1
|
Nel NH, Marafie A, Bassis CM, Sugino KY, Nzerem A, Knickmeyer RR, McKee KS, Comstock SS. Edinburgh postpartum depression scores are associated with vaginal and gut microbiota in pregnancy. J Affect Disord 2025; 371:22-35. [PMID: 39481687 DOI: 10.1016/j.jad.2024.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Prenatal and postpartum depression may be influenced by the composition of host associated microbiomes. As such, the objective of this study was to elucidate the relationship between the human gut or vaginal microbiomes in pregnancy with prenatal or postpartum depression. METHODS 140 female participants were recruited at their first prenatal visit and completed the Edinburgh Postnatal Depression Scale (EPDS) to screen for depression and anxiety, in addition the EPDS was completed one month postpartum. Vaginal and stool biospecimens were collected in the third trimester, analyzed using 16S rRNA gene sequencing, and assessed for alpha and beta diversity. Individual taxa differences and clustering using the k-medoids algorithm enabled community state type classification. RESULTS Participants with higher postpartum EPDS scores had higher species richness and lower abundance of L. crispatus in the vaginal microbiota compared to those with lower EPDS scores. Participants with a higher prenatal EPDS score had lower species richness of the gut microbiome. Participants with a vaginal community state type dominated by L. iners had the highest mean prenatal EPDS scores, whereas postpartum EPDS scores were similar regardless of prenatal vaginal state type. LIMITATIONS Our small sample size and participant's self-report bias limits generalizability of results. CONCLUSIONS Depression in the prenatal and postpartum period is associated with the composition and diversity of the gut and vaginal microbiomes in the third trimester of pregnancy. These results provide a foundational understanding of the microbial relationships between maternal health and depression for identifying potential therapeutic treatments.
Collapse
Affiliation(s)
- Nikita H Nel
- Department of Food Science and Human Nutrition, Michigan State University, 204 Trout, 469 Wilson Rd, East Lansing, MI 48824, United States of America
| | - Anfal Marafie
- College of Human Medicine, Michigan State University, United States of America
| | - Christine M Bassis
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, United States of America
| | - Kameron Y Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Adannaya Nzerem
- Department of Food Science and Human Nutrition, Michigan State University, 204 Trout, 469 Wilson Rd, East Lansing, MI 48824, United States of America
| | | | - Kimberly S McKee
- Department of Family Medicine, University of Michigan Medical School, United States of America
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, 204 Trout, 469 Wilson Rd, East Lansing, MI 48824, United States of America.
| |
Collapse
|
2
|
Stojanov S, Plavec TV, Zupančič Š, Berlec A. Modified vaginal lactobacilli expressing fluorescent and luminescent proteins for more effective monitoring of their release from nanofibers, safety and cell adhesion. Microb Cell Fact 2024; 23:333. [PMID: 39696572 DOI: 10.1186/s12934-024-02612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Electrospun nanofibers offer a highly promising platform for the delivery of vaginal lactobacilli, providing an innovative approach to preventing and treating vaginal infections. To advance the application of nanofibers for the delivery of lactobacilli, tools for studying their safety and efficacy in vitro need to be established. In this study, fluorescent (mCherry and GFP) and luminescent (NanoLuc luciferase) proteins were expressed in three vaginal lactobacilli (Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus jensenii) and a control Lactiplantibacillus plantarum with the aim to use this technology for close tracking of lactobacilli release from nanofibers and their adhesion on epithelial cells. The recombinant proteins influenced the growth of the bacteria, but not their ability to produce hydrogen peroxide. Survival of lactobacilli in nanofibers immediately after electrospinning varied among species. Bacteria retained fluorescence upon incorporation into PEO nanofibers, which was vital for evaluation of their rapid release. In addition, fluorescent labelling facilitated efficient tracking of bacterial adhesion to Caco-2 epithelial cells, while luminescence provided important quantitative insights into bacterial attachment, which varied from 0.5 to 50% depending on the species. The four lactobacilli in dispersion or in nanofibers were not detrimental for the viability of Caco-2 cells, and did not demonstrate hemolytic activity highlighting the safety profiles of both bacteria and PEO nanofibers. To summarize, this study contributes to the development of a promising delivery system, tailored for local administration of safe vaginal lactobacilli.
Collapse
Affiliation(s)
- Spase Stojanov
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Vaduva CC, Petrescu AM, Dira LM, Ruican D, Pana RC. Probiotics in the Prophylaxis of Premature Rupture of Membranes and Cervical Incompetence. Nutrients 2024; 16:4230. [PMID: 39683623 DOI: 10.3390/nu16234230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Premature rupture of membranes (PROM) and cervical incompetence (CI) are major contributors to preterm birth, a leading cause of neonatal morbidity and mortality. BACKGROUND/OBJECTIVES Disorders of the vaginal microbiota, such as bacterial vaginosis, have been associated with an increased risk of PROM, CI, and subsequent preterm birth. Probiotics, particularly Lactobacillus strains, have been proposed as a preventive strategy to restore and maintain a healthy vaginal microbiome. This review aims to summarize the latest evidence on the role of probiotics in the prevention of PROM and CI. METHODS A comprehensive review was conducted to evaluate the effectiveness of probiotic interventions in the prevention of PROM and CI, yielding 1809 records from 2005 to 2024. Seven relevant studies were selected by searching medical databases and focusing on studies that investigated the restoration of healthy vaginal flora, the reduction of pathogenic bacteria colonization, and the modulation of immune responses by probiotics. RESULTS The studies analyzed suggest that probiotics may help restore healthy vaginal flora, reduce pathogenic bacterial colonization, and modulate immune responses, thereby reducing the risk of membrane rupture and cervical insufficiency. Evidence from randomized controlled trials and observational studies shows that the use of probiotics is associated with a lower incidence of PROM and preterm birth, especially in high-risk groups. CONCLUSIONS Probiotics emerge as a potential non-invasive and cost-effective strategy to improve pregnancy outcomes in women at risk of preterm birth due to PROM. According to our research, probiotic prophylaxis of cervical insufficiency has not yet been sufficiently investigated. Despite the promising findings, further research is needed to determine standardized probiotic formulations, optimal timing, and routes of administration. Personalized probiotic therapies may represent the future of preterm birth prevention as they offer targeted interventions based on individual microbiome composition.
Collapse
Affiliation(s)
- Constantin-Cristian Vaduva
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Clinic of Obstetrics and Gynecology, Filantropia Clinical Hospital, 200143 Craiova, Romania
- Department of Obstetrics, Gynecology and IVF, HitMed Medical Center, 200130 Craiova, Romania
| | - Ana-Maria Petrescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Department of Mother and Child Medicine, Emergency County Hospital, 200642 Craiova, Romania
| | - Laurentiu Mihai Dira
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Clinic of Obstetrics and Gynecology, Filantropia Clinical Hospital, 200143 Craiova, Romania
- Department of Obstetrics, Gynecology and IVF, HitMed Medical Center, 200130 Craiova, Romania
| | - Dan Ruican
- Clinic of Obstetrics and Gynecology, Filantropia Clinical Hospital, 200143 Craiova, Romania
- Department of Obstetrics, Gynecology and IVF, HitMed Medical Center, 200130 Craiova, Romania
| | - Razvan Cosmin Pana
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Department of Mother and Child Medicine, Emergency County Hospital, 200642 Craiova, Romania
| |
Collapse
|
4
|
Núño K, Jensen AS, O'Connor G, Houston TJ, Dikici E, Zingg JM, Deo S, Daunert S. Insights into Women's health: Exploring the vaginal microbiome, quorum sensing dynamics, and therapeutic potential of quorum sensing quenchers. Mol Aspects Med 2024; 100:101304. [PMID: 39255544 DOI: 10.1016/j.mam.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
The vaginal microbiome is an important aspect of women's health that changes dynamically with various stages of the woman's life. Just like the gut microbiome, the vaginal microbiome can also be affected by pathologies that dramatically change the typical composition of native vaginal microorganisms. However, the mechanism as to how both vaginal endemic and gut endemic opportunistic microbes can express pathogenicity in vaginal polymicrobial biofilms is poorly understood. Quorum sensing is the cellular density-dependent bacterial and fungal communication process in which chemical signaling molecules, known as autoinducers, activate expression for genes responsible for virulence and pathogenicity, such as biofilm formation and virulence factor production. Quorum sensing inhibition, or quorum quenching, has been explored as a potential therapeutic route for both bacterial and fungal infections. By applying these quorum quenchers, one can reduce biofilm formation of opportunistic vaginal microbes and combine them with antibiotics for a synergistic effect. This review aims to display the relationship between the vaginal and gut microbiome, the role of quorum sensing in polymicrobial biofilm formation which cause pathology in the vaginal microbiome, and how quorum quenchers can be utilized to attenuate the severity of bacterial and fungal infections.
