1
|
Scepankova H, Majtan J, Pospiech M, Moreira MM, Pinto CA, Dias LG, Estevinho LM, Delerue-Matos C, Saraiva JA. Quantifying the Impact of High-Pressure Processing on the Phenolic Profile, Antioxidant Activity, and Pollen Morphology in Honey. Chem Biodivers 2024:e202403090. [PMID: 39714436 DOI: 10.1002/cbdv.202403090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
Honey can benefit from non-thermal processing techniques such as high-pressure processing (HPP) to improve its quality and bioactivity. This study investigated the impact of HPP (600 MPa for 5, 10, and 15 min) on honey's quality, including the levels of hydroxymethylfurfural (HMF), antioxidant activity, total phenolic content (TPC), and phenolic profile. HPP treatment did not significantly affect HMF or TPC levels but led to selective changes in the phenolic profile. Despite a reduction in certain phenolic compound content, HPP for 5 and 15 min caused a significant increase in the antioxidant activity (2,2-diphenyl-1-picrylhydrazyl [DPPH]) of honey from the mean value of 41.8% to values of 45.4% and 49.6%, respectively. On the other hand, HPP for 10 min did not change the antioxidant activity of tested honey. A 27.5% reduction in the equatorial diameter of pollen grains was observed after HPP combined with temperature at 75°C, suggesting an improved release of bioactive compounds. The content of specific phenolic compounds, including caffeic acid, p-coumaric acid, sinapic acid, naringin, kaempferol, and the TPC, significantly affected the DPPH activity. The increment in the antioxidant activity of HPP honey may be attributed to selective changes in the content of certain phenolic compounds and improved their extraction from pollen grains.
Collapse
Affiliation(s)
- Hana Scepankova
- REQUIMTE/LAQV, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, Aveiro, Portugal
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Matej Pospiech
- Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czechia
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Carlos A Pinto
- REQUIMTE/LAQV, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, Aveiro, Portugal
| | - Luís G Dias
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Bragança, Portugal
| | | | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jorge A Saraiva
- REQUIMTE/LAQV, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Martinotti S, Bonsignore G, Ranzato E. Understanding the Anticancer Properties of Honey. Int J Mol Sci 2024; 25:11724. [PMID: 39519281 PMCID: PMC11547017 DOI: 10.3390/ijms252111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Uncontrolled cell growth that possesses the capacity to exhibit malignant behavior is referred to as cancer. The cytotoxic drugs used to fight cancer are associated with several adverse effects and are not always readily available or affordable, especially in developing countries. These issues are in addition to the shortcomings of the current cancer treatment regimen. According to growing research, honey is not cytotoxic to normal cells but is highly and particularly cytotoxic to tumor cells, suggesting that honey may display anticancer effects. Research has shown that honey affects a number of cell signaling pathways; however, at the moment, the precise method is not completely known.
Collapse
Affiliation(s)
| | | | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (S.M.); (G.B.)
| |
Collapse
|
3
|
Paduraru E, Jijie R, Simionov IA, Gavrilescu CM, Ilie T, Iacob D, Lupitu A, Moisa C, Muresan C, Copolovici L, Copolovici DM, Mihalache G, Lipsa FD, Solcan G, Danelet GA, Nicoara M, Ciobica A, Solcan C. Honey Enriched with Additives Alleviates Behavioral, Oxidative Stress, and Brain Alterations Induced by Heavy Metals and Imidacloprid in Zebrafish. Int J Mol Sci 2024; 25:11730. [PMID: 39519279 PMCID: PMC11546825 DOI: 10.3390/ijms252111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental concerns have consistently been a focal point for the scientific community. Pollution is a critical ecological issue that poses significant threats to human health and agricultural production. Contamination with heavy metals and pesticides is a considerable concern, a threat to the environment, and warrants special attention. In this study, we investigated the significant issues arising from sub-chronic exposure to imidacloprid (IMI), mercury (Hg), and cadmium (Cd), either alone or in combination, using zebrafish (Danio rerio) as an animal model. Additionally, we assessed the potential protective effects of polyfloral honey enriched with natural ingredients, also called honey formulation (HF), against the combined sub-chronic toxic effects of the three contaminants. The effects of IMI (0.5 mg·L-1), Hg (15 μg·L-1), and Cd (5 μg·L-1), both individually and in combination with HF (500 mg·L-1), on zebrafish were evaluated by quantifying acetylcholinesterase (AChE) activity, lipid peroxidation (MDA), various antioxidant enzyme activities like superoxide dismutase and glutathione peroxidase (SOD and GPx), 2D locomotor activity, social behavior, histological and immunohistochemical factors, and changes in body element concentrations. Our findings revealed that all concentrations of pollutants may disrupt social behavior, diminish swimming performances (measured by total distance traveled, inactivity, and swimming speed), and elevate oxidative stress (OS) biomarkers of SOD, GPx, and MDA in zebrafish over the 21-day administration period. Fish exposed to IMI and Hg + Cd + IMI displayed severe lesions and increased GFAP (Glial fibrillary acidic protein) and S100B (S100 calcium-binding protein B) protein expression in the optic tectum and cerebellum, conclusively indicating astrocyte activation and neurotoxic effects. Furthermore, PCNA (Proliferating cell nuclear antigen) staining revealed reduced cell proliferation in the IMI-exposed group, contrasting with intensified proliferation in the Hg + Cd group. The nervous system exhibited significant damage across all studied concentrations, confirming the observed behavioral changes. Moreover, HF supplementation significantly mitigated the toxicity induced by contaminants and reduced OS. Therefore, the exposure to chemical mixtures offers a more complete picture of adverse impacts on aquatic ecosystems and the supplementation with bioactive compounds can help to reduce the toxicity induced by exposure to environmental pollutants.
Collapse
Affiliation(s)
- Emanuela Paduraru
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies (RAMTECH), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Avenue, 700506 Iasi, Romania;
| | - Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Dunarea de Jos University of Galati, No. 47 Domnească Street, 800008 Galati, Romania;
- REXDAN Research Infrastructure, Dunarea de Jos University of Galati, No. 98 George Coșbuc Street, 800385 Galati, Romania
| | - Cristina-Maria Gavrilescu
- Department of Biomedical Sciences, Grigore T. Popa University of Medicine and Pharmacy, No. 16 University Street, 700115 Iasi, Romania;
| | - Tudor Ilie
- Synergy Plant Products, No. 12 Milano Street, Prejmer, 507165 Brasov, Romania;
| | - Diana Iacob
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
| | - Andreea Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Claudia Muresan
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Dana M. Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Gabriela Mihalache
- Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Avenue, 700506 Iasi, Romania;
| | - Florin Daniel Lipsa
- Department of Food Technologies, Ion Ionescu de la Brad University of Life Sciences, No. 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| | - Gabriela-Alexandra Danelet
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| | - Mircea Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No. 20A Carol I Avenue, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No. 20A Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8 Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54 Independence Street, Sector 5, 050094 Bucharest, Romania
- “Ioan Haulica” Institute, Apollonia University, No. 11 Pacurari Street, 700511 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| |
Collapse
|
4
|
Haines RR, Xi S, Green KJ, Hammer KA. In vitro activity of Western Australian honeys and Manuka honey against clinically important yeasts. Yeast 2024; 41:537-548. [PMID: 39032089 DOI: 10.1002/yea.3974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024] Open
Abstract
With the steady rise in antifungal resistance amongst clinically important yeasts, antifungal drug discovery remains of the utmost importance. To determine the potential of some honeys as alternative antifungal agents, we quantified the antifungal activity of 12 Western Australian honey samples, two Manuka honey samples and an artificial honey against 10 yeast isolates including clinical and reference strains. Results showed that the tested honeys varied in activity, and yeasts species also differed in susceptibility, with minimum inhibitory concentrations (MICs) determined by broth microdilution ranging from 8% to >44% w/v honey. Honeys with the highest overall activity were derived from Blackbutt (Eucalyptus patens), Jarrah (E. marginata), and Karri (E. diversicolor). The optical density of each MIC microtitre plate was determined after incubation and showed that at relatively low concentrations of honey the growth of all yeasts was enhanced compared to the untreated control, whereas at and above approximately 12% w/v, honeys exerted a dose-dependent growth inhibitory effect, the extent of which varied by honey type. Time-kill studies with 64% w/v honey showed that all eight of the natural honeys tested had greater fungicidal activity than the comparator artificial honey. Our findings suggest that the specific nectar-derived phytochemicals present within each honey play an important role in antifungal activity, and support the notion that activity is due to a combination of factors including osmotic activity, hydrogen peroxide and phytochemical compounds. These data indicate that honey is worthy of further investigation as a potential therapeutic agent for superficial yeast infections.
Collapse
Affiliation(s)
- Robbie R Haines
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Crawley, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Crawley, Australia
| | - Shuhui Xi
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
| | - Kathryn J Green
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Crawley, Australia
| | - Katherine A Hammer
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Crawley, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Crawley, Australia
| |
Collapse
|
5
|
Tang R, Lin L, Liu Y, Li H. Bibliometric and visual analysis of global publications on kaempferol. Front Nutr 2024; 11:1442574. [PMID: 39221164 PMCID: PMC11362042 DOI: 10.3389/fnut.2024.1442574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Kaempferol, a flavonoid found in numerous foods and medicinal plants, offers a range of health benefits such as anti-inflammatory, antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective effects. Methods Herein, a bibliometric and visual analysis of global publications on kaempferol was performed to map the evolution of frontiers and hotspots in the field. Using the search string TS = kaempferol, bibliometric data for this analysis was extracted from the Web of Science Core Collection database and analyzed using the VOSviewer, CiteSpace, and Scimago Graphica software. Results As a result, by February 26, 2024, 11,214 publications were identified, comprising articles (n = 10,746, 96%) and review articles (n = 468, 4%). Globally, the annual number of kaempferol publications surpassed 100 per year since 2000, exceeded 500 per year since 2018, and further crossed the threshold of 1,000 per year starting in 2022. The major contributing countries were China, the United States of America, and India, while the top three institutes of the citations of kaempferol were the Chinese Academy of Sciences, Consejo Superio de Investigaciones Cientficas, and Uniersidade do Porto. These publications were mainly published in agricultural and food chemistry journals, food chemistry, and phytochemistry. Discussion The keywords frequently mentioned include phenolic compounds, antioxidant activity, flavonoids, NF-kappa B, inflammation, bioactive compounds, etc. Anti-inflammation, anti-oxidation, and anti-cancer have consistently been the focus of kaempferol research, while cardiovascular protection, neuroprotection, antiviral, and anti-bacterial effects have emerged as recent highlights. The field of kaempferol research is thriving.
