammatory cytokines were closely associated with the imbalance of the intestinal microbiota in mice with UC: most pathogenic bacteria in the intestinal tract of the UC animal model were positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory factors, while beneficial bacteria were the opposite. Conclusion Intestinal microecology plays an important role in DSS-induced UC model, and the relative abundance of gut microbiome changes dynamically in the occurrence and development of ulcerative colitis.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Liangkun Zhang
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Tao Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Hailiang Huang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Hailiang Huang, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing District, Jinan, People’s Republic of China, Tel +86 15628987355, Email
| | - Jian Chen
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
- Correspondence: Jian Chen, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), No. 105 Jiefang Road, Lixia District, Jinan, People’s Republic of China, Tel +86 133 7058 7597, Email
| |
Collapse
|
8
|
Souders CL, Zubcevic J, Martyniuk CJ. Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension. Cell Mol Neurobiol 2022; 42:419-437. [PMID: 33594519 PMCID: PMC8364923 DOI: 10.1007/s10571-021-01044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The colonic epithelium is the site of production and transport of many vasoactive metabolites and neurotransmitters that can modulate the immune system, affect cellular metabolism, and subsequently regulate blood pressure. As an important interface between the microbiome and its host, the colon can contribute to the development of hypertension. In this critical review, we highlight the role of colonic inflammation and microbial metabolites on the gut brain axis in the pathology of hypertension, with special emphasis on the interaction between tumor necrosis factor α (TNFα) and short chain fatty acid (SCFA) metabolites. Here, we review the current literature and identify novel pathways in the colonic epithelium related to hypertension. A network analysis on transcriptome data previously generated in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats reveals differences in several pathways associated with inflammation involving TNFα (NF-κB and STAT Expression Targets) as well as oxidative stress. We also identify down-regulation of networks associated with gastrointestinal function, cardiovascular function, enteric nervous system function, and cholinergic and adrenergic transmission. The analysis also uncovered transcriptome responses related to glycolysis, butyrate oxidation, and mitochondrial function, in addition to gut neuropeptides that serve as modulators of blood pressure and metabolic function. We present a model for the role of TNFα in regulating bacterial metabolite transport and neuropeptide signaling in the gastrointestinal system, highlighting the complexity of host-microbiota interactions in hypertension.
Collapse
Affiliation(s)
- Christopher L. Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA. .,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO BOX 100274, Gainesville, FL, 32611, USA.
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA,Corresponding authors contact information: Department of Physiological Sciences, College of Veterinary Medicine, University of Florida PO BOX 100274 GAINESVILLE FL 326100274 United States; and
| |
Collapse
|
9
|
Arroyo P, Esparza-Aguilar M, Martín-Martín V, Gomez-Verjan JC, Parra-Rodríguez L, Cadena-Trejo C, Salazar-Pérez C, Gutiérrez-Robledo LM. Physical capability in a rural birth cohort at the age of 52: association with early environmental, nutritional, and developmental factors. BMC Geriatr 2022; 22:113. [PMID: 35144547 PMCID: PMC8832669 DOI: 10.1186/s12877-022-02801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Midlife physical capability (PC) is associated with developmental factors in the populations of economically developed countries. As far as we know, there is no information for rural populations of low- and middle-income countries. The aim of the study was to investigate the influence of pre- and postnatal factors on midlife objective measures of PC in a 1966–67 birth cohort from a Mexican rural community. The hypothesis was that adverse developmental conditions are associated with low midlife PC. Methods In 1966–67, a birth cohort of all children from a poor Mexican rural community was assembled. Data on family socioeconomic status (SES), parental health and nutritional status, birth weight, postnatal growth and feeding patterns were registered. In 2018, out of the 336 cohort members, 118 were living in the community, and eighty-two of them underwent a comprehensive clinical evaluation. The evaluation included grip strength, gait velocity and chair-stand PC tests. In multivariable linear models, PC tests were the dependent variables, and prenatal, birth and postnatal factors were the independent variables. Adjustment for confounding was made with adult anthropometric, body composition, clinical and ageing status variables. Results Independent of adult health status and other ageing indicators, lower PC was associated with family organization and SES, parental nutritional status, birth weight, infant postnatal growth velocity, and weaning time. These results indicate that adverse family and environmental conditions that are prevalent in poor rural communities are associated with low midlife PC.
Collapse
Affiliation(s)
- Pedro Arroyo
- Department of Clinical Epidemiology, Direction of Research, Instituto Nacional de Geriatría, Blvd. Adolfo Ruiz Cortines No. 2767, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, CP. 10200, Ciudad de México, México
| | - Marcelino Esparza-Aguilar
- Research Unit of Epidemiology, Direction of Research, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán, C.P. 04530, Ciudad de México, México.