Collapse
Affiliation(s)
- Kevin Núño
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Anne Sophie Jensen
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Tiffani Janae Houston
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Department of Internal Medicine, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Jean Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Obuobi S, Škalko-Basnet N. Understanding vaginal biofilms: The first step in harnessing antimicrobial nanomedicine. J Control Release 2024; 376:1190-1208. [PMID: 39510257 DOI: 10.1016/j.jconrel.2024.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In spite of multipurpose technologies offering broad-spectrum prevention for sexually transmitted infections (STIs) and contraception, the STIs incidences rise worldwide. The situation is even more alarming considering continuous rise in antimicrobial resistance (AMR) that limits therapy options. In this review we address the specific challenges of efficiently treating vaginal infections locally, at the infection site, by understanding the underlying barriers to efficient treatment such as vaginal biofilms. Knowledge on vaginal biofilms remains, up to now, rather scarce and requires more attention. We therefore propose a 'back to basics' insight that seeks to probe the complexity and role of the vaginal microbiota, its relationship with vaginal biofilms and implications to future therapeutic modalities utilizing advanced nano delivery systems. Our key objective is to highlight the interplay between biofilm, (nano)formulation and therapy outcome rather than provide an overview of all nanoformulations that were challenged against biofilms. We focused on the anatomy of the female reproductive organ and its physiological changes from birth, the unique vaginal microenvironment in premenopausal and postmenopausal women, vaginal biofilm infections and current nanomedicine-based approaches to treat infections in the vaginal site. Finally, we offer our perspectives on the current challenges associated with vaginal delivery and key considerations that can aid in the design and development of safer and potent products against persisting vaginal infections.
Collapse
Affiliation(s)
- Sybil Obuobi
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
6
|
Demirel MA, Şumlu E, Özercan İH, Şahin K, Tuzcu M, Bay V, Kurşun ÖED, Uludağ MO, Akar F. Impact of high-fructose diet and metformin on histomorphological and molecular parameters of reproductive organs and vaginal microbiota of female rat. Sci Rep 2024; 14:27463. [PMID: 39523383 PMCID: PMC11551161 DOI: 10.1038/s41598-024-76211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
There are limited data on the effects of a high-fructose diet on the female reproductive system. Although metformin has some functional effects on female fertility, its reproductive outcome on high fructose diet-induced metabolic syndrome is unclear. The aim of the present study is to evaluate the impact of a high fructose diet on histomorphological and molecular parameters of the reproductive organs and vaginal microbiota as well as the treatment potential of metformin. Wistar albino rats were used in the study. The metabolic syndrome model was induced by a high-fructose diet in rats for 15 weeks. Metformin was orally administered once a day for the last 6 weeks. The high-fructose diet increased blood glucose, triglycerides, insulin, and ovarian testosterone levels; however, it reduced ovarian aromatase levels and follicle numbers and caused uterine inflammation. The high-fructose diet-induced molecular abnormalities on ovarian tissue were demonstrated by the downregulation of ovarian insulin signaling pathway proteins and dysregulation of ovarian mitogenic and apoptotic pathway proteins. A high-fructose diet caused vaginal dysbiosis, metformin increased probiotic bacteria in the vaginal microbiota. Our results revealed that metformin improves ovarian impairments by modulating hormonal balance, insulin level, mapk, and apoptotic signaling molecules, as well as regulating the vaginal microbiota.
Collapse
Affiliation(s)
- Mürşide Ayşe Demirel
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Laboratory Animals Breeding, and Experimental Researches Center, Gazi University, Etiler, Ankara, 06330, Turkey.
| | - Esra Şumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - İbrahim Hanifi Özercan
- Department of Pathology, Medicine Faculty, Health Sciences Institution, University of Firat, Elazig, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Turkey
| | | | - Mecit Orhan Uludağ
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Liu Y, He L, Hu Y, Liao X, Wang H, Yang L. Synthetic bacterial consortia transplantation attenuates vaginal inflammation and modulates the immune response in a mouse model of Gardnerella vaginalis-induced bacterial vaginosis. Heliyon 2024; 10:e38218. [PMID: 39498013 PMCID: PMC11533556 DOI: 10.1016/j.heliyon.2024.e38218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
This study aimed to evaluate the efficacy of synthetic bacterial consortia transplantation (SBCT) and compare it with VMT (vaginal microbiota transplantation) in a mouse model of Gardnerella vaginalis-induced Bacterial vaginosis (BV). A murine model of G. vaginalis-induced BV was established, and mice were treated with SBCT, VMT, or saline. Histopathological changes, inflammatory cytokine levels, pro-inflammatory biomarker expression, helper T cell transcription factor expression, and vaginal microbiota composition were assessed. SBCT and VMT effectively suppressed G. vaginalis growth, reduced inflammation, and restored vaginal microbiota diversity. Both treatments attenuated epithelial damage, downregulated pro-inflammatory cytokines (IL-1β and IL-8), and upregulated the anti-inflammatory cytokine IL-10. SBCT and VMT also inhibited NF-κB activation, suppressed IL-17 expression, and enhanced Foxp3 expression in vaginal tissues. SBCT is a promising therapeutic approach for treating BV, as it effectively modulates the immune response and restores vaginal microbiota diversity in a mouse model of G. vaginalis-induced BV.
Collapse
Affiliation(s)
- Ying Liu
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Liang He
- Department of Laboratory, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Yan Hu
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Xingya Liao
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Hongyan Wang
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Linlin Yang
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| |
Collapse
|
8
|
Lawore DC, Jena S, Berard AR, Birse K, Lamont A, Mackelprang RD, Noel-Romas L, Perner M, Hou X, Irungu E, Mugo N, Knodel S, Muwonge TR, Katabira E, Hughes SM, Levy C, Calienes FL, Hladik F, Lingappa JR, Burgener AD, Green LN, Brubaker DK. Computational Microbiome Pharmacology Analysis Elucidates the Anti-Cancer Potential of Vaginal Microbes and Metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.616351. [PMID: 39416028 PMCID: PMC11482959 DOI: 10.1101/2024.10.10.616351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The vaginal microbiome's role in risk, progression, and treatment of female cancers has been widely explored. Yet, there remains a need to develop methods to understand the interaction of microbiome factors with host cells and to characterize their potential therapeutic functions. To address this challenge, we developed a systems biology framework we term the Pharmacobiome for microbiome pharmacology analysis. The Pharmacobiome framework evaluates similarities between microbes and microbial byproducts and known drugs based on their impact on host transcriptomic cellular signatures. Here, we apply our framework to characterization of the Anti-Gynecologic Cancer Vaginal Pharmacobiome. Using published vaginal microbiome multi-omics data from the Partners PrEP clinical trial, we constructed vaginal epithelial gene signatures associated with each profiled vaginal microbe and metabolite. We compared these microbiome-associated host gene signatures to post-drug perturbation host gene signatures associated with 35 FDA-approved anti-cancer drugs from the Library of Integrated Network-based Cellular Signatures database to identify vaginal microbes and metabolites with high statistical and functional similarity to these drugs. We found that Lactobacilli and their metabolites can regulate host gene expression in ways similar to many anti-cancer drugs. Additionally, we experimentally tested our model prediction that taurine, a metabolite produced by L. crispatus, kills cancerous breast and endometrial cancer cells. Our study shows that the Pharmacobiome is a powerful framework for characterizing the anti-cancer therapeutic potential of vaginal microbiome factors with generalizability to other cancers, microbiomes, and diseases.
Collapse
|
9
|
Venditti N, Petronio Petronio G, Guarnieri A, Pietrangelo L, Spicciato A, Colalillo A, Sabusco GP, Barattini DF, Di Franco A, Papini S, Cosentino F, Di Marco R. Retrospective Investigator-Initiated Trial on Tocopherol Acetate Vaginal Administration in Pre-and Postmenopausal Women. Diseases 2024; 12:237. [PMID: 39452479 PMCID: PMC11506818 DOI: 10.3390/diseases12100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Menopause, a natural phase in a woman's life, often adversely affects physical, mental, sexual, and emotional well-being due to low estrogen levels. This study examines the impact of vaginal ovules with tocopherol acetate (Filme Gyno-V® ovules, manufactured by Panin Srl and distributed by Hulka Srl, Italy), 500 mg per ovule, on vaginal health in pre- and menopausal women. METHODS Fifty women aged 50-70 were divided into menopausal (28) and premenopausal (22) cohorts and treated with the ovules for two weeks, with assessments before and after treatment. RESULTS The findings showed that distressing symptoms of vaginal atrophy, such as dryness, itching, and pain during intercourse, were resolved post-treatment. A molecular analysis revealed a reduction in Escherichia coli in both cohorts and an increase in three species of Lactobacillus in premenopausal patients. CONCLUSIONS This study concludes that Filme Gyno-V ovules may benefit vaginal health by alleviating atrophy symptoms and promoting healthy vaginal microbiota.
Collapse
Affiliation(s)
- Noemi Venditti
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (N.V.); (A.G.); (L.P.); (A.S.); (G.P.S.); (F.C.); (R.D.M.)
- UO Laboratorio Analisi, Responsible Research Hospital, 86100 Campobasso, Italy;
| | - Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (N.V.); (A.G.); (L.P.); (A.S.); (G.P.S.); (F.C.); (R.D.M.)