Collapse
Affiliation(s)
- Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| |
Collapse
|
6
|
Ailli A, Zibouh K, Eddamsyry B, Drioiche A, Fetjah D, Ayyad FZ, Mothana RA, Hawwal MF, Radi M, Tarik R, Elomri A, Mouradi A, Zair T. Physicochemical Characterization of Moroccan Honey Varieties from the Fez-Meknes Region and Their Antioxidant and Antibacterial Properties. Metabolites 2024; 14:364. [PMID: 39057687 PMCID: PMC11279380 DOI: 10.3390/metabo14070364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Honey, with its varied and extensive characteristics, is a complex and diverse biological substance that has been used since ancient times. The aim of this study is to thoroughly characterize the physicochemical, phytochemical, and biological properties of four floral honey varieties from the Fez-Meknes region in Morocco, with the goal of promoting the valorization of Moroccan honey in skincare and cosmetic products. The analyses of their physicochemical characteristics encompass various parameters such as pH, acidity, density, water content, Brix index, conductivity, ash content, hydroxymethylfurfural (HMF) content, and color. The levels of polyphenols range from 22.1 ± 0.4 to 69.3 ± 0.17 mg GAE/100 g of honey, measured using the Folin-Ciocalteu method for polyphenol quantification. Additionally, the estimation of flavonoid quantities in 100 g of honey, conducted using the aluminum trichloride method, reveals values ranging from 3.6 ± 0.2 to 7.2 ± 0.6 mg QE. Furthermore, it is noteworthy that honey exhibits high levels of glucose and relatively low concentrations of proteins. The quantitative evaluation of antioxidant effects, carried out through the 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging method and the ferric-reducing antioxidant power (FRAP) method, highlights the strong antioxidant capacity of multifloral honey, characterized by low inhibitory concentration values (IC50 = 30.43 mg/mL and EC50 = 16.06 mg/mL). Moreover, all honey varieties demonstrate antibacterial and antifungal properties, with multifloral honey standing out for its particularly pronounced antimicrobial activity. The correlation analyses between phytochemical composition and antioxidant and antibacterial activities reveal an inverse relationship between polyphenols and IC50 (DPPH) and EC50 (FRAP) concentrations of honey. The correlation coefficients are established at R2 = -0.97 and R2 = -0.99, respectively. Additionally, a significant negative correlation is observed between polyphenols, flavonoids, and antifungal power (R2 = -0.95 and R2 = -0.96). In parallel, a marked positive correlation is highlighted between antifungal efficacy, DPPH antioxidant activity (R2 = 0.95), and FRAP (R2 = 0.92). These results underscore the crucial importance of phytochemical components in the beneficial properties of honey, meeting international quality standards. Consequently, honey could serve as a natural alternative to synthetic additives.
Collapse
Affiliation(s)
- Atika Ailli
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Khalid Zibouh
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Brahim Eddamsyry
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Dounia Fetjah
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Fatima Zahra Ayyad
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - Mohamed Radi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Redouane Tarik
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Abdelhakim Elomri
- INSA Rouen Normandy and CNRS, Laboratory of Organic, Bioorganic Chemistry, Reactivity and Analysis (COBRA-UMR 6014), Medical University of Rouen Normandy, 76000 Rouen, France;
| | - Aicha Mouradi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| |
Collapse
|
7
|
Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem 2024; 440:138060. [PMID: 38211407 DOI: 10.1016/j.foodchem.2023.138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario L0S 1J0, Canada; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yi Qiu
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Moussavi N, Mounkoro PP, Dembele SM, Ballo NN, Togola A, Diallo D, Sanogo R, Wangensteen H, Paulsen BS. Polyherbal Combinations Used by Traditional Health Practitioners against Mental Illnesses in Bamako, Mali, West Africa. PLANTS (BASEL, SWITZERLAND) 2024; 13:454. [PMID: 38337987 PMCID: PMC10857219 DOI: 10.3390/plants13030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
This study explores the traditional knowledge of plants used by traditional health practitioners (THPs) in the treatment of symptoms or syndromes related to mental illnesses in the district of Bamako in Mali, along with the identification of affiliated traditional treating methods. An exploratory and cross-sectional ethnopharmacological survey was conducted in the district of Bamako. The Malian Federation of Associations of Therapists and Herbalists (FEMATH) assisted in the identification and inclusion of the THPs. Data sampling included semi-structured interviews, questionnaires, and in-depth interviews. Quantitative data were evaluated by analysing reports of the use of different medicinal plants and the number of participants. Fifteen THPs belonging to the district of Bamako participated. In total, 43 medicinal plants belonging to 22 plant families were used by the THPs. The most cited plant species was Securidaca longepedunculata (violet tree), followed by Khaya senegalensis (African mahogany) and Boscia integrifolia (rough-leaved shepherds tree). A great number of herbal combinations, preparation methods, and administration routes were used, often with honey as an adjuvant. To our knowledge, this is the first ethnobotanical survey on the use of medicinal plants in the treatment of all types of mental disorders in Bamako.
Collapse
Affiliation(s)
- Nastaran Moussavi
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway; (H.W.); (B.S.P.)
| | - Pierre Pakuy Mounkoro
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako BP1805, Mali
| | - Seydou Mamadou Dembele
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
| | - Nfla Ngolo Ballo
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
| | - Adiaratou Togola
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
- Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako BP1805, Mali
| | - Drissa Diallo
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
- Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako BP1805, Mali
| | - Rokia Sanogo
- Department of Traditional Medicine, National Institute of Public Health, Bamako PB1746, Mali; (S.M.D.); (N.N.B.); (A.T.); (R.S.)
- Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako BP1805, Mali
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway; (H.W.); (B.S.P.)
| | - Berit Smestad Paulsen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway; (H.W.); (B.S.P.)
| |
Collapse
|
9
|
Guenaoui N, Ouchemoukh S, Amessis-Ouchemoukh N, Otmani A, Ayad R, Sadou D, Pușcaș A, Mureșan V. Structural behavior, FTIR spectra of five Algerian honeys, and sensory acceptance of margarine enriched with honey. J Food Sci 2024; 89:276-293. [PMID: 37990837 DOI: 10.1111/1750-3841.16823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
This study examined the textural and rheological properties of Algerian honeys and margarines formulated with honey and their sensory acceptance. Textural analysis shows that all honeys and margarines enriched with honey are spreadable, easy to swallow by the consumer and to adhere to a surface (bread, teeth, tongue, etc.), and have suitable adhesiveness. The hardness and elasticity values reveal that H5 honey and its M5 margarine are less hard and regain their height more quickly. The rheological analysis reveals that all honeys and formulated margarines non-Newtonian behavior at 25 and 45°C with a G' > G″ for each type of honey except for H1 and all margarines elaborated with honey presenting a structure of a gel. Statistical analysis shows no significant differences (p > 0.05) in mean values of activation energy, suggesting that honeys and margarines need the same energy to flow. Chemometric analysis reveals strong similarities between (H3 and H5) and (M3 and M5). Sensory acceptance of margarines enriched with honey shows that M4 and M5 margarines are the most preferred by consumers with a satisfaction rate between 60% and 80%. In conclusion, margarine formulated with honey should be introduced to the market due to their good structural properties and high acceptance.
Collapse
Affiliation(s)
- Nawel Guenaoui
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Salim Ouchemoukh
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Nadia Amessis-Ouchemoukh
- Laboratoire de Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Amar Otmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Rabha Ayad
- Laboratoire de Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Dyhia Sadou
- Laboratoire de Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Andreea Pușcaș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
11
|
Rivera-Mondragón A, Marrone M, Bruner-Montero G, Gaitán K, de Núñez L, Otero-Palacio R, Añino Y, Wcislo WT, Martínez-Luis S, Fernández-Marín H. Assessment of the Quality, Chemometric and Pollen Diversity of Apis mellifera Honey from Different Seasonal Harvests. Foods 2023; 12:3656. [PMID: 37835310 PMCID: PMC10572316 DOI: 10.3390/foods12193656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The parameters for assessing the quality of honey produced by Apis mellifera are standardized worldwide. The physicochemical properties of honey might vary extensively due to factors such as the geographical area where it was produced and the season in which it was harvested. Little information is available on variations in honey quality among different harvest periods in tropical areas, and particularly in neotropical dry forests. This study describes variations in seventeen physicochemical parameters and the pollen diversity of honey harvested from beehives during the dry season in February, March, and April 2021, in the dry arc of Panama. Potassium is the most abundant mineral in honey samples, and its concentration increases during the harvest period from February to April. A PCA analysis showed significant differences among the samples collected during different harvest periods. The pollen diversity also differs among honey samples from February compared with March and April. The results indicate that climatic conditions may play an important role in the quality of honey produced in the dry arc of Panama. Furthermore, these results might be useful for establishing quality-control parameters of bee honey produced in Panama in support of beekeeping activities in seasonal wet-dry areas of the tropics.
Collapse
Affiliation(s)
- Andrés Rivera-Mondragón
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Departamento de Química Medicinal y Farmacognosia, Facultad de Farmacia, Universidad de Panamá, Panama City P.O. Box 3366, Panama;
- Instituto Especializado de Análisis (IEA), Universidad de Panamá, Panama City P.O. Box 3366, Panama; (K.G.); (L.d.N.)