| | - Verónica Martín-Martín
- Research Unit of Epidemiology, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán, C.P. 04530, Ciudad de México, México
| | - Juan Carlos Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, Blvd. Adolfo Ruiz Cortines No. 2767, CP. 10200, Ciudad de México, México
| | - Lorena Parra-Rodríguez
- Department of Biomedical Engineering and Gerontechnology. Direction of Research, Instituto Nacional de Geriatría, Blvd. Adolfo Ruiz Cortines No. 2767, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, CP. 10200, Ciudad de México, México
| | - Cinthya Cadena-Trejo
- Department of Clinical Epidemiology, Direction of Research, Instituto Nacional de Geriatría, Blvd. Adolfo Ruiz Cortines No. 2767, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, CP. 10200, Ciudad de México, México
| | - Cecilia Salazar-Pérez
- Clinical Laboratory, Instituto Nacional de Pediatría. Laboratory of Clinical Chemistry, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán, C.P. 04530, Ciudad de México, México
| | - Luis Miguel Gutiérrez-Robledo
- Instituto Nacional de Geriatría, Blvd. Adolfo Ruiz Cortines No. 2767, Col. San Jerónimo Lídice, Alcaldía La Magdalena Contreras. Distrito Federal, CP. 10200, Ciudad de México, México
| |
Collapse
|
10
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
11
|
Wu PH, Lin YT, Chiu YW, Baldanzi G, Huang JC, Liang SS, Lee SC, Chen SC, Hsu YL, Kuo MC, Hwang SJ. The relationship of indoxyl sulfate and p-cresyl sulfate with target cardiovascular proteins in hemodialysis patients. Sci Rep 2021; 11:3786. [PMID: 33589722 PMCID: PMC7884394 DOI: 10.1038/s41598-021-83383-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Protein-bound uremic toxins (Indoxyl sulfate [IS] and p-cresyl sulfate [PCS]) are both associated with cardiovascular (CV) and all-cause mortality in subjects with chronic kidney disease (CKD). Possible mechanisms have not been elucidated. In hemodialysis patients, we investigated the relationship between the free form of IS and PCS and 181 CV-related proteins. First, IS or PCS concentrations were checked, and high levels were associated with an increased risk of acute coronary syndrome (ACS) in 333 stable HD patients. CV proteins were further quantified by a proximity extension assay. We examined associations between the free form protein-bound uremic toxins and the quantified proteins with correction for multiple testing in the discovery process. In the second step, the independent association was evaluated by multivariable-adjusted models. We rank the CV proteins related to protein-bound uremic toxins by bootstrapped confidence intervals and ascending p-value. Six proteins (signaling lymphocytic activation molecule family member 5, complement component C1q receptor, C–C motif chemokine 15 [CCL15], bleomycin hydrolase, perlecan, and cluster of differentiation 166 antigen) were negatively associated with IS. Fibroblast growth factor 23 [FGF23] was the only CV protein positively associated with IS. Three proteins (complement component C1q receptor, CCL15, and interleukin-1 receptor-like 2) were negatively associated with PCS. Similar findings were obtained after adjusting for classical CV risk factors. However, only higher levels of FGF23 was related to increased risk of ACS. In conclusion, IS and PCS were associated with several CV-related proteins involved in endothelial barrier function, complement system, cell adhesion, phosphate homeostasis, and inflammation. Multiplex proteomics seems to be a promising way to discover novel pathophysiology of the uremic toxin.
Collapse
Affiliation(s)
- Ping-Hsun Wu
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yi-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Gabriel Baldanzi
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jiun-Chi Huang
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Chu Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
| | - Shang-Jyh Hwang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| |
Collapse
|
12
|
Coutinho-Wolino KS, de F Cardozo LFM, de Oliveira Leal V, Mafra D, Stockler-Pinto MB. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Eur J Nutr 2021; 60:3567-3584. [PMID: 33533968 DOI: 10.1007/s00394-021-02491-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite that has attracted attention due to its positive association with several chronic non-communicable diseases such as insulin resistance, atherosclerotic plaque formation, diabetes, cancer, heart failure, hypertension, chronic kidney disease, liver steatosis, cardiac fibrosis, endothelial injury, neural degeneration and Alzheimer's disease. TMAO production results from the fermentation by the gut microbiota of dietary nutrients such as choline and carnitine, which are transformed to trimethylamine (TMA) and converted into TMAO in the liver by flavin-containing monooxygenase 1 and 3 (FMO1 and FMO3). Considering that TMAO is involved in the development of many chronic diseases, strategies have been found to enhance a healthy gut microbiota. In this context, some studies have shown that nutrients and bioactive compounds from food can modulate the gut microbiota and possibly reduce TMAO production. OBJECTIVE This review has as main objective to discuss the studies that demonstrated the effects of food on the reduction of this harmful metabolite. METHODS All relevant articles until November 2020 were included. The articles were searched in Medline through PubMed. RESULTS Both the food is eaten acutely and chronically, by altering the nature of the gut microbiota, influencing colonic TMA production. Furthermore, hepatic production of TMAO by the flavin monooxygenases in the liver may also be influenced by phenolic compounds present in foods. CONCLUSION The evidence presented in this review shows that TMAO levels can be reduced by some bioactive compounds. However, it is crucial to notice that there is significant variation among the studies. Further clinical studies should be conducted to evaluate these dietary components' effectiveness, dose, and intervention time on TMAO levels and its precursors.
Collapse
Affiliation(s)
| | - Ludmila F M de F Cardozo
- Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Viviane de Oliveira Leal
- Division of Nutrition, Pedro Ernesto University Hospital, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.,Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil.,Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena Barcza Stockler-Pinto
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.,Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|