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (N.V.); (A.G.); (L.P.); (A.S.); (G.P.S.); (F.C.); (R.D.M.)
| | - Laura Pietrangelo
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (N.V.); (A.G.); (L.P.); (A.S.); (G.P.S.); (F.C.); (R.D.M.)
| | - Angela Spicciato
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (N.V.); (A.G.); (L.P.); (A.S.); (G.P.S.); (F.C.); (R.D.M.)
| | - Alessio Colalillo
- UO Oncology, Responsible Research Hospital, 86100 Campobasso, Italy;
| | - Giovanna Paola Sabusco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (N.V.); (A.G.); (L.P.); (A.S.); (G.P.S.); (F.C.); (R.D.M.)
| | | | - Aldo Di Franco
- UOC Laboratorio Analisi, Ospedale “A. Cardarelli”, 86100 Campobasso, Italy;
| | - Stefano Papini
- UO Laboratorio Analisi, Responsible Research Hospital, 86100 Campobasso, Italy;
| | - Francesco Cosentino
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (N.V.); (A.G.); (L.P.); (A.S.); (G.P.S.); (F.C.); (R.D.M.)
- UO Oncology, Responsible Research Hospital, 86100 Campobasso, Italy;
| | - Roberto Di Marco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (N.V.); (A.G.); (L.P.); (A.S.); (G.P.S.); (F.C.); (R.D.M.)
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95100 Catania, Italy
| |
Collapse
|
10
|
Morsli M, Gimenez E, Magnan C, Salipante F, Huberlant S, Letouzey V, Lavigne JP. The association between lifestyle factors and the composition of the vaginal microbiota: a review. Eur J Clin Microbiol Infect Dis 2024; 43:1869-1881. [PMID: 39096320 PMCID: PMC11405494 DOI: 10.1007/s10096-024-04915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE The vaginal microbiota offers valuable insights into women's sexual health and the risk of developing sexually transmitted infections (STIs) and bacterial vaginosis. Despite the public health implications of changes in the vaginal environment, existing data on this topic remain sparse. METHODS Following the PRISMA statement guidelines, we consulted five bibliographic databases, focusing on five main daily habits and behaviors. We included only studies published up to October 2023, investigating the influence of personal hygiene, sexual behaviors, hormonal contraception, smoking, alcohol consumption, and psychosocial stress on the vaginal microbiota using next-generation sequencing. RESULTS Based on our inclusion criteria, we incorporated 37 studies into this review. Hormonal contraception and personal hygiene were found to promote eubiosis of the vaginal microbiota. In contrast, sexual behaviors, smoking, alcohol consumption, and psychosocial stress were associated with an increased susceptibility to bacterial vaginosis, STIs, and severe pelvic inflammatory diseases due to a modified vaginal microbiota. Black ethnicity emerged as a confounding factor, with this population showing unstable vaginal microbiota. Oral contraception and a stable male sexual partner were found to favor Lactobacillus colonization, acting as a protective factor. Conversely, non-hormonal contraception and unprotected or non-penile/vaginal sexual activity increased the incidence of vaginal inflammation and bacterial vaginosis by disturbing the vaginal microbiota and reducing Lactobacillus abundance. CONCLUSION Daily habits and lifestyle can influence the composition of the vaginal microbiota, thereby affecting vaginal health. Disturbances in the vaginal microbiota could be associated factors for STIs and vaginosis. Therefore, prioritizing more appropriate management of the vaginal microbiota is crucial.
Collapse
Affiliation(s)
- Madjid Morsli
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Elise Gimenez
- Department of Gynecology and Obstetrics, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Chloé Magnan
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Florian Salipante
- Service de Biostatistique, Epidémiologie, Santé Publique Innovation et Méthodologie, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Stéphanie Huberlant
- Department of Gynecology and Obstetrics, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Vincent Letouzey
- Department of Gynecology and Obstetrics, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, Nîmes, France.
| |
Collapse
|
11
|
Sardar H, Hadi F, Alam W, Halawani IF, Alzahrani FM, Saleem RA, Cerqua I, Khan H, Capasso R. Unveiling the therapeutic and nutritious potential of Vigna unguiculata in line with its phytochemistry. Heliyon 2024; 10:e37911. [PMID: 39323861 PMCID: PMC11422034 DOI: 10.1016/j.heliyon.2024.e37911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Vigna unguiculata, belonging to the Fabaceae family, commonly known as cowpea is an important edible legume, distributed mainly across the African and Asian countries. Traditionally, the plant has an outstanding background for the management of multiple diseases, animal feeding and human consumption. Objective This review aims to mainly focus on the traditional applications, pharmacological activities, phytochemistry as well as nutritious composition of the V. unguiculata. Methods Data present in the literature on the V. unguiculata, were collected from major scientific databases including Science Direct, SpringerLink, Google Scholar, Medline Plus, Web of Science, PubMed and Elsevier. Results Number of compounds have been isolated including flavonoids, steroids, alkaloids, phenolic compounds, saponins, fatty acids, tannins, carbohydrates, vitamins, amino acids, carotenoids and fibers from various parts of plant. These compounds exhibit widespread pharmacological potentials both in-vitro and in-vivo including anthelmintic, antibacterial, antinociceptive, thrombolytic, antidiabetic, hypocholestrolemic and antiatherogenic effect, antimicrobial, anti-sickling, antioxidant, anti-covid activity, anticancer and neurobehavioral activities. These compounds have strong pharmacological background and might be responsible for the traditional uses of this plant that are not investigated. Conclusion It is concluded that V. unguiculata possessed strong pharmacological, nutritious and phytochemical potential, therefore, it is strongly recommended for additional comprehensive investigations in order to determine its clinical utility.
Collapse
Affiliation(s)
- Haseeba Sardar
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Fazal Hadi
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Ibrahim F. Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rimah Abdullah Saleem
- Haematology and immunology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah, 21961, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ida Cerqua
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Naples, Italy
| |
Collapse
|
12
|
Saleh RO, Salahdin OD, Ahmad I, Bansal P, Kaur H, Deorari M, Hjazi A, Abosaoda MK, Mohammed IH, Jawad MA. An updated study of the relationship between bacterial infections and women's immune system, focusing on bacterial compositions with successful pregnancy. J Reprod Immunol 2024; 165:104283. [PMID: 38991487 DOI: 10.1016/j.jri.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Genital tract infections can cause a variety of harmful health outcomes, including endometritis, bacterial vaginosis, and pelvic inflammatory disease, in addition to infertility. Anaerobic bacteria, such as Gardnerella vaginalis, Megasphaera spp., and Atopobium vaginae, are more commonly identified in cases of bacterial vaginosis than lactobacilli. It is unknown how the microorganisms that cause pelvic inflammatory diseases and endometritis enter the uterus. Both prospective and retrospective research have connected pelvic inflammatory disorders, chronic endometritis, and bacterial vaginosis to infertility. Similar to bacterial vaginosis, endometritis-related infertility is probably caused by a variety of factors, such as inflammation, immune system recognition of sperm antigens, bacterial toxins, and a higher risk of STDs. Preconception care for symptomatic women may include diagnosing and treating pelvic inflammatory disease, chronic endometritis, and bacterial vaginosis before conception to optimize the results of both natural and assisted reproduction.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq; College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
13
|
Luecke SM, Aryee G, Holman DB, Schmidt KN, King LE, Crouse MS, Ward AK, Dahlen CR, Caton JS, Amat S. Effects of dietary restriction and one-carbon metabolite supplementation during the first 63 days of gestation on the maternal gut, vaginal, and blood microbiota in cattle. Anim Microbiome 2024; 6:48. [PMID: 39210404 PMCID: PMC11360793 DOI: 10.1186/s42523-024-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing. RESULTS Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota. CONCLUSION Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.
Collapse
Affiliation(s)
- Sarah M Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Layla E King
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
14
|
Ingram K, Ngalame Eko E, Nunziato J, Ahrens M, Howell B. Impact of obesity on the perinatal vaginal environment and bacterial microbiome: effects on birth outcomes. J Med Microbiol 2024; 73. [PMID: 39171766 DOI: 10.1099/jmm.0.001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Introduction. Lactobacillus species predominate the human vagina and are associated with positive vaginal health, including an acidic pH (<4.5). The prevalence of vaginal Lactobacilli increases with increased oestrogen due to increased glycogen production within the vagina. Lactobacilli produce lactic acid, thereby lowering vaginal pH, preventing growth of other bacteria, and lowering microbial diversity. Lower placental oestrogen levels in obese pregnant women could dampen the mechanism to initiate this process, which may be associated with vaginal dysbiosis and unfavourable pregnancy outcomes.Hypothesis. We hypothesize that oestrogen and glycogen levels will be lower, vaginal pH will be higher, and vaginal microbiome diversity will be greater during pregnancy in obese and overweight women compared to healthy weight women.Aim. Pregnancy complications (e.g. preterm birth) are more common in overweight and obese women. If vaginal dysbiosis plays a role, and quantifiable predictors of this increased risk can be determined, these measures could be used to prospectively identify women at risk for pregnancy complications early in pregnancy.Methodology. Vaginal samples were collected at 10-14, 18-24, 26-30, and 34-37 weeks gestation and at delivery from 67 pregnant participants (23 healthy weight, 22 overweight, 22 obese). A blood sample to quantify serum oestrogen was collected at 10-14 weeks. Vaginal samples were collected to test vaginal pH using pH paper, glycogen abundance using fluorometry, and the vaginal microbiome using 16S rRNA amplicon sequencing.Results. Vaginal pH was higher in obese participants compared to healthy weight participants (P=<0.001). Vaginal glycogen levels increased over time in obese participants (P=0.033). The vaginal bacterial alpha diversity was higher in obese participants compared to healthy weight participants (P=0.033). The relative abundances of Peptoniphilus and Anaerococcus were increased in overweight and obese participants, as well as in complicated pregnancies, at 10-14 weeks gestation.Conclusion. The relative abundance of specific vaginal bacteria, like Peptoniphilus and Anaerococcus, in early pregnancy could predict pregnancy outcomes. Our goal is to use the information gathered in this pilot study to further determine the feasibility of assessing the vaginal environment during pregnancy to identify women at risk for negative pregnancy and birth outcomes in the context of a larger study.