- Sistema Nacional de Investigación (SNI), Senacyt, Ciudad del Saber, Clayton 0843-03081, Panama;
| | - Maravi Marrone
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Clayton 0843-01103, Panama;
| | - Gaspar Bruner-Montero
- Sistema Nacional de Investigación (SNI), Senacyt, Ciudad del Saber, Clayton 0843-03081, Panama;
- Coiba Scientific Station (Coiba AIP), Gustavo Lara Street, City of Knowledge, Clayton 0843-01853, Panama;
| | - Katerin Gaitán
- Instituto Especializado de Análisis (IEA), Universidad de Panamá, Panama City P.O. Box 3366, Panama; (K.G.); (L.d.N.)
| | - Leticia de Núñez
- Instituto Especializado de Análisis (IEA), Universidad de Panamá, Panama City P.O. Box 3366, Panama; (K.G.); (L.d.N.)
| | | | - Yostin Añino
- Coiba Scientific Station (Coiba AIP), Gustavo Lara Street, City of Knowledge, Clayton 0843-01853, Panama;
- Museo de Invertebrados G. B. Fairchild, Universidad de Panamá, Panama City P.O. Box 00017, Panama
| | - William T. Wcislo
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama;
| | - Sergio Martínez-Luis
- Sistema Nacional de Investigación (SNI), Senacyt, Ciudad del Saber, Clayton 0843-03081, Panama;
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Clayton 0843-01103, Panama;
| | - Hermógenes Fernández-Marín
- Sistema Nacional de Investigación (SNI), Senacyt, Ciudad del Saber, Clayton 0843-03081, Panama;
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Clayton 0843-01103, Panama;
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama;
| |
Collapse
|
12
|
Pluta R, Miziak B, Czuczwar SJ. Apitherapy in Post-Ischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy: Focus on Honey and Its Flavonoids and Phenolic Acids. Molecules 2023; 28:5624. [PMID: 37570596 PMCID: PMC10420307 DOI: 10.3390/molecules28155624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Neurodegeneration of the brain after ischemia is a major cause of severe, long-term disability, dementia, and mortality, which is a global problem. These phenomena are attributed to excitotoxicity, changes in the blood-brain barrier, neuroinflammation, oxidative stress, vasoconstriction, cerebral amyloid angiopathy, amyloid plaques, neurofibrillary tangles, and ultimately neuronal death. In addition, genetic factors such as post-ischemic changes in genetic programming in the expression of amyloid protein precursor, β-secretase, presenilin-1 and -2, and tau protein play an important role in the irreversible progression of post-ischemic neurodegeneration. Since current treatment is aimed at preventing symptoms such as dementia and disability, the search for causative therapy that would be helpful in preventing and treating post-ischemic neurodegeneration of Alzheimer's disease proteinopathy is ongoing. Numerous studies have shown that the high contents of flavonoids and phenolic acids in honey have antioxidant, anti-inflammatory, anti-apoptotic, anti-amyloid, anti-tau protein, anticholinesterase, serotonergic, and AMPAK activities, influencing signal transmission and neuroprotective effects. Notably, in many preclinical studies, flavonoids and phenolic acids, the main components of honey, were also effective when administered after ischemia, suggesting their possible use in promoting recovery in stroke patients. This review provides new insight into honey's potential to prevent brain ischemia as well as to ameliorate damage in advanced post-ischemic brain neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (S.J.C.)
| | | | | |
Collapse
|
13
|
Choudhary P, Tushir S, Bala M, Sharma S, Sangha MK, Rani H, Yewle NR, Kumar P, Singla D, Chandran D, Kumar M, Mekhemar M. Exploring the Potential of Bee-Derived Antioxidants for Maintaining Oral Hygiene and Dental Health: A Comprehensive Review. Antioxidants (Basel) 2023; 12:1452. [PMID: 37507990 PMCID: PMC10375990 DOI: 10.3390/antiox12071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Honey bee products comprise various compounds, including honey, propolis, royal jelly, bee pollen, bee wax and bee venom, which have long been recognized for their pharmacological and health-promoting benefits. Scientists have discovered that periodontal disorders stem from dental biofilm, an inflammatory response to bacterial overgrowth produced by dysbiosis in the oral microbiome. The bee products have been investigated for their role in prevention of oral diseases, which are attributed to a myriad of biologically active compounds including flavonoids (pinocembrin, catechin, caffeic acid phenethyl ester (CAPE) and galangin), phenolic acids (hydroxybenzoic acid, hydroxycinnamic acid, p-coumaric, ellagic, caffeic and ferulic acids) and terpenoids. This review aims to update the current understanding of role of selected bee products, namely, honey, propolis and royal jelly, in preventing oral diseases as well as their potential biological activities and mechanism of action in relation to oral health have been discussed. Furthermore, the safety of incorporation of bee products is also critically discussed. To summarize, bee products could potentially serve as a therapy option for people suffering from a variety of oral disorders.
Collapse
Affiliation(s)
- Poonam Choudhary
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Surya Tushir
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Manju Bala
- Department of Food Grain and Oilseed Processing, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | | | - Parminder Kumar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Diksha Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany
| |
Collapse
|
14
|
Gumul D, Oracz J, Kowalski S, Mikulec A, Skotnicka M, Karwowska K, Areczuk A. Bioactive Compounds and Antioxidant Composition of Nut Bars with Addition of Various Edible Insect Flours. Molecules 2023; 28:molecules28083556. [PMID: 37110790 PMCID: PMC10143157 DOI: 10.3390/molecules28083556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Edible insects represent a new functional source of nutrients that can contribute to solving nutritional deficiency problems. The antioxidant potential and bioactive compounds of nut bars with the addition of three edible insects were evaluated. Acheta domesticus L., Alphitobius diaperinus P. and Tenebrio molitor L. flours were used. A 30% share of insect flour in the bars resulted in significantly greater antioxidant activity (TPC increased from 190.19 for standard bars to 309.45 mg catechin/100 g for bars with 30% addition of cricket flour). Insect flour contributed significantly to an increase in 2,5-dihydrobenzoic acid (from 0.12 for bars with a 15% share of buffalo worm flour to 0.44 mg/100 g in the case of bars with a 30% share of cricket flour) and chlorogenic acid in all bars (from 0.58 for bars with a 15% share of cricket flour to 3.28 mg/100 g for bars with a 30% addition of buffalo worm flour), compared to the standard. The highest content of tocopherols was found in bars with cricket flour, compared to standard bars (43.57 and 24.06 mg/100 g of fat, respectively). The dominant sterol in bars enriched with insect powder was cholesterol. The highest amount of it was found in cricket bars, and the lowest in mealworm bars (64.16 and 21.62 mg/100 g of fat, respectively). The enrichment of nut bars with insect flours raises the levels of valuable phytosterols in the final product. The addition of edible insect flours reduced the perception of most sensory attributes of the bars, compared to the standard bar.
Collapse
Affiliation(s)
- Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Stanisław Kowalski
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland
| | - Anna Mikulec
- Faculty of Engineering Sciences, University of Applied Science in Nowy Sacz, 1a Zamenhofa Street, 33-300 Nowy Sacz, Poland
| | - Magdalena Skotnicka
- Department of Commodity Science, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Kaja Karwowska
- Department of Commodity Science, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Anna Areczuk
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland
| |
Collapse
|
15
|
Aga MB, Sharma V, Dar AH, Dash KK, Singh A, Shams R, Khan SA. Comprehensive review on functional and nutraceutical properties of honey. EFOOD 2023. [DOI: 10.1002/efd2.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Mohsin B. Aga
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| | - Vaibhav Sharma
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonipat Haryana India
| | - Aamir H. Dar
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| | - Kshirod K. Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| | - Anurag Singh
- Department of Food Technology Harcourt Butler Technical University Nawabganj, Kanpur Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Shafat A. Khan
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| |
Collapse
|
16
|
Fadzil MAM, Mustar S, Rashed AA. The Potential Use of Honey as a Neuroprotective Agent for the Management of Neurodegenerative Diseases. Nutrients 2023; 15:nu15071558. [PMID: 37049399 PMCID: PMC10096917 DOI: 10.3390/nu15071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
As the global population ages, there is an increasing research on managing neurodegenerative diseases that mainly affect the elderly. Honey is one of the natural products and functional foods widely studied for its neuroprotective properties. This review investigates honey's effectiveness as a neuroprotective agent through in vitro, in vivo, and clinical research. The articles were browsed from three databases (PubMed, ScienceDirect, and Scopus) between the years of 2012 and 2022 using the keywords "honey" crossed with "neurodegenerative". Out of the 16 articles, six in vitro, eight in vivo, one combination study, and one clinical intervention were compiled. Among the various types of honey studied, the Tualang and Thyme honey exhibited the highest antioxidant, anti-inflammatory, and anticholinesterase activity, leading to the prevention and management of multiple neurodegenerative diseases such as Alzheimer's disease. The neuroprotective properties of honey are primarily attributed to its high polyphenol content, with quercetin and gallic acid being the most prominent. This review compiled considerable evidence of the anti-neurodegenerative properties of honey presented by in vitro and in vivo studies. However, more clinical intervention studies are required to support these findings further.
Collapse
Affiliation(s)
- Mohammad Adi Mohammad Fadzil
- Nutrition Unit (NU), Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| | - Suraiami Mustar
- Nutrition Unit (NU), Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| | - Aswir Abd Rashed
- Nutrition Unit (NU), Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| |
Collapse
|
17
|
Phenolic compound, organic acid, mineral, and carbohydrate profiles of pine and blossom honeys. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
18
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Honey and Alzheimer's Disease-Current Understanding and Future Prospects. Antioxidants (Basel) 2023; 12:427. [PMID: 36829985 PMCID: PMC9952506 DOI: 10.3390/antiox12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia, has been a global concern. AD is associated with the involvement of the central nervous system that causes the characteristic impaired memory, cognitive deficits, and behavioral abnormalities. These abnormalities caused by AD is known to be attributed by extracellular aggregates of amyloid beta plaques and intracellular neurofibrillary tangles. Additionally, genetic factors such as abnormality in the expression of APOE, APP, BACE1, PSEN-1, and PSEN-2 play a role in the disease. As the current treatment aims to treat the symptoms and to slow the disease progression, there has been a continuous search for new nutraceutical agent or medicine to help prevent and cure AD pathology. In this quest, honey has emerged as a powerful nootropic agent. Numerous studies have demonstrated that the high flavonoids and phenolic acids content in honey exerts its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes the effect of main flavonoid compounds found in honey on the physiological functioning of the central nervous system, and the effect of honey intake on memory and cognition in various animal model. This review provides a new insight on the potential of honey to prevent AD pathology, as well as to ameliorate the damage in the developed AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
19
|
Romero-Márquez JM, Navarro-Hortal MD, Orantes FJ, Esteban-Muñoz A, Pérez-Oleaga CM, Battino M, Sánchez-González C, Rivas-García L, Giampieri F, Quiles JL, Forbes-Hernández TY. In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado ( Persea americana Mill.) Honey from Southern Spain. Antioxidants (Basel) 2023; 12:antiox12020404. [PMID: 36829962 PMCID: PMC9952156 DOI: 10.3390/antiox12020404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
There is growing evidence that Alzheimer's disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | | | - Adelaida Esteban-Muñoz
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Cristina M. Pérez-Oleaga
- Department of Biostatistics, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Biostatistics, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Department of Biostatistics, Universidade Internacional do Cuanza, Cuito 250, Angola
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| |
Collapse
|
20
|
Al-Kafaween MA, Alwahsh M, Mohd Hilmi AB, Abulebdah DH. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12020337. [PMID: 36830249 PMCID: PMC9952753 DOI: 10.3390/antibiotics12020337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Honey is considered to be a functional food with health-promoting properties. However, its potential health benefits can be affected by individual composition that varies between honey types. Although studies describing the health benefits of Tualang honey (TH), Kelulut honey (KH), and Sidr honey (SH) are scarce, these honey types showed a comparable therapeutic efficacy to Manuka honey (MH). The purpose of this review is to characterise the physicochemical, biological, and therapeutic properties of TH, KH, and SH. Findings showed that these honeys have antibacterial, antifungal, antiviral, antioxidant, antidiabetic, antiobesity, anticancer, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system, and respiratory system. The physicochemical characteristics of TH, KH, and SH were compared with MH and discussed, and results showed that they have high-quality contents and excellent biological activity sources. Flavonoids and polyphenols, which act as antioxidants, are two main bioactive molecules present in honey. The activity of honey depends on the type of bee, sources of nectar, and the geographic region where the bees are established. In conclusion, TH, KH, and SH could be considered as natural therapeutic agents for various medicinal purposes compared with MH. Therefore, TH, KH, and SH have a great potential to be developed for modern medicinal use.
Collapse
Affiliation(s)
- Mohammad A. Al-Kafaween
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abu Bakar Mohd Hilmi
- Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Dina H. Abulebdah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
21
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
22
|
Antiulcerogenic Potential of the Ethanolic Extract of Ceiba speciosa (A. St.-Hil.) Ravenna Evaluated by In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:ijms232415634. [PMID: 36555275 PMCID: PMC9779658 DOI: 10.3390/ijms232415634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal diseases, such as peptic ulcers, are caused by a damage in the gastric mucosa provoked by several factors. This stomach injury is regulated by many inflammatory mediators and is commonly treated with proton-pump inhibitors, histamine H2 receptor blockers and antacids. However, various medicinal plants have demonstrated positive effects on gastric ulcer treatment, including plants of the Ceiba genus. The aim of this study was to evaluate the antiulcer and anti-inflammatory activities of the stem bark ethanolic extract of Ceiba speciosa (A. St.-Hil.) Ravenna. We performed a preliminary quantification of phenolic compounds by high-performance liquid chromatography-diode array detection (HPLC-DAD), followed by the prospection of other chemical groups through nuclear magnetic resonance (NMR) spectroscopy. A set of in vitro assays was used to evaluate the extract potential regarding its antioxidant activity (DPPH: 19.83 ± 0.34 µg/mL; TPC: 307.20 ± 6.20 mg GAE/g of extract), effects on cell viability and on the release of TNF-α in whole human blood. Additionally, in vivo assays were performed to evaluate the leukocyte accumulation and total protein quantification in carrageenan-induced air pouch, as well as the antiulcerogenic effect of the extract on an ethanol-induced ulcer in rats. The extract contains flavonoids and phenolic compounds, as well as sugars and quinic acid derivatives exhibiting potent antioxidant activity and low toxicity. The extract reduced the release of TNF-α in human blood and inhibited the activity of p38α (1.66 µg/mL), JAK3 (5.25 µg/mL), and JNK3 (8.34 µg/mL). Moreover, it reduced the leukocyte recruitment on the pouch exudate and the formation of edema, reverting the effects caused by carrageenan. The extract presented a significant prevention of ulcer formation and a higher reduction than the reference drug, Omeprazole. Therefore, C. speciosa extract has demonstrated relevant therapeutic potential for the treatment of gastric diseases, deserving the continuation of further studies to unveil the mechanisms of action of plant bioactive ingredients.
Collapse
|
23
|
An updated review of extraction and liquid chromatography techniques for analysis of phenolic compounds in honey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Silva S, Oliveira AI, Cruz A, Oliveira RF, Almeida R, Pinho C. Physicochemical Properties and Antioxidant Activity of Portuguese Craft Beers and Raw Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228007. [PMID: 36432109 PMCID: PMC9699228 DOI: 10.3390/molecules27228007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
There is an increase in the popularity of craft beer, which is produced by small, independent, and traditional breweries. Since craft beer popularity is rising in Portugal this research focused on assessing physicochemical parameters, total phenolic content (TPC) and the antioxidant capacity of Portuguese craft beers and raw materials used in beer production. In this experimental study, 19 beer samples were analyzed. Parameters such as pH, Total Acidity, Reducing Sugar Content and TPC were evaluated. For the determination of antioxidant activity, DPPH scavenging activity and metal chelating activity (MCA) were analyzed in all samples. Craft beers demonstrated a high phenolic content (ranging from 343.78 mg GAE/L to 2172.49 mg GAE/L), significantly different from industrial beers. Craft beers demonstrated a higher inhibition of DPPH radicals and higher MCA than the raw materials. DPPH inhibition ranged from 36.5% to 96.0% for malt and 64.7% to 79.6% in hops samples. MCA also varied between the different samples, with results of 12.0% to 24.8% in malt samples and 3.8% to 23.5% in hops. Raw materials can potentially influence the antioxidant activity of the resulting beer. Positive correlations between TPC and physicochemical properties can be useful to help consumers choose beers with added value for health.
Collapse
Affiliation(s)
- Sara Silva
- Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Ana Isabel Oliveira
- Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Agostinho Cruz
- Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Rita Ferraz Oliveira
- Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Rubim Almeida
- CIBIO, Research Center in Biodiversity and Genetic Resources, InBIO-Associate Laboratory, University of Porto, 4485-661 Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- PO Herbarium, MHNC-UP—Museum of Natural History and Science of the University of Porto, 4099-002 Porto, Portugal
| | - Cláudia Pinho
- Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde (ESS), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
- Correspondence:
| |
Collapse
|
25
|
Honeys with anti-inflammatory capacity can alter the elderly gut microbiota in an ex vivo gut model. Food Chem 2022; 392:133229. [PMID: 35679723 DOI: 10.1016/j.foodchem.2022.133229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
The anti-inflammatory effect of different sourced honeys and the impact on elderly gut microbiota were studied in terms of chemical compositions, anti-inflammatory effect and gut microbiota modulating capacities. All four honeys suppressed the production of pro-inflammatory markers NO, IL-1β and IL-6 induced by lipopolysaccharide and promoted the expression of anti-inflammatory cytokines IL-10 in RAW 264.7 cells. Moreover, in the ex vivo batch gut model using elderly fecal microbiota (referred to as microcosm), it was showed that the addition of honeys increased the abundance of beneficial lactobacilli, decreased the abundance of potentially harmful Gram negative enteric bacteria, and exerted a beneficial effect on the production of short chain fatty acids. The concentration of gallic acid in honeys was positively correlated with the expression level of IL-10 and the abundance of lactobacilli. These findings indicate honeys with anti-inflammatory capacity have great potential for regulating the elderly gut microbiota which would lead to health benefits.