Collapse
Affiliation(s)
- Kelly Ingram
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | | | - Jaclyn Nunziato
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Carilion Clinic, Roanoke, Virginia, USA
| | - Monica Ahrens
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Brittany Howell
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
15
|
Ughade PA, Shrivastava D, Chaudhari K. Navigating the Microbial Landscape: Understanding Dysbiosis in Human Genital Tracts and Its Impact on Fertility. Cureus 2024; 16:e67040. [PMID: 39286717 PMCID: PMC11403153 DOI: 10.7759/cureus.67040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Dysbiosis, an imbalance in microbial communities, significantly impacts the health and functionality of the human genital tract, with profound implications for fertility and reproductive health. This review explores the intricate relationship between genital tract microbiota and reproductive outcomes, highlighting the composition and dynamics of these microbial communities in both females and males. In females, the vaginal microbiota, primarily dominated by Lactobacillus species, is essential for maintaining a healthy vaginal environment, preventing infections, and supporting reproductive functions. In males, the genital microbiota influences sperm quality and reproductive health. Dysbiosis in the genital tract, manifesting as bacterial vaginosis, yeast infections, urethritis, or prostatitis, disrupts these microbial communities, leading to adverse reproductive outcomes such as infertility, pregnancy, and increased susceptibility to sexually transmitted infections. This review delves into the mechanisms through which dysbiosis affects fertility, including alterations in vaginal pH, mucosal immunity, inflammation, sperm viability, and motility. It also evaluates diagnostic methods, clinical implications, and management strategies, including probiotics, prebiotics, antibiotics, antifungal treatments, lifestyle interventions, and emerging therapeutic approaches. By understanding the microbial landscape of the genital tract and its impact on fertility, this review aims to inform targeted interventions that restore microbial balance and enhance reproductive health, ultimately improving fertility outcomes and the potential for healthy pregnancies.
Collapse
Affiliation(s)
- Prachi A Ughade
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Deepti Shrivastava
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kamlesh Chaudhari
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Zangirolamo AF, Souza AK, Yokomizo DN, Miguel AKA, da Costa MC, Alfieri AA, Seneda MM. Updates and Current Challenges in Reproductive Microbiome: A Comparative Analysis between Cows and Women. Animals (Basel) 2024; 14:1971. [PMID: 38998083 PMCID: PMC11240322 DOI: 10.3390/ani14131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The microbiota plays an important role in numerous physiological processes, pathogenesis, development, and metabolism in different animal species. In humans, several studies have demonstrated an association between the vaginal microbiota and fertility rates, and even success in assisted reproduction techniques. In the context of cattle reproduction, although few studies have addressed the microbiota in a healthy state (which is not associated with diseases that affect the reproductive tract of cows), changes in its composition also seem to influence fertility. This review aims to explain the importance of the reproductive microbiota in female bovines and what is available in the literature regarding its possible role in increasing fertility. What are the challenges involved in this process? Future perspectives on its use and manipulation as a selection or intervention tool. Will it be possible to one day extrapolate the findings to reality and apply them in the field? In short, understanding the role of the reproductive microbiota of female bovines can signal the prospect of increasing production, whether of milk or meat, from the same number of animals, as it can optimize reproductive efficiency and perhaps become an allied tool for the economic profitability and sustainability of livestock farming.
Collapse
Affiliation(s)
- Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Anne Kemmer Souza
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Ana Karolyne Alves Miguel
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | | | - Amauri Alcindo Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
| | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| |
Collapse
|
17
|
Oyenihi AB, Haines R, Trama J, Faro S, Mordechai E, Adelson ME, Osei Sekyere J. Molecular characterization of vaginal microbiota using a new 22-species qRT-PCR test to achieve a relative-abundance and species-based diagnosis of bacterial vaginosis. Front Cell Infect Microbiol 2024; 14:1409774. [PMID: 39006741 PMCID: PMC11239351 DOI: 10.3389/fcimb.2024.1409774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Background Numerous bacteria are involved in the etiology of bacterial vaginosis (BV). Yet, current tests only focus on a select few. We therefore designed a new test targeting 22 BV-relevant species. Methods Using 946 stored vaginal samples, a new qPCR test that quantitatively identifies 22 bacterial species was designed. The distribution and relative abundance of each species, α- and β-diversities, correlation, and species co-existence were determined per sample. A diagnostic index was modeled from the data, trained, and tested to classify samples into BV-positive, BV-negative, or transitional BV. Results The qPCR test identified all 22 targeted species with 95 - 100% sensitivity and specificity within 8 hours (from sample reception). Across most samples, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensenii, Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, Prevotella bivia, and Megasphaera sp. type 1 were relatively abundant. BVAB-1 was more abundant and distributed than BVAB-2 and BVAB-3. No Mycoplasma genitalium was found. The inter-sample similarity was very low, and correlations existed between key species, which were used to model, train, and test a diagnostic index: MDL-BV index. The MDL-BV index, using both species and relative abundance markers, classified samples into three vaginal microbiome states. Testing this index on our samples, 491 were BV-positive, 318 were BV-negative, and 137 were transitional BV. Although important differences in BV status were observed between different age groups, races, and pregnancy status, they were statistically insignificant. Conclusion Using a diverse and large number of vaginal samples from different races and age groups, including pregnant women, the new qRT-PCR test and MDL-BV index efficiently diagnosed BV within 8 hours (from sample reception), using 22 BV-associated species.
Collapse
Affiliation(s)
- Ayodeji B Oyenihi
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Ronald Haines
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Jason Trama
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Sebastian Faro
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
- Memorial Women's Care, Houston, TX, United States
| | - Eli Mordechai
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Martin E Adelson
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - John Osei Sekyere
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| |
Collapse
|
18
|
Wang Y, Zhang Z, Chen Q, Chen T. Simultaneous application of oral and intravaginal probiotics for Helicobacter pylori and its antibiotic-therapy-induced vaginal dysbacteriosis. NPJ Biofilms Microbiomes 2024; 10:49. [PMID: 38902244 PMCID: PMC11190290 DOI: 10.1038/s41522-024-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori is a prevalent bacterial pathogen globally, implicated in various gastrointestinal disorders. Current recommended antibiotic therapies for H. pylori infection have been proven to be therapeutically insufficient, with low eradication rates and high recurrence rates. Emerging evidence suggests that antibiotic therapy for H. pylori can lead to gastrointestinal and subsequent vaginal dysbiosis, posing challenges for conventional antibiotic approaches. Thus, this article proposes a novel probiotic therapy involving simultaneous oral and intra-vaginal probiotic administration alongside antibiotics for H. pylori treatment, aiming to enhance eradication rates and mitigate dysbiosis. We begin by providing an overview of gastrointestinal and vaginal microbiota and their interconnectedness through the vagina-gut axis. We then review the efficacy of current antibiotic regimens for H. pylori and discuss how antibiotic treatment impacts the vaginal microenvironment. To explore the feasibility of this approach, we evaluate the effectiveness of oral and intra-vaginal probiotics in restoring normal microbiota in the gastrointestinal and vaginal tracts, respectively. Additionally, we analyze the direct mechanisms by which oral and intra-vaginal probiotics act on their respective tracts and discuss potential cross-tract mechanisms. Considering the potential synergistic therapeutic effects of probiotics in both the gastrointestinal and vaginal tracts, dual-channel probiotic therapy holds promise as a more effective approach for H. pylori eradication and dysbiosis mitigation, presenting a novel concept in the collaborative treatment of gastrointestinal and genital disorders.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
19
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
20
|
Liu S, Alipour H, Zachar V, Kesmodel US, Dardmeh F. Effect of Postbiotics Derived from Lactobacillus rhamnosus PB01 (DSM 14870) on Sperm Quality: A Prospective In Vitro Study. Nutrients 2024; 16:1781. [PMID: 38892713 PMCID: PMC11174611 DOI: 10.3390/nu16111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Vaginally administered postbiotics derived from Lactobacillus were recently demonstrated to be effective in alleviating bacterial vaginosis and increasing pregnancy rates. However, their potential effect on sperm quality has not been well investigated. This controlled in vitro study aimed to assess the dose- and time-dependent effects of postbiotics derived from Lactobacillus rhamnosus PB01 (DSM 14870) on sperm quality parameters. The experiment was conducted in vitro to eliminate potential confounding factors from the female reproductive tract and vaginal microbiota. Sperm samples from 18 healthy donors were subjected to analysis using Computer-Aided Sperm Analysis (CASA) in various concentrations of postbiotics and control mediums at baseline, 60 min, and 90 min of incubation. Results indicated that lower postbiotic concentration (PB5) did not adversely affect sperm motility, kinematic parameters, sperm DNA fragmentation, and normal morphology at any time. However, concentrations exceeding 15% demonstrated a reduction in progressively motile sperm and a negative correlation with non-progressively motile sperm at all time points. These findings underscore the importance of balancing postbiotic dosage to preserve sperm motility while realizing the postbiotics' vaginal health benefits. Further research is warranted to understand the underlying mechanisms and refine practical applications in reproductive health.