Collapse
|
26
|
Tan YQ, Jin M, He XH, Chen HW. Huoxue Qingre decoction used for treatment of coronary heart disease network analysis and metabolomic evaluation. Front Pharmacol 2022; 13:1025540. [PMID: 36339536 PMCID: PMC9631828 DOI: 10.3389/fphar.2022.1025540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: Network pharmacology provides new methods and references for the research of traditional Chinese medicine, but some problems remain, such as single evaluation components and index methods, imperfect relevant databases, unscientific prediction results, and lack of verification of results. Herein, we used a modified network pharmacology research method to explore the potential network analysis mechanism of Huoxue Qingre decoction in the treatment of coronary heart disease and utilized clinical trials for assessment. Methods: Based on literature research, the targets corresponding to the drug were obtained with the assistance of the TCMSP database and Swiss Target Prediction, and the target proteins were corrected using the UniProt database. The targets related to coronary heart disease was obtained through the GeneCards database. A protein-protein interaction network diagram was constructed, and a “component-intersection target” network diagram was drawn based on Cytoscape 3.6.2 software. The mapped targets were imported into the DAVID bioinformatics platform, which underwent Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the network pharmacology prediction results were evaluated through clinical trials. Results: We obtained 151 compounds related to Huoxue Qingre decoction, 286 genes after evaluation and deduplication, and 426 genes related to coronary heart disease. Finally, 81 common target genes were obtained with 32 pathways according to the KEGG pathway enrichment analysis. The validation results of the clinical trials showed that a total of 98 differential metabolites were found in the treatment of coronary heart disease with Huoxue Qingre decoction, involving a total of 16 metabolic pathways. Compared with the network pharmacology prediction results, it was found that only the pathways in cancer (hsa05200) were the common pathways in the top 32 signaling pathways predicted by network pharmacology. The expanded network pharmacology prediction results revealed that the sphingolipid signaling pathway (hsa04071) and prostate cancer pathway (hsa05215) matched the predicted metabolic pathways, with differential metabolites of N-oleoyl-D-sphingomyelin and 1-methyl-6-phenyl-1h-imidazole[4,5-b]pyridine-2-amine. Conclusion: Through the network analysis and metabolomic evaluation, there may be three signaling pathways that involve the Huoxue Qingre decoction in the treatment of coronary heart disease: pathways in cancer (hsa05200), sphingolipid signaling pathway (hsa04071), and prostate cancer pathway (hsa05215).
Collapse
Affiliation(s)
| | | | - Xuan-Hui He
- *Correspondence: Xuan-Hui He, ; Heng-Wen Chen,
| | | |
Collapse
|
27
|
Enhancement of the Antioxidant Capacity of Thyme and Chestnut Honey by Addition of Bee Products. Foods 2022; 11:foods11193118. [PMID: 36230193 PMCID: PMC9564292 DOI: 10.3390/foods11193118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Honey consumption and imports have increased in recent years, and it is considered by consumers to be a healthy alternative to more commonly used sweeteners. Honey contains a mixture of polyphenols and antioxidant compounds, and the botanical origin and geographical area of collection play an important role on its chemical composition. The present study investigated the physicochemical properties, total phenolic content and antioxidant capacity of Spanish thyme honey and chestnut honey, and their mixtures with royal jelly (2% and 10%) and propolis (2% and 10%). The analysis of the physicochemical parameters of both honey samples showed values within the established limits. Propolis showed the highest value of total phenolic content (17.21–266.83 mg GAE/100 g) and antioxidant capacity (DPPH, ORAC and ABTS assays; 0.63–24.10 µg eq. Tx/g, 1.61–40.82 µg eq. Tx/g and 1.89–68.54 µg eq. Tx/g, respectively), and significantly reduced ROS production in human hepatoma cells. In addition, mixtures of honey with 10% of propolis improved the results obtained with natural honey, increasing the value of total phenolic content and antioxidant capacity. A significant positive correlation was observed between total phenolic compounds and antioxidant capacity. Therefore, the antioxidant capacity could be attributed to the phenolic compounds present in the samples, at least partially. In conclusion, our results indicated that thyme and chestnut honey supplemented with propolis can be an excellent natural source of antioxidants and could be incorporated as a potential food ingredient with biological properties of technological interest, added as a preservative. Moreover, these mixtures could be used as natural sweeteners enriched in antioxidants and other bioactive compounds.
Collapse
|
28
|
The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fruit waste contains several bioactive components such as polyphenols, polysaccharides, and numerous other phytochemicals, including pigments. Furthermore, new financial opportunities are created by using fruit ‘leftovers’ as a basis for bioactivities that may serve as new foods or food ingredients, strengthening the circular economy’s properties. From a technical standpoint, organic phenolic substances have become more appealing to industry, in addition to their application as nutritional supplements or functional meals. Several extraction methods for recovering phenolic compounds from fruit waste have already been published, most of which involve using different organic solvents. However, there is a growing demand for eco-friendly and sustainable techniques that result in phenolic-rich extracts with little ecological impact. Utilizing these new and advanced green extraction techniques will reduce the global crisis caused by fruit waste management. Using modern techniques, fruit residue is degraded to sub-zero scales, yielding bio-based commodities such as bioactive elements. This review highlights the most favorable and creative methods of separating bioactive materials from fruit residue. Extraction techniques based on environmentally friendly technologies such as bioreactors, enzyme-assisted extraction, ultrasound-assisted extraction, and their combination are specifically covered.
Collapse
|
29
|
High-Pressure-Based Strategies for the Inactivation of Bacillus subtilis Endospores in Honey. Molecules 2022; 27:molecules27185918. [PMID: 36144653 PMCID: PMC9503340 DOI: 10.3390/molecules27185918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Honey is a value-added product rich in several types of phenolic compounds, enzymes, and sugars recently explored in biomedical and food applications. Nevertheless, even though it has a low water activity (aW ≈ 0.65) that hinders the development of pathogenic and spoilage microorganisms, it is still prone to contamination by pathogenic microorganisms (vegetative and spores) and may constitute harm to special groups, particularly by immunosuppressed people and pregnant women. Thus, an efficient processing methodology needs to be followed to ensure microbial safety while avoiding 5-hydroxymethylfurfural (HMF) formation and browning reactions, with a consequent loss of biological value. In this paper, both thermal (pressure-assisted thermal processing, PATP) and nonthermal high-pressure processing (HPP), and another pressure-based methodology (hyperbaric storage, HS) were used to ascertain their potential to inactivate Bacillus subtilis endospores in honey and to study the influence of aW on the inactivation on this endospore. The results showed that PATP at 600 MPa/15 min/75 °C of diluted honey (52.9 °Brix) with increased aW (0.85 compared to ≈0.55, the usual honey aW) allowed for inactivating of at least 4.0 log units of B. subtilis spores (to below detection limits), while HS and HPP caused neither the germination nor inactivated spores (i.e., there was neither a loss of endospore resistance after heat shock nor endospore inactivation as a consequence of the storage methodology). PATP of undiluted honey even at harsh processing conditions (600 MPa/15 min/85 °C) did not impact the spore load. The results for diluted honey open the possibility of its decontamination by spores’ inactivation for medical and pharmaceutical applications.
Collapse
|
30
|
Al-Sayaghi AM, Al-Kabsi AM, Abduh MS, Saghir SAM, Alshawsh MA. Antibacterial Mechanism of Action of Two Types of Honey against Escherichia coli through Interfering with Bacterial Membrane Permeability, Inhibiting Proteins, and Inducing Bacterial DNA Damage. Antibiotics (Basel) 2022; 11:antibiotics11091182. [PMID: 36139961 PMCID: PMC9495090 DOI: 10.3390/antibiotics11091182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Honey is a sweet natural food produced by bees from flower nectar or some part of plant secretions that exhibit antimicrobial activity against many microorganisms. It has been used as traditional therapy for skin infections. Antibiotics play an essential role in managing wound infection; however, some pathogenic bacteria have begun to possess resistance against them, which may cause chronic infections and severe adverse effects. This study investigates the antibacterial activities and mechanism of action of Yemeni Sidr honey (SH) and Manuka honey (MH) against Escherichia coli. The inhibitory effects of SH and MH using the disk diffusion method on bacterial growth were remarkable at 700 mg/disk. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were similar for both kinds of honey. However, MH showed a better bactericidal effect (30%) than SH (50%). The antimicrobial mechanism of action showed that SH substantially impacted the bacterial membrane’s permeability and increased the potassium and protein leakage rate. On the contrary, MH demonstrated remarkable inhibition of bacterial protein synthesis, while both kinds of honey caused bacterial DNA damage. These data reveal that SH and MH could be used as a remedy for skin infections and might be further developed as a promising dressing for bacterial wound infections.
Collapse
Affiliation(s)
| | - Abdelkodose Mohammed Al-Kabsi
- Faculty of Medicine, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Malaysia
- Correspondence: (A.M.A.-K.); (M.A.A.)
| | - Maisa Siddiq Abduh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Sultan Ayesh Mohammed Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.M.A.-K.); (M.A.A.)
| |
Collapse
|
31
|
Shamsudin S, Selamat J, Sanny M, Jambari NN, Sukor R, Salleh NA, Aziz MFA, Khatib A. Integrated Gas Chromatography–Mass Spectrometry and Liquid Chromatography-Quadruple Time of Flight-Mass Spectrometry-Based Untargeted Metabolomics Reveal Possible Metabolites Related to Antioxidant Activity in Stingless Bee Honey. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Phenolic Profile and Fingerprint Analysis of Akebia quinata Leaves Extract with Endothelial Protective Activity. Molecules 2022; 27:molecules27144636. [PMID: 35889504 PMCID: PMC9316754 DOI: 10.3390/molecules27144636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
In contrast to the stem and fruit of Akebia quinata, A. quinata leaves as a source rich in phenolic compounds with potentially beneficial pharmacological activities have been largely overlooked. To develop and use A. quinata leaves as a resource, we evaluated its potential as a cardiovascular-protective agent. Herein, we investigated the effects and potential mechanisms of A. quinata leaves extract on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells. We found that A. quinata leaves extract pretreatment of 10 μg/mL significantly attenuated LPS-induced protein expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1. Furthermore, this extract also suppressed LPS-induced phosphorylation of nuclear factor-κB p65. In order to elucidate the chemical profiles of the samples, the HPLC fingerprint was established, and prominent peaks were identified via HPLC–electrospray ionization–mass spectrometry. Multivariate statistical analyses, including hierarchical cluster analysis, principal component analysis, and partial least-squares discriminant analysis, were performed to evaluate the clustering of the samples. It was found that isochlorogenic acid C was a key marker for the classification of A. quinata leaves from the Gongju and Muju city in Korea. Collectively, this study not only suggested the potential of A. quinata leaves as a novel therapeutic candidate for inflammatory cardiovascular disease but also developed a quality control method for A. quinata leaves, which could help to expand the application of A. quinata.
Collapse
|
33
|
Rajindran N, Wahab RA, Huda N, Julmohammad N, Shariff AHM, Ismail NI, Huyop F. Physicochemical Properties of a New Green Honey from Banggi Island, Sabah. Molecules 2022; 27:molecules27134164. [PMID: 35807409 PMCID: PMC9268174 DOI: 10.3390/molecules27134164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Green honey is exclusively available on the island of Banggi in Sabah, and its uniqueness sees the commodity being sold at a high market price. Therefore, green honey is prone to adulteration by unscrupulous individuals, possibly compromising the health of those consuming this food commodity for its curative properties. Moreover, an established standard for reducing sugar in green honey is unavailable. Ipso facto, the study aimed to profile green honey’s physical and chemical properties, such as its pH, moisture content, free acidity, ash content, electroconductivity, hydroxymethylfurfural (HMF), total phenolic content, total flavonoid content, DPPH, colour, total sugar content, total protein content, and heavy metals as well as volatile organic compounds, the data of which are profoundly valuable in safeguarding consumers’ safety while providing information for its quality certification for local consumption and export. The results revealed that the honey’s physicochemical profile is comparable to other reported kinds of honey. The honey’s naturally green colour is because of the chlorophyll from the nectar from various flowers on the island. The raw honey showed free acidity between 28 and 33 Meq/100 g, lower than the standard’s 50 Meq/100 g. The hydroxymethylfurfural content is the lowest compared to other reported honey samples, with the total phenolic content between 16 and 19 mg GAE/100 g. The honey’s reducing sugar content is lower (~37.9%) than processed ones (56.3%) because of water removal. The protein content ranged from 1 to 2 gm/kg, 4- to 6-fold and 2-fold higher than local and manuka honey, respectively. The exceptionally high content of trans-4-hydroxyproline in raw honey is its source of collagen and other healing agents. Interestingly, low levels of arsenic, lead, nickel, cadmium, copper, and cobalt were detected in the honey samples, presumably due to their subterranean hives. Nevertheless, the honey is fit for general consumption as the concentrations were below the maxima in the Codex Alimentarius Commission of 2001.
Collapse
Affiliation(s)
- Nanthini Rajindran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: (N.H.); (F.H.)
| | - Norliza Julmohammad
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | | | - Norjihada Izzah Ismail
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
- Correspondence: (N.H.); (F.H.)
| |
Collapse
|
34
|
Iosageanu A, Mihai E, Prelipcean AM, Anton RE, Utoiu E, Oancea A, Craciunescu O, Cimpean A. Comparative palynological, physicochemical, antioxidant and antibacterial properties of Romanian honey varieties for biomedical applications. Chem Biodivers 2022; 19:e202200406. [PMID: 35727940 DOI: 10.1002/cbdv.202200406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022]
Abstract
The aim of this study was to investigate the melissopalynology, physicochemical characteristics, antioxidant and antibacterial activity of seven honey samples harvested from different geographical regions and climates of Romania. The melissopalynological analysis revealed that monofloral and multifloral samples contained a wide diversity of minor pollen types from Romanian flora. The moisture, pH and free acidity values were within international limit. HPLC analysis indicated high content of fructose and glucose and low content of sucrose. Bioactive compounds including proteins, phenolics, flavonoids and ascorbic acid were present in variable quantities, according to the botanical origin and geographical area. The highest phenolics and ascorbic acid content was in multifloral honeys from Crisana mountain and meadow and the extrafloral honeydew honey. The same honey samples have exerted free radical scavenging and antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The free radical scavenging activity was strongly correlated to phenolics and ascorbic acid content, while the antimicrobial activity was medium correlated only to phenolics content. In conclusion, the selected Romanian honey samples with best antioxidant and antimicrobial activity could be further tested for the development of novel biomedical products.
Collapse
Affiliation(s)
- Andreea Iosageanu
- University of Bucharest: Universitatea din Bucuresti, Faculty of Biology, Splaiul Independentei 91-95, Bucharest, ROMANIA
| | - Elena Mihai
- Institutul Naţional de Cercetare-Dezvoltare pentru Stiinte Biologice: Institutul National de Cercetare-Dezvoltare pentru Stiinte Biologice Bucuresti, cellular and molecular biology, Splaiul Independentei 296, Bucharest, ROMANIA
| | - Ana-Maria Prelipcean
- Institutul Naţional de Cercetare-Dezvoltare pentru Stiinte Biologice: Institutul National de Cercetare-Dezvoltare pentru Stiinte Biologice Bucuresti, cellular and molecular biology, Splaiul Independentei 296, Bucharest, ROMANIA
| | - Ruxandra Elena Anton
- Institutul Naţional de Cercetare-Dezvoltare pentru Stiinte Biologice: Institutul National de Cercetare-Dezvoltare pentru Stiinte Biologice Bucuresti, cellular and molecular biology, Splaiul Independentei 296, Bucharest, ROMANIA
| | - Elena Utoiu
- Institutul National de Cercetare-Dezvoltare pentru Stiinte Biologice Bucuresti, Cellular and Molecular Biology, 296, Splaiul Independentei, 060031, Bucharest, ROMANIA
| | - Anca Oancea
- Institutul Naţional de Cercetare-Dezvoltare pentru Stiinte Biologice: Institutul National de Cercetare-Dezvoltare pentru Stiinte Biologice Bucuresti, cellular and molecular biology, Splaiul Independentei 296, Bucharest, ROMANIA
| | - Oana Craciunescu
- Institutul National de Cercetare-Dezvoltare pentru Stiinte Biologice Bucuresti, Biologie Celulara si Moleculara, 296, Splaiul Independentei, 060031, Bucharest, ROMANIA
| | - Anisoara Cimpean
- University of Bucharest: Universitatea din Bucuresti, Faculty of Biology, Splaiul Independentei 91-95, Bucharest, ROMANIA
| |
Collapse
|
35
|
Bee Products as Interesting Natural Agents for the Prevention and Treatment of Common Cardiovascular Diseases. Nutrients 2022; 14:nu14112267. [PMID: 35684067 PMCID: PMC9182958 DOI: 10.3390/nu14112267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/02/2023] Open
Abstract
Apitherapy is a form of alternative therapy that relies on the use of bee products, i.e., honey, royal jelly, propolis, pollen, and bee venom (known as apitoxin), for the prevention and treatment of various diseases. Various in vitro and in vivo studies suggest that these products may be effective in the prophylaxis and treatment of cardiovascular diseases (CVDs). This mini-review of papers identified in various electronic databases describes new aspects of the bioactivity of certain bee products, viz. bee pollen, royal jelly, bee venom, propolis, and bee bread, as natural interesting products for the prevention and treatment of common CVDs.
Collapse
|
36
|
Al Qahtani HWS, Yagi S, Yılmaz MA, Cakır O, Tarhan A, Mustafa AA, Zengin G. Chemical Profile, Antioxidant and Enzyme Inhibition Activities of Natural Saudi Sidr and Talh Honeys. Chem Biodivers 2022; 19:e202200227. [PMID: 35608187 DOI: 10.1002/cbdv.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022]
Abstract
Honey is used since ancient time as a food and to cure many diseases. The present study investigated the chemical constituents, antioxidant and enzyme inhibition activities of natural Saudi Sidr (SH) and Talh (TH) honeys. Beside entire honey samples, ethyl acetate, ethanol and water extracts were prepared. The total polyphenolic content of SH, TH and their extracts was in the range of 2.86-7.21 and 3.80-17.33 mg gallic acid equivalents/g, respectively and the total flavonoids content was in the range of 0.05-1.17 and 0.18-2.38 mg rutin equivalents/g, respectively. Out of the 53 standards analyzed by HPLC, 27 compounds were detected with highest number of compounds identified in the ethyl acetate extract of TH (45 %, 24/53) and SH (26 %, 14/53), respectively. Quinic acid was dominant compound identified in all honey samples with the highest content determined in TH ethanol extract (4454 μg/g). The majority of tested samples possessed considerable anti-radicals and reducing ions capacity with the ethyl acetate extract from TH exerted significantly (p<0.05) the highest activity. All honey samples did not show chelating iron metal property. Honey samples revealed variable enzyme inhibition activity with TH (entire and/or ethyl acetate extract) showed significantly (p<0.05) the highest acetylcholinesterase, butyrylcholinesterase, tyrosinase and α-amylase inhibition activity. In conclusion, ethyl acetate is the best solvent for extraction of bioactive molecules from the two honey types. Moreover, the dark-colored TH contained the highest number of molecules and consequently exerted the best antioxidant and enzyme inhibition activities in most assays.