Collapse
Affiliation(s)
- Sihan Liu
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (H.A.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (H.A.); (V.Z.)
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (H.A.); (V.Z.)
| | - Ulrik Schiøler Kesmodel
- Department of Clinical Medicine, Aalborg University, 9260 Gistrup, Denmark;
- Department of Obstetrics and Gynecology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Fereshteh Dardmeh
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (H.A.); (V.Z.)
| |
Collapse
|
21
|
Juárez Rodríguez MD, Marquette M, Youngblood R, Dhungel N, Torres Escobar A, Ivanov SS, Dragoi AM. Characterization of Neisseria gonorrhoeae colonization of macrophages under distinct polarization states and nutrients environment. Front Cell Infect Microbiol 2024; 14:1384611. [PMID: 38808065 PMCID: PMC11130388 DOI: 10.3389/fcimb.2024.1384611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Neisseria gonorrhoeae (Ng) is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. Ng has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. Ng successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing. During colonization, Ng manipulates the actin cytoskeleton to invade and create an intracellular niche supportive of bacterial replication. The cellular reservoir(s) supporting bacterial replication and persistence in gonorrhea infections are poorly defined. The manner in which gonococci colonize macrophages points to this innate immune phagocyte as a strong candidate for a cellular niche during natural infection. Here we investigate whether nutrients availability and immunological polarization alter macrophage colonization by Ng. Differentiation of macrophages in pro-inflammatory (M1-like) and tolerogenic (M2-like) phenotypes prior to infection reveals that Ng can invade macrophages in all activation states, albeit with lower efficiency in M1-like macrophages. These results suggest that during natural infection, bacteria could invade and grow within macrophages regardless of the nutrients availability and the macrophage immune activation status.
Collapse
Affiliation(s)
| | - Madison Marquette
- LSU Health Shreveport, School of Medicine, Louisiana, LA, United States
| | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Louisiana, LA, United States
| | - Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Louisiana, LA, United States
| | | | - Stanimir S. Ivanov
- Department of Microbiology and Immunology, LSUHSC-Shreveport, Louisiana, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Louisiana, LA, United States
- Feist-Weiller Cancer Center, LSUHSC-Shreveport, Louisiana, LA, United States
| |
Collapse
|
22
|
Peng ZR, Zhang JG, Zhang JB, Lin XQ, Chen W, Yang YJ, Liu ZZ. Identification and biological characteristics of Enterococcus casseliflavus TN-47 isolated from Monochamus alternatus. Int J Syst Evol Microbiol 2024; 74. [PMID: 38602465 DOI: 10.1099/ijsem.0.006305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
With the widespread use of antibiotics, the incidence of antibiotic resistance in microorganisms has increased. Monochamus alternatus is a trunk borer of pine trees. This study aimed to investigate the in vitro antimicrobial and biological characteristics of Enterococcus casseliflavus TN-47 (PP411196), isolated from the gastrointestinal tract of M. alternatus in Jilin Province, PR China. Among 13 isolates obtained from the insects, five were preliminarily screened for antimicrobial activity. E. casseliflavus TN-47, which exhibited the strongest antimicrobial activity, was identified. E. casseliflavus TN-47 possessed antimicrobial activity against Staphylococcus aureus USA300 and Salmonella enterica serovar Pullorum ATCC 19945. Furthermore, E. casseliflavus TN-47 was sensitive to tetracyclines, penicillins (ampicillin, carbenicillin, and piperacillin), quinolones and nitrofuran antibiotics, and resistant to certain beta-lactam antibiotics (oxacillin, cefradine and cephalexin), macrolide antibiotics, sulfonamides and aminoglycosides. E. casseliflavus TN-47 could tolerate low pH and pepsin-rich conditions in the stomach and grow in the presence of bile acids. E. casseliflavus TN-47 retained its strong auto-aggregating ability and hydrophobicity. This strain did not exhibit any haemolytic activity. These results indicate that E. casseliflavus TN-47 has potential as a probiotic. This study provides a theoretical foundation for the future applications of E. casseliflavus TN-47 and its secondary metabolites in animal nutrition and feed.
Collapse
Affiliation(s)
- Zi-Ran Peng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Jia-Bao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Xiao-Qi Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| |
Collapse
|
23
|
Gao H, Liu Q, Wang X, Li T, Li H, Li G, Tan L, Chen Y. Deciphering the role of female reproductive tract microbiome in reproductive health: a review. Front Cell Infect Microbiol 2024; 14:1351540. [PMID: 38562966 PMCID: PMC10982509 DOI: 10.3389/fcimb.2024.1351540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Relevant studies increasingly indicate that female reproductive health is confronted with substantial challenges. Emerging research has revealed that the microbiome interacts with the anatomy, histology, and immunity of the female reproductive tract, which are the cornerstone of maintaining female reproductive health and preventing adverse pregnancy outcomes. Currently, the precise mechanisms underlying their interaction and impact on physiological functions of the reproductive tract remain elusive, constituting a prominent area of investigation within the field of female reproductive tract microecology. From this new perspective, we explore the mechanisms of interactions between the microbiome and the anatomy, histology, and immunity of the female reproductive tract, factors that affect the composition of the microbiome in the female reproductive tract, as well as personalized medicine approaches in managing female reproductive tract health based on the microbiome. This study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and influencing the occurrence of reproductive tract diseases. These findings support the exploration of innovative approaches for the prevention, monitoring and treatment of female reproductive tract diseases based on the microbiome.
Collapse
Affiliation(s)
- Hong Gao
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Qiao Liu
- School of Nursing, University of South China, Hengyang, China
| | - Xiaolan Wang
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Li
- Department of Obstetrics, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huanhuan Li
- Department of Gynaecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Genlin Li
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingling Tan
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yahui Chen
- School of Nursing, University of South China, Hengyang, China
| |
Collapse
|
24
|
Cocomazzi G, Del Pup L, Contu V, Maggio G, Parmegiani L, Ciampaglia W, De Ruvo D, Faioli R, Maglione A, Baldini GM, Baldini D, Pazienza V. Gynecological Cancers and Microbiota Dynamics: Insights into Pathogenesis and Therapy. Int J Mol Sci 2024; 25:2237. [PMID: 38396914 PMCID: PMC10889201 DOI: 10.3390/ijms25042237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the relationship between the microbiota and various aspects of health has become a focal point of scientific investigation. Although the most studied microbiota concern the gastrointestinal tract, recently, the interest has also been extended to other body districts. Female genital tract dysbiosis and its possible impact on pathologies such as endometriosis, polycystic ovary syndrome (PCOS), pelvic inflammatory disease (PID), and gynecological cancers have been unveiled. The incursion of pathogenic microbes alters the ecological equilibrium of the vagina, triggering inflammation and compromising immune defense, potentially fostering an environment conducive to cancer development. The most common types of gynecological cancer include cervical, endometrial, and ovarian cancer, which occur in women of any age but especially in postmenopausal women. Several studies highlighted that a low presence of lactobacilli at the vaginal level, and consequently, in related areas (such as the endometrium and ovary), correlates with a higher risk of gynecological pathology and likely contributes to increased incidence and worse prognosis of gynecological cancers. The complex interplay between microbial communities and the development, progression, and treatment of gynecologic malignancies is a burgeoning field not yet fully understood. The intricate crosstalk between the gut microbiota and systemic inflammation introduces a new dimension to our understanding of gynecologic cancers. The objective of this review is to focus attention on the association between vaginal microbiota and gynecological malignancies and provide detailed knowledge for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Cocomazzi
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Lino Del Pup
- Gynecological Endocrinology and Fertility, University Sanitary Agency Friuli Central (ASUFC), Via Pozzuolo, 330, 33100 Udine, FVG, Italy;
| | - Viviana Contu
- Integrative Medicine Unit, Humanitas Gradenigo, Corso Regina Margherita 8/10, 10153 Torino, FC, Italy;
| | - Gabriele Maggio
- Pia Fondazione Cardinale Giovanni Panico, Via S. Pio X, 4, 73039 Tricase, LE, Italy;
| | - Lodovico Parmegiani
- Next Fertility GynePro, NextClinics International Via T. Cremona 8, 40137 Bologna, RE, Italy; (L.P.); (W.C.)
| | - Walter Ciampaglia
- Next Fertility GynePro, NextClinics International Via T. Cremona 8, 40137 Bologna, RE, Italy; (L.P.); (W.C.)
| | - Daniele De Ruvo
- Gynaecology, Obstetrics and Reproductive Medicine Affidea Promea, Via Menabrea 14, 10126 Torino, TO, Italy;
| | - Raffaele Faioli
- Gynecology and Obstetrics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, FG, Italy; (R.F.); (A.M.)
| | - Annamaria Maglione
- Gynecology and Obstetrics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, FG, Italy; (R.F.); (A.M.)
| | - Giorgio Maria Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell’Arciprete, 76011 Bisceglie, BT, Italy; (G.M.B.); (D.B.)
| | - Domenico Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell’Arciprete, 76011 Bisceglie, BT, Italy; (G.M.B.); (D.B.)