Collapse
Affiliation(s)
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Sudan
| | - Mustafa Abdullah Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, 21280, Turkey.,Dicle University Science and Technology Research and Application Center, Diyarbakir, 21280, Turkey
| | - Oguz Cakır
- Dicle University Science and Technology Research and Application Center, Diyarbakir, 21280, Turkey
| | - Abbas Tarhan
- Dicle University Science and Technology Research and Application Center, Diyarbakir, 21280, Turkey
| | - Ahmed Ali Mustafa
- Department of Botany, Faculty of Science, University of Khartoum, Sudan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| |
Collapse
|
37
|
Iftikhar A, Nausheen R, Muzaffar H, Naeem MA, Farooq M, Khurshid M, Almatroudi A, Alrumaihi F, Allemailem KS, Anwar H. Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103297. [PMID: 35630774 PMCID: PMC9143627 DOI: 10.3390/molecules27103297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed as a potent complementary and alternative medicine for the management and treatment of several maladies including various neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, etc. In the literature archive, oxidative stress and the deprivation of antioxidants are believed to be the paramount cause of many of these neuropathies. Since different types of honey are abundant with certain antioxidants, primarily in the form of diverse polyphenols, honey is undoubtedly a strong pharmaceutic candidate against multiple neurological diseases. In this review, we have indexed and comprehended the involved mechanisms of various constituent polyphenols including different phenolic acids, flavonoids, and other phytochemicals that manifest multiple antioxidant effects in various neurological disorders. All these mechanistic interpretations of the nutritious components of honey explain and justify the potential recommendation of sweet nectar in ameliorating the burden of neurological disorders that have significantly increased across the world in the last few decades.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Rimsha Nausheen
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Humaira Muzaffar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Muhammad Farooq
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan;
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
- Correspondence: (H.A.); (K.S.A.)
| | - Haseeb Anwar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
- Correspondence: (H.A.); (K.S.A.)
| |
Collapse
|
38
|
Kruk D, Masiewicz E, Budny J, Kolodziejski K, Zulewska J, Wieczorek Z. Relationship between macroscopic properties of honey and molecular dynamics – temperature effects. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Nascimento AGM, Toledo BS, Guimarães JT, Ramos GLPA, da Cunha DT, Pimentel TC, Cruz AG, Freitas MQ, Esmerino EA, Mársico ET. The impact of packaging design on the perceived quality of honey by Brazilian consumers. Food Res Int 2022; 151:110887. [PMID: 34980414 DOI: 10.1016/j.foodres.2021.110887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/06/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to construct and validate a scale to evaluate the honey consumer perception. Furthermore, the impact of packaging design on honey's perceived quality and purchase intention was evaluated. Brazilian consumers (n = 343) answered the 21 self-descriptive statements of the scale using 7-point Likert scales. Furthermore, six different packages were presented, and the consumer perception (health, origin, safety, and taste) and purchase intention were evaluated using 5-point and 7-point Likert scales, respectively. Exploratory and confirmatory factor analyses and PLS path modeling were employed. The validated scale had 13 self-descriptive statements (indicators with factor loading higher than 0.4) and showed discriminant (heterotrait-monotrait ratio values < 0.85) and convergent validity (average variance extracted > 0.4) and adequate reliability (composite reliability > 0.70). The consumers associated honey with health properties and a safe product. Furthermore, they preferred honey purchased directly from producers due to its perceived quality (natural and pure). Honey packaged in glass jars with or without dipper was perceived as healthier, tastier, higher quality, and from trusted origin. Furthermore, glass jars were considered more practical and sustainable packages.
Collapse
Affiliation(s)
- Andréa G M Nascimento
- Universidade Federal Fluminense (UFF), Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil
| | - Bruno S Toledo
- Universidade Federal Fluminense (UFF), Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil
| | - Jonas T Guimarães
- Universidade Federal Fluminense (UFF), Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil
| | - Gustavo L P A Ramos
- Universidade Federal Fluminense (UFF), Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - Diogo T da Cunha
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Aplicadas, Limeira, São Paulo 13484-350, Brazil
| | - Tatiana C Pimentel
- Instituto Federal de Educação, Ciência e Tecnologia Paraná (IFPR), Paranavaí, Paraná 87703-536, Brazil
| | - Adriano G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - Monica Q Freitas
- Universidade Federal Fluminense (UFF), Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil
| | - Erick A Esmerino
- Universidade Federal Fluminense (UFF), Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil
| | - Eliane T Mársico
- Universidade Federal Fluminense (UFF), Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Scepankova H, Pinto CA, Paula V, Estevinho LM, Saraiva JA. Conventional and emergent technologies for honey processing: A perspective on microbiological safety, bioactivity, and quality. Compr Rev Food Sci Food Saf 2021; 20:5393-5420. [PMID: 34626076 DOI: 10.1111/1541-4337.12848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
Honey is a natural food of worldwide economic importance. Over the last decades, its potential for food, medical, cosmetical, and biotechnological applications has been widely explored. One of the major safety issues regarding such applications is its susceptibility to being contaminated with bacterial and fungi spores, including pathogenic ones, which may impose a hurdle to its consumption in a raw state. Another factor that makes this product particularly challenging relies on its high sugar content, which will lead to the formation of hydroxymethylfurfural (HMF) when heated (due to Maillard reactions). Moreover, honey's bioactivity is known to be affected when it goes through thermal processing due to its unstable and thermolabile components. Therefore, proper food processing methodologies are of utmost importance not only to ensure honey safety but also to provide a high-quality product with low content of HMF and preserved biological properties. As so, emerging food processing technologies have been employed to improve the safety and quality of raw honey, allowing, for example, to reduce/avoid the exposure time to high processing temperatures, with consequent impact on the formation of HMF. This review aims to gather the literature available regarding the use of conventional and emergent food processing technologies (both thermal and nonthermal food processing technologies) for honey decontamination, preservation/enhancement of honey biological activity, as well as the sensorial attributes.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - Vanessa Paula
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Letícia M Estevinho
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
41
|
Sergazy S, Gulyayev A, Amangeldiyeva A, Nurgozhina A, Nurgaziyev M, Shulgau Z, Chulenbayeva L, Khassenbekova Z, Kushugulova A, Aljofan M. Antiradical and Cytoprotective Properties of Allium nutans L. Honey Against CCL4-Induced Liver Damage in Rats. Front Pharmacol 2021; 12:687763. [PMID: 34616291 PMCID: PMC8488157 DOI: 10.3389/fphar.2021.687763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this study is determine the in vitro and in vivo antiradical properties and the cytoprotective activity of Allium nutans L. honey extract. The antiradical properties of the extracts were investigated in rabbit alveolar macrophages and human foreskin fibroblast (hFFs) cells in the presence of doxorubicin, a cytotoxic substance using DPPH and ABTS assays. The cytoprotective activities were determined using 18 Wistar rats divided into three different groups, a negative control, and two other groups with experimentally induced hepatotoxicity by a single intraperitoneal injection of 50% carbon tetrachloride (CCl4) oil solution. A positive control group, received drinking water only and an experimental group that was treated with Allium nutans L. honey extracts for 7 days. In vitro treatment with Allium nutans L. honey extracts resulted in 78% reduction in radical activity in DPPH and 91.6% inhibition using the ABTS. Also, honey extracts were able to preserve 100% of cell viability in the presence of the cytotoxic, doxorubicin. Furthermore, the treatment with honey extracts resulted in a significant reduction in damage to the structure of liver tissue, as well significant reduction in the levels of ALT and AST in the experimental group compared to the control group.
Collapse
Affiliation(s)
- Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Association of Researchers of the Human Microbiome, Nur-Sultan, Kazakhstan
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Association of Researchers of the Human Microbiome, Nur-Sultan, Kazakhstan
| | - Aidana Amangeldiyeva
- Kazakhstan Association of Researchers of the Human Microbiome, Nur-Sultan, Kazakhstan
| | - Ayaulym Nurgozhina
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Association of Researchers of the Human Microbiome, Nur-Sultan, Kazakhstan
| | - Madiyar Nurgaziyev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Association of Researchers of the Human Microbiome, Nur-Sultan, Kazakhstan
| | - Zarina Shulgau
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Laura Chulenbayeva
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Association of Researchers of the Human Microbiome, Nur-Sultan, Kazakhstan
| | | | - Almagul Kushugulova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Association of Researchers of the Human Microbiome, Nur-Sultan, Kazakhstan
| | - Mohamad Aljofan
- School of Medicine, Department of Biomedical Sciences, Nazarbayaev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
42
|
Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J 2021; 12:559-587. [PMID: 34950252 PMCID: PMC8648878 DOI: 10.1007/s13167-021-00257-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
AbstractInflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hallmark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predictive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
Collapse
|
43
|
Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, Pourbagher-Shahri AM, Samarghandian S. Promising Protective Effects of Chrysin in Cardiometabolic Diseases. Curr Drug Targets 2021; 23:458-470. [PMID: 34636295 DOI: 10.2174/1389450122666211005113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Cardiometabolic diseases (CMD) have a great burden in terms of morbidity and mortality worldwide. The vicious cycle of CMD consists of type II diabetes, hypertension, dyslipidemia, obesity, and atherosclerosis interacting and feedbacking each other. The natural flavonoid chrysin has been displayed to own a broad spectrum of therapeutic impacts for human health. Herein, we did an in-depth investigation of the novel mechanisms of chrysin's cardioprotection against cardiometabolic disorder. Studies have shown that chrysin protects the cardiovascular system by enhancing the intrinsic antioxidative defense system. This antioxidant boost by chrysin protects against several risk factors of cardiometabolic disorders including atherosclerosis, vascular inflammation and dysfunction, platelet aggregation, hypertension, dyslipidemia, cardiotoxicity, myocardial infarction, injury and remodeling, diabetes-induced injuries, and obesity. Chrysin also exhibited anti-inflammatory mechanisms through inhibiting pro-inflammatory pathways including NF-κB, MAPK, and PI3k/Akt. Furthermore, chrysin modulated NO pathway, RAS system, AGE/RAGE pathway, PPARs pathway which contributed to the risk factors of cardiometabolic disorders. Taken together, the mechanisms in which chrysin protects against cardiometabolic disorder are more than merely antioxidation and anti-inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381. Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019. United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand. Iran
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense. Spain
| | - Dalia M Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas. Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas. Lithuania
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
44
|
A Review of the Health Protective Effects of Phenolic Acids against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections). Molecules 2021; 26:molecules26175405. [PMID: 34500838 PMCID: PMC8433690 DOI: 10.3390/molecules26175405] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme, oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective effects of phenolic acids against the most severe human diseases. In this review paper, the authors first report on the main structural features of phenolic acids, their most important natural sources and their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of the most recent clinical studies on phenolic acids that investigate their health effects against a range of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity, and viral infections—including coronaviruses-based ones).
Collapse
|
45
|
Maiuolo J, Carresi C, Gliozzi M, Musolino V, Scarano F, Coppoletta AR, Guarnieri L, Nucera S, Scicchitano M, Bosco F, Ruga S, Zito MC, Macri R, Cardamone A, Serra M, Mollace R, Tavernese A, Mollace V. Effects of Bergamot Polyphenols on Mitochondrial Dysfunction and Sarcoplasmic Reticulum Stress in Diabetic Cardiomyopathy. Nutrients 2021; 13:nu13072476. [PMID: 34371986 PMCID: PMC8308586 DOI: 10.3390/nu13072476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and disability in the Western world. In order to safeguard the structure and the functionality of the myocardium, it is extremely important to adequately support the cardiomyocytes. Two cellular organelles of cardiomyocytes are essential for cell survival and to ensure proper functioning of the myocardium: mitochondria and the sarcoplasmic reticulum. Mitochondria are responsible for the energy metabolism of the myocardium, and regulate the processes that can lead to cell death. The sarcoplasmic reticulum preserves the physiological concentration of the calcium ion, and triggers processes to protect the structural and functional integrity of the proteins. The alterations of these organelles can damage myocardial functioning. A proper nutritional balance regarding the intake of macronutrients and micronutrients leads to a significant improvement in the symptoms and consequences of heart disease. In particular, the Mediterranean diet, characterized by a high consumption of plant-based foods, small quantities of red meat, and high quantities of olive oil, reduces and improves the pathological condition of patients with heart failure. In addition, nutritional support and nutraceutical supplementation in patients who develop heart failure can contribute to the protection of the failing myocardium. Since polyphenols have numerous beneficial properties, including anti-inflammatory and antioxidant properties, this review gathers what is known about the beneficial effects of polyphenol-rich bergamot fruit on the cardiovascular system. In particular, the role of bergamot polyphenols in mitochondrial and sarcoplasmic dysfunctions in diabetic cardiomyopathy is reported.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Serra
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Annamaria Tavernese
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8006
| |
Collapse
|
46
|
Bourebaba N, Kornicka-Garbowska K, Marycz K, Bourebaba L, Kowalczuk A. Laurus nobilis ethanolic extract attenuates hyperglycemia and hyperinsulinemia-induced insulin resistance in HepG2 cell line through the reduction of oxidative stress and improvement of mitochondrial biogenesis - Possible implication in pharmacotherapy. Mitochondrion 2021; 59:190-213. [PMID: 34091077 DOI: 10.1016/j.mito.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023]
Abstract
The aim of this study was to establish the potential effect of Laurus nobilis ethanolic extract on improving insulin sensitivity and protecting liver cells from apoptosis, mitochondrial dysfunction, oxidative stress (OS), and inflammation; all of which considered as major alterations occurring during insulin resistance (IR) as well as diabetes onset, in hyperinsulinemic and hyperglycemic-induced HepG2 cell line. Thereby, L. nobilis ethanolic extract has been first chemically characterized using LC-MS/MS technique. Subsequently, HepG2 cells were pre-treated with an optimal concentration of L. nobilis ethanolic extract for 24 h, and then, subjected to 30 mM D-glucose and 500 nM insulin mixture for another 24 h in order to induce hyperinsulinemia and hyperglycaemia (HI/HG) status. Several parameters such as biocompatibility, hepatotoxicity, reactive oxygen species (ROS), mitochondrial transmembrane potential, dynamics, and metabolism, multicaspase activity, glucose uptake, in addition to genes and proteins expression levels were investigated. The obtained results showed that the bioactive extract of Laurus nobilis increased the number of living cells and their proliferation rate, significantly attenuated apoptosis by modulating pro-apoptotic pathways (p21, p53 and Bax genes), allowed a relative normalization of caspases-activity, and decreased the expression of inflammatory markers including c-Jun, NF-κB and Tlr4 transcripts. L. Nobilis ethanolic extract reduced considerably total intracellular ROS levels in challenged HepG2 cells, and regulated the mitochondrial OXPHOS pathway, demonstrating the potential antioxidant effect of the plant. Ethanolic plant extract increased insulin sensitivity, since an elevated expression of master transcripts responsible for insulin sensitivity including IRS1, IRS2, INSR was found. Taken together, obtained data suggest that L. nobilis ethanolic extract offers new insights in the development of potential antioxidant, insulin sensitizing as well as hepatoprotective drugs.
Collapse
Affiliation(s)
- Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Katarzyna Kornicka-Garbowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland.
| | - Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
47
|
The Rediscovery of Honey for Skin Repair: Recent Advances in Mechanisms for Honey-Mediated Wound Healing and Scaffolded Application Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Honey is a honey-bee product obtained mainly by the enzymatic processing of nectar from a variety of plants, which leads to the wide range of colours and flavours available on the market. These organoleptic and nutritional features are influenced by the chemical composition, which in turn depends on the botanical origin. Bioactive compounds account for honey beneficial activity in medical applications, which explains the extensive use of honey in ethno-pharmacology since antiquity, from cough remedies to dermatological treatments. Wound healing is one of the main therapeutic uses of honey, and various design options in pharmaceutical technology such as smart delivery systems and advanced dressings are currently being developed to potentiate honey’s valuable properties for better performance and improved final outcome. In this review, we will focus on the latest research that discloses crucial factors in determining what properties are most beneficial when considering honey as a medicinal product. We will present the most recent updates on the possible mechanisms responsible for the exceptional effects of this ageless therapeutical remedy on skin repair. Furthermore, the state-of-the-art in application techniques (incorporation into scaffolds as an alternative to direct administration) used to enhance honey-mediated wound-healing properties are explored.
Collapse
|
48
|
The Physicochemical Characteristics of Gelam Honey and Its Outcome on the Female Reproductive Tissue of Sprague-Dawley Rats: A Preliminary Study. Molecules 2021; 26:molecules26113346. [PMID: 34199433 PMCID: PMC8199649 DOI: 10.3390/molecules26113346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/03/2023] Open
Abstract
Gelam honey (GH) is a prized natural product synthesized from the nectar of flowers from Gelam trees (Melaleuca sp.). Gelam is an evergreen tree species that grows in tropical regions such as Malaysia. GH is a multifloral honey with proven antioxidant and anti-inflammatory properties. However, the beneficial effect of GH on female reproductive tissue has yet to be substantiated. Herein, we investigated the effects of GH administration on the uterine and vaginal epithelial thickness of sexually mature Sprague-Dawley rats. Epithelia thickness could be an indicator of an atrophy manifesting as a symptom of a cardio syndrome. Rats were given oral doses of GH in four groups for 14 days; the lowest dose was 0.2 g GH/kg body weight (bw) rat/day and the highest dose was 8 g GH/kg bw rat/day. The physicochemical characteristics of GH were assessed through hydroxymethylfurfural and moisture content determination and sugar identification. GH attenuated the atrophy of the uterine and vaginal epithelia and increased the thickness of the endometrial stroma and endometrial surface endothelial layer. However, the dissonance observed in the effect of GH administration on the vaginal epithelium requires further investigation. Nevertheless, GH may have a strong potential in attenuating uterine and vaginal atrophies.
Collapse
|
49
|
Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants (Basel) 2021; 10:antiox10040530. [PMID: 33805391 PMCID: PMC8065985 DOI: 10.3390/antiox10040530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/11/2023] Open
Abstract
Honey is a natural product which owes its health benefits to its numerous bioactive compounds. The composition of honey is highly diverse and depends on the type of honey and its origin. Antioxidant capacity arises mainly from the total content of polyphenols and their composition. The aim of this study was to perform a multidimensional comparative analysis of phenolic compounds of honeys of various origins. Honeydew, buckwheat, manuka, Malaysian and goldenrod honeys had the highest antioxidant capacity (above 400 mg Trolox equivalents kg−1). These honeys were also characterized by the highest total polyphenol content (about 2500 mg gallic acid equivalents (GAE) kg−1) and the highest total flavonoid content (1400–1800 mg catechin equivalents (CAE) kg−1). Other honeys had much lower antioxidant properties. A multidimensional analysis of the profiles of phenolic compounds showed that honeys constitute a non-homogeneous data set and manuka honey was in contrast to other samples. Principal component analysis (PCA) (based on 18 phenolic compounds) distinguished honeys into five groups. Manuka, Malaysian and honeydew honeys created their own separate groups and the location of other honeys was variable. Ultra-high-performance liquid chromatography (UHPLC) analysis demonstrated that profiles of polyphenols in honeys were highly varied. Caffeic acid, datiscetin and rhamnetin were characteristic compounds for manuka honey. Quercetin, kaempferol and apigenin were present in all honeys except Malaysian honey. The antioxidant properties and the profiles of bioactive phenolic compounds of honeys were miscellaneous. The richest sources of polyphenols were local buckwheat and honeydew honeys, alongside exotic manuka and Malaysian honeys. These honeys could provide valuable ingredients to the human diet, helping to prevent diseases.
Collapse
|
50
|
Floris I, Pusceddu M, Satta A. The Sardinian Bitter Honey: From Ancient Healing Use to Recent Findings. Antioxidants (Basel) 2021; 10:antiox10040506. [PMID: 33805084 PMCID: PMC8064093 DOI: 10.3390/antiox10040506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/22/2023] Open
Abstract
Sardinian bitter honey, obtained from the autumnal flowering of the strawberry tree (Arbutus unedo L.), has an old fame and tradition in popular use, especially as a medicine. Its knowledge dates back over 2000 years, starting from the Greeks and Romans to the present day. There are many literary references from illustrious personalities of the past such as Cicero, Horace, Virgil, and Dioscorides, until recent times, associated with the peculiar anomaly of its taste, which lends itself to literary and poetic metaphors. The curiosity of its bitter taste is also what led to the first studies starting in the late 1800s, aimed to reveal its origin. Other studies on its botanical source and characteristics have been carried out over time, up to the most recent investigations, which have confirmed its potential for use in the medical field, thanks to its antioxidant, antiradical, and cancer-preventing properties. These benefits have been associated with its phenolic component and in particular with the prevailing phenolic acid (homogentisic acid). Later, other strawberry tree honeys from the Mediterranean area have also shown the same properties. However, Sardinian bitter honey maintains its geographical and historical identity, which is recognized by other Mediterranean cultures.
Collapse
|