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| |
Collapse
|
25
|
Juárez Rodríguez MD, Marquette M, Youngblood R, Dhungel N, Escobar AT, Ivanov S, Dragoi AM. Characterization of Neisseria gonorrhoeae colonization of macrophages under distinct polarization states and nutrients environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579566. [PMID: 38370795 PMCID: PMC10871323 DOI: 10.1101/2024.02.08.579566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neisseria gonorrhoeae (Ng) is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. Ng has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. Ng successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing. During colonization, Ng manipulates the actin cytoskeleton to invade and create an intracellular niche supportive of bacterial replication. The cellular reservoir(s) supporting bacterial replication and persistence in gonorrhea infections are poorly defined. The manner in which gonococci colonize macrophages points to this innate immune phagocyte as a strong candidate for a cellular niche during natural infection. Here we investigate whether nutrients availability and immunological polarization alter macrophage colonization by Ng . Differentiation of macrophages in pro-inflammatory (M1-like) and tolerogenic (M2-like) phenotypes prior to infection reveals that Ng can invade macrophages in all activation states, albeit with lower efficiency in M1-like macrophages. These results suggest that during natural infection, bacteria could invade and grow within macrophages regardless of the nutrients availability and the macrophage immune activation status.
Collapse
|
26
|
Graziottin A. Maintaining vulvar, vaginal and perineal health: Clinical considerations. WOMEN'S HEALTH (LONDON, ENGLAND) 2024; 20:17455057231223716. [PMID: 38396383 PMCID: PMC10894559 DOI: 10.1177/17455057231223716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024]
Abstract
Knowledge of female genital anatomy and physiology is often inadequate or incorrect among women. Precise patient-physician conversations can be inhibited by a reluctance or inability to speak accurately about the vulva and vagina, with the terms often being used interchangeably. There is a paucity of scientific evidence and clinical guidelines to support women and physicians in ensuring best practices in feminine hygiene. In this review, the unmet needs in the field are highlighted. Evidence is provided for the complex array of physiological and pathological systems, mechanisms and behaviours that either protect or, if inappropriate, predispose the vulva and vagina to infections, irritation or other conditions. The need for attention to perineal health is recommended, given the interdependence of perineal and vulvar microbiota and the risk of colonic pathogens reaching the vulva and the vagina. Differences in feminine hygiene practices can vary widely across the world and among varying age groups, and suboptimal habits (such as vaginal douching or the use of certain cleansers) can be associated with increased risks of vulvar and vaginal conditions. Critical areas for discussion when advising women on their intimate health include: advice surrounding aesthetic vulvar cosmetic trends (such as depilation and genital cosmetic surgery), bowel health and habits, and protection against sexually transmitted infections. Routine, once-daily (maximum twice-daily) washing of the vulva with a pH-balanced, mild cleanser is optimal, ideally soon after bowel voiding, when feasible. Due to the finely balanced ecosystems of the vulva, the vagina and the perineal area, a scientific and clinical perspective is essential when determining the most appropriate vulvar cleansers based on their components. Correct intimate care may contribute to improved genital and sexual health and overall well-being. An increased awareness of correct practices will empower women to be the advocates of their own intimate health.
Collapse
Affiliation(s)
- Alessandra Graziottin
- Centre of Gynaecology and Medical Sexology, San Raffaele Resnati Hospital, Milan, Italy
- Specialty School, Department of Obstetrics and Gynecology, University of Verona, Verona, Italy
- Specialty School of Endocrinology and Metabolic Disease, Federico II University, Naples, Italy
- Alessandra Graziottin Foundation for the Cure and Care of Pain in Women, NPO, Milan, Italy
| |
Collapse
|
27
|
Davies R, Minhas S, Jayasena CN. Next-Generation Sequencing to Elucidate the Semen Microbiome in Male Reproductive Disorders. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:25. [PMID: 38256286 PMCID: PMC10819355 DOI: 10.3390/medicina60010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Mean sperm counts are declining at an accelerated rate and infertility is increasingly becoming a public health concern. It is now understood that human semen, previously considered to be sterile, harbours its own specific microbiome. Via activated leucocytes and the generation of reactive oxygen species, bacteria have the capability of evoking an immune response which may lead to sperm damage. Men with infertility have higher rates of both reactive oxygen species and sperm DNA damage. Due to the lack of sensitivity of routine culture and PCR-based methods, next-generation sequencing technology is being employed to characterise the seminal microbiome. There is a mounting body of studies that share a number of similarities but also a great range of conflicting findings. A lack of stringent decontamination procedures, small sample sizes and heterogeneity in other aspects of methodology makes it difficult to draw firm conclusions from these studies. However, various themes have emerged and evidence of highly conserved clusters of common bacteria can be seen. Depletion or over-representation of specific bacteria may be associated with aberrations in traditional and functional seminal parameters. Currently, the evidence is too limited to inform clinical practice and larger studies are needed.
Collapse
Affiliation(s)
- Rhianna Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK;
| | - Suks Minhas
- Department of Urology, Charing Cross Hospital, Imperial College NHS Trust, London W6 8RF, UK;
| | - Channa N. Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK;
| |
Collapse
|
28
|
Onyango S, Mi JD, Koech A, Okiro P, Temmerman M, von Dadelszen P, Tribe RM, Omuse G. Microbiota dynamics, metabolic and immune interactions in the cervicovaginal environment and their role in spontaneous preterm birth. Front Immunol 2023; 14:1306473. [PMID: 38196946 PMCID: PMC10774218 DOI: 10.3389/fimmu.2023.1306473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Differences in the cervicovaginal microbiota are associated with spontaneous preterm birth (sPTB), a significant cause of infant morbidity and mortality. Although establishing a direct causal link between cervicovaginal microbiota and sPTB remains challenging, recent advancements in sequencing technologies have facilitated the identification of microbial markers potentially linked to sPTB. Despite variations in findings, a recurring observation suggests that sPTB is associated with a more diverse and less stable vaginal microbiota across pregnancy trimesters. It is hypothesized that sPTB risk is likely to be modified via an intricate host-microbe interactions rather than due to the presence of a single microbial taxon or broad community state. Nonetheless, lactobacilli dominance is generally associated with term outcomes and contributes to a healthy vaginal environment through the production of lactic acid/maintenance of a low pH that excludes other pathogenic microorganisms. Additionally, the innate immunity of the host and metabolic interactions between cervicovaginal microbiota, such as the production of bacteriocins and the use of proteolytic enzymes, exerts a profound influence on microbial populations, activities, and host immune responses. These interplays collectively impact pregnancy outcomes. This review aims to summarize the complexity of cervicovaginal environment and microbiota dynamics, and associations with bacterial vaginosis and sPTB. There is also consideration on how probiotics may mitigate the risk of sPTB and bacterial vaginosis.
Collapse
Affiliation(s)
- Stanley Onyango
- Department of Pathology, Aga Khan University, Nairobi, Kenya
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Jia Dai Mi
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Angela Koech
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Patricia Okiro
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Marleen Temmerman
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Peter von Dadelszen
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Rachel M. Tribe
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Geoffrey Omuse
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | | |
Collapse
|
29
|
Hutchinson-Colas J. Postmenopausal vaginal microbiota: more to discover. Menopause 2023; 30:1071-1072. [PMID: 37889611 DOI: 10.1097/gme.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Affiliation(s)
- Juana Hutchinson-Colas
- From the Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
30
|
Kaltsas A, Zachariou A, Markou E, Dimitriadis F, Sofikitis N, Pournaras S. Microbial Dysbiosis and Male Infertility: Understanding the Impact and Exploring Therapeutic Interventions. J Pers Med 2023; 13:1491. [PMID: 37888102 PMCID: PMC10608462 DOI: 10.3390/jpm13101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The human microbiota in the genital tract is pivotal for maintaining fertility, but its disruption can lead to male infertility. This study examines the relationship between microbial dysbiosis and male infertility, underscoring the promise of precision medicine in this field. Through a comprehensive review, this research indicates microbial signatures associated with male infertility, such as altered bacterial diversity, the dominance of pathogenic species, and imbalances in the genital microbiome. Key mechanisms linking microbial dysbiosis to infertility include inflammation, oxidative stress, and sperm structural deterioration. Emerging strategies like targeted antimicrobial therapies, probiotics, prebiotics, and fecal microbiota transplantation have shown potential in adjusting the genital microbiota to enhance male fertility. Notably, the application of precision medicine, which customizes treatments based on individual microbial profiles and specific causes of infertility, emerges as a promising approach to enhance treatment outcomes. Ultimately, microbial dysbiosis is intricately linked to male infertility, and embracing personalized treatment strategies rooted in precision medicine principles could be the way forward in addressing infertility associated with microbial factors.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Spyridon Pournaras
- Clinical Microbiology Laboratory, Attikon General University Hospital of Athens, 12462 Athens, Greece
| |
Collapse
|
31
|
DE Leo V, Lazzeri E, Governini L, Cuppone AM, Colombini L, Teodori L, Ciprandi G, Iannelli F, Pozzi G. Vaginal colonization of women after oral administration of Lactobacillus crispatus strain NTCVAG04 from the human microbiota. Minerva Obstet Gynecol 2023; 75:432-439. [PMID: 35686637 DOI: 10.23736/s2724-606x.22.05087-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND The genomic approach has deeply changed the microbiology perspective, mainly concerning the microbioma identification. In this regard, some microbes colonize the healthy vagina. Vaginitis is a common gynecological ailment and includes bacterial vaginosis (BV), usually caused by local dysbiosis, such as a microbiota imbalance. Lactobacilli are the most prevalent bacteria colonizing the healthy vagina, so guaranteeing local eubiosis. In particular, vaginal colonization by L. crispatus is associated with low susceptibility to BV. Therefore, probiotics, such as life bacteria providing health advantages, are a current strategy in the prevention or treatment of vaginitis, including BV. However, there is a low level of evidence that probiotics after ingestion could really colonize the vagina. In particular, no study evidenced that L. crispatus after ingestion can colonize vagina. Therefore, the current study explored the capacity of Biovaginil® (NTC, Milan, Italy) dietary supplement containing Lactobacillus crispatus NTCVAG04 and vitamin A to colonize the gut and vagina in women with a history of vaginitis/vaginosis. METHODS Twenty fertile females (mean age 34.0 years) were enrolled in the study. Rectal and vaginal swabs were collected at baseline and after the first and second cycle of Biovaginil®. Each cycle lasted 14 days within two consecutive menstrual periods. RESULTS Seven women were excluded from the analysis because the samples were technically not evaluable. One woman dropped out because of mild adverse event. At the end of the study, nine women (75%) had positive rectal swab for L. crispatus NTCVAG04, and 8 of them also had positive vaginal swab. CONCLUSIONS The current study provided the first evidence that L. crispatus NTCVAG04, administered by two Biovaginil® courses, colonized both the gut and vagina. Moreover, the L. crispatus NTCVAG04 strain could be considered the archetype of a new class of oral probiotics that actively colonize the vagina, and that could be called "colpobiotics."
Collapse
Affiliation(s)
- Vincenzo DE Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Anna M Cuppone
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lucia Teodori
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giorgio Ciprandi
- Allergy and Clinical Immunology, Casa di Cura Villa Montallegro, Genoa, Italy -
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
32
|
Hellier SD, Wrynn AF. Beyond fluconazole: A review of vulvovaginal candidiasis diagnosis and treatment. Nurse Pract 2023; 48:33-39. [PMID: 37643144 DOI: 10.1097/01.npr.0000000000000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ABSTRACT Vaginitis symptoms are among the most common reasons for patients to seek acute gynecological care. NPs who care for women and other patients with vaginas need to be up-to-date on diagnosis and treatment of vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). Two new antifungal medications for VVC are available. This article reviews vaginal physiology and provides an overview of VVC and RVVC pathophysiology, diagnosis, and treatment options.
Collapse
|
33
|
Sahal G, Donmez HG, Beksac MS. Cervicovaginal Bacillus velezensis Isolate: A Potential Probiotic and an Antagonist Against Candida and Staphylococcus. Curr Microbiol 2023; 80:332. [PMID: 37642756 DOI: 10.1007/s00284-023-03447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
The cervicovaginal microbiota is an essential aspect of women's reproductive and overall health. In this study, we aimed to evaluate the probiotic properties of a cervicovaginal isolate, obtained from a gynecologically healthy woman and assess its antagonistic effect against various microorganisms isolated from the vagina. Cytological examination was performed using Papanicolaou staining, and the isolated microorganism was identified via 16S Ribosomal RNA Gene Sequence Analysis. Probiotic characteristics were evaluated by determining the tolerance of the isolate to low pH, different NaCl concentrations, and bile salts. Bacterial adherence to stainless steel sheets, antibiotic susceptibility, and antimicrobial activity tests were also conducted and analyzed. Antimicrobial tests and antagonistic activities were assessed through disc diffusion assays. The cervicovaginal isolate was identified as B. velezensis ON116948 and was found to be tolerant to low pH, high NaCl and 0.3% bile salts. Additionally, it exhibited adherence. With the exception of amoxicillin/clavulanic acid (AMC) (30 μg) and oxacillin (OX) (1 μg), this isolate was susceptible to all the antibiotics tested. Candida species did not grow on B. velezensis spread media, while B. velezensis was able to grow on C. albicans, C. glabrata, C. tropicalis, S. condimenti and S. epidermidis spread media with growth zones of 13.7 ± 0.6, 13.3 ± 0.6, 14.2 ± 4.4, 10.5 ± 0.5 and 16.0 ± 1.0 (around discs), respectively. Our findings suggest that the cervicovaginal B. velezensis ON116948 isolate exhibits probiotic properties and antagonistic activity. These results provide important insights into the potential use of this isolate as a probiotic for the prevention of vaginal infections.
Collapse
Affiliation(s)
- Gulcan Sahal
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, Ankara, Turkey.
| | - Hanife Guler Donmez
- Department of Biology (General Biology), Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
34
|
Zinsli KA, Srinivasan S, Balkus JE, Chambers LC, Lowens MS, Morgan J, Rowlinson E, Robinson TS, Romano SS, Munch MM, Manhart LE, Fredricks DN. Bacterial vaginosis-associated bacteria in cisgender men who have sex with women: prevalence, association with non-gonococcal urethritis and natural history. Sex Transm Infect 2023; 99:317-323. [PMID: 36601742 PMCID: PMC10241981 DOI: 10.1136/sextrans-2022-055494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Bacterial vaginosis-associated bacterium 2 (BVAB2), Mageeibacillus indolicus and Sneathia spp are highly predictive of bacterial vaginosis (BV) in cisgender women. They have been associated with non-gonococcal urethritis (NGU) in cisgender men in some but not all populations. We evaluated this association in a cross-sectional study of cisgender men who have sex with women only (MSW). METHODS MSW without gonorrhoea attending a sexual health clinic (SHC) from 2014 to 2018 completed a computer-assisted self-interview, clinical interview and examination. NGU was defined as ≥5 polymorphonuclear leucocytes/high-power field in urethral exudates plus either urethral symptoms or visible discharge. Urine was tested for Chlamydia trachomatis and Mycoplasma genitalium using Aptima (Hologic) and for BVAB2, M. indolicus, Sneathia spp, Trichomonas vaginalis, Ureaplasma urealyticum, Haemophilus influenzae, herpes simplex virus and adenovirus using quantitative PCR. RESULTS Of 317 MSW age 17-71, 67 (21.1%) had Sneathia spp, 36 (11.4%) had BVAB2, and 17 (5.4%) had M. indolicus at enrolment. Having ≥3 partners in the past 2 months was the only characteristic that was more common among MSW with than those without these bacteria (BVAB2: 47% vs 23%, M. indolicus: 53% vs 24%, Sneathia spp: 42% vs 22%; p≤0.03 for all). One-hundred seventeen men (37%) were diagnosed with NGU at enrolment. There was no significant association of BVAB2, M. indolicus or Sneathia spp with NGU (adjusted OR=0.59, 95% CI 0.14 to 2.43; aOR=3.40, 95% CI 0.68 to 17.06; aOR=0.46, 95% CI 0.16 to 1.27). Of 109 MSW with monthly samples, 34 (31.2%) had one of the bacteria at one or more follow-up visits, 22 of which were co-colonised with >1. Median persistence over 6 months did not differ significantly (BVAB2=30.5 days, IQR=28-87; M. indolicus=87 days, IQR=60-126; Sneathia spp=70 days, IQR=30-135; p≥0.20 for each comparison). CONCLUSIONS Neither BVAB2, M. indolicus nor Sneathia spp were associated with increased risk of prevalent NGU in MSW attending an SHC.
Collapse
Affiliation(s)
- Kaitlin A Zinsli
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jennifer E Balkus
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Laura C Chambers
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - M Sylvan Lowens
- HIV/STD Program, Public Health - Seattle & King County, Seattle, Washington, USA
| | - Jennifer Morgan
- HIV/STD Program, Public Health - Seattle & King County, Seattle, Washington, USA
| | - Emily Rowlinson
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Tashina S Robinson
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Sarah S Romano
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Matthew M Munch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lisa E Manhart
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - David N Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
35
|
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023; 12:996. [PMID: 37623956 PMCID: PMC10459687 DOI: 10.3390/pathogens12080996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as betel quid, is extensively consumed as a masticatory product in many countries across the world. Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular and molecular changes. In the oral cavity, it causes changes at the compositional level in oral microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its association with oral cancer development. In the present review, the authors have analysed the literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations, evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors have also shared a perspective that the restoration of local microbiota can become a potentially therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially in high-risk population groups.
Collapse
Affiliation(s)
- Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mohit Nirwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - James Wahlang
- Department of Biochemistry, St. Edmund’s College, Shillong 793003, India;
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| |
Collapse
|
36
|
Tomczyk K, Chmaj-Wierzchowska K, Wszołek K, Wilczak M. New Possibilities for Hormonal Vaginal Treatment in Menopausal Women. J Clin Med 2023; 12:4740. [PMID: 37510854 PMCID: PMC10380877 DOI: 10.3390/jcm12144740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hormonal vaginal therapy is an effective treatment option for women who experience vaginal symptoms related to hormonal changes. Estrogen and prasterone are widely used as vaginal treatments, particularly for urogenital atrophy. These symptoms may include vaginal dryness, itching, burning, and pain during sexual intercourse, all of which can significantly affect a woman's quality of life. Previous studies have indicated that such treatment improves tissue elasticity, moisturizes the vagina, and can have a substantial impact on urine incontinence and vaginal microflora and decreases dyspareunia. Hormonal therapy is also useful and commonly used before vaginal surgical treatment. Prasterone is quite a new option for vaginal therapy in Poland and is mainly recommended for dyspareunia in menopausal women. The study related to prasterone therapy emphasizes its effectiveness and safety, making it advantageous to explore its beneficial impact. This paperwork aims to summarize the mechanism of action as well as the effects of both drugs and their beneficial action during vaginal treatment.
Collapse
Affiliation(s)
- Katarzyna Tomczyk
- Department of Maternal and Child Health, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznań, Poland
| | - Karolina Chmaj-Wierzchowska
- Department of Maternal and Child Health, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznań, Poland
| | - Katarzyna Wszołek
- Department of Maternal and Child Health, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznań, Poland
| | - Maciej Wilczak
- Department of Maternal and Child Health, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznań, Poland
| |
Collapse
|
37
|
Cocomazzi G, De Stefani S, Del Pup L, Palini S, Buccheri M, Primiterra M, Sciannamè N, Faioli R, Maglione A, Baldini GM, Baldini D, Pazienza V. The Impact of the Female Genital Microbiota on the Outcome of Assisted Reproduction Treatments. Microorganisms 2023; 11:1443. [PMID: 37374945 DOI: 10.3390/microorganisms11061443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The vaginal microbiota plays a critical role in the health of the female genital tract, and its composition contributes to gynecological disorders and infertility. Lactobacilli are the dominant species in the female genital tract: their production of lactic acid, hydrogen peroxide, and bacteriocins prevents the invasion and growth of pathogenic microorganisms. Several factors such as hormonal changes, age of reproduction, sexual practices, menstrual cycle, pregnancy, and antimicrobial drugs use can cause imbalance and dysbiosis of the vaginal microbiota. This review aims to highlight the impact of the vaginal microbiota in Assisted Reproductive Technology techniques (ART) and it examines the factors that influence the vaginal microbiota, the consequences of dysbiosis, and potential interventions to restore a healthy female genital tract.
Collapse
Affiliation(s)
- Giovanna Cocomazzi
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | | | - Lino Del Pup
- Gynecological Endocrinology and Fertility, University Sanitary Agency Friuli Central (ASUFC), Via Pozzuolo, 330, 33100 Udine, Italy
| | - Simone Palini
- Ospedale "Cervesi" di Cattolica-AUSL Romagna Via Ludwig Van Beethoven, 1, 47841 Cattolica, Italy
| | - Matteo Buccheri
- Instituto Bernabeu Via Castellana, 88, 30030 Martellago, Italy
| | | | - Natale Sciannamè
- Gynecology and Obstetrics, IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Raffaele Faioli
- Gynecology and Obstetrics, IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Annamaria Maglione
- Gynecology and Obstetrics, IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Giorgio Maria Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell'Arciprete, 76011 Bisceglie, Italy
| | - Domenico Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell'Arciprete, 76011 Bisceglie, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
38
|
Tuniyazi M, Zhang N. Possible Therapeutic Mechanisms and Future Perspectives of Vaginal Microbiota Transplantation. Microorganisms 2023; 11:1427. [PMID: 37374929 PMCID: PMC10305445 DOI: 10.3390/microorganisms11061427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Microbial communities inhabiting the human body play a crucial role in protecting the host against pathogens and inflammation. Disruptions to the microbial composition can lead to various health issues. Microbial transfer therapy (MTT) has emerged as a potential treatment option to address such issues. Fecal microbiota transplantation (FMT) is the most widely used form of MTT and has been successful in treating several diseases. Another form of MTT is vaginal microbiota transplantation (VMT), which involves transferring vaginal microbiota from a healthy female donor to a diseased patient's vaginal cavity with the goal of restoring normal vaginal microbial composition. However, VMT has not been extensively studied due to safety concerns and a lack of research. This paper explores the therapeutic mechanisms of VMT and discusses future perspectives. Further research is necessary to advance the clinical applications and techniques of VMT.
Collapse
Affiliation(s)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| |
Collapse
|
39
|
Gaziano R, Sabbatini S, Monari C. The Interplay between Candida albicans, Vaginal Mucosa, Host Immunity and Resident Microbiota in Health and Disease: An Overview and Future Perspectives. Microorganisms 2023; 11:1211. [PMID: 37317186 DOI: 10.3390/microorganisms11051211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Vulvovaginal candidiasis (VVC), which is primarily caused by Candida albicans, is an infection that affects up to 75% of all reproductive-age women worldwide. Recurrent VVC (RVVC) is defined as >3 episodes per year and affects nearly 8% of women globally. At mucosal sites of the vagina, a delicate and complex balance exists between Candida spp., host immunity and local microbial communities. In fact, both immune response and microbiota composition play a central role in counteracting overgrowth of the fungus and maintaining homeostasis in the host. If this balance is perturbed, the conditions may favor C. albicans overgrowth and the yeast-to-hyphal transition, predisposing the host to VVC. To date, the factors that affect the equilibrium between Candida spp. and the host and drive the transition from C. albicans commensalism to pathogenicity are not yet fully understood. Understanding the host- and fungus-related factors that drive VVC pathogenesis is of paramount importance for the development of adequate therapeutic interventions to combat this common genital infection. This review focuses on the latest advances in the pathogenic mechanisms implicated in the onset of VVC and also discusses novel potential strategies, with a special focus on the use of probiotics and vaginal microbiota transplantation in the treatment and/or prevention of recurrent VVC.
Collapse
Affiliation(s)
- Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
40
|
Han M, Wang N, Han W, Ban M, Sun T, Xu J. Vaginal and tumor microbiomes in gynecological cancer (Review). Oncol Lett 2023; 25:153. [PMID: 36936020 PMCID: PMC10018329 DOI: 10.3892/ol.2023.13739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Cervical, ovarian and endometrial cancer are the three most common types of gynecologic cancer. As a hub, the vagina connects the site of gynecological cancer with the external environment. Lactobacilli participate in the formation of a healthy vaginal microenvironment as the first line of defense against pathogen invasion; a dysbiotic vaginal microenvironment loses its original protective function and is associated with the onset, metastasis, poor efficacy and poor prognosis of gynecological cancer. The early diagnosis of cancer is the key to improve the survival time of patients with cancer. The screening of Porphyromonas, Sneathia and Atopobium vaginae, and other microbial markers, can assist the diagnosis of gynecological cancer, and screen out the high-risk population as early as possible. With the in-depth study of the microbes in tumor tissues, reasearchers have analyzed the immunological associations of microorganisms in tumor tissues. Due to the structural-functional interconnection between the organ of gynecological tumorigenesis and the vagina, the present study aims to review the relationship between vaginal and tumor microorganisms and gynecological cancer in terms of occurrence, screening, treatment and prognosis.
Collapse
Affiliation(s)
- Mengzhen Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Na Wang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Wenjie Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Meng Ban
- Liaoning Microhealth Biotechnology Co., Ltd., Shenyang, Liaoning 110000, P.R. China
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Junnan Xu
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
- Correspondence to: Professor Junnan Xu, Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110000, P.R. China, E-mail:
| |
Collapse
|
41
|
Alterations of Vaginal Microbiota and Chlamydia trachomatis as Crucial Co-Causative Factors in Cervical Cancer Genesis Procured by HPV. Microorganisms 2023; 11:microorganisms11030662. [PMID: 36985236 PMCID: PMC10053692 DOI: 10.3390/microorganisms11030662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Chlamydia trachomatis and human papillomavirus (HPV) are the most common pathogens found in sexually transmitted infections (STIs), and both are known to increase the risk of cervical cancer (CC) and infertility. HPV is extremely common worldwide, and scientists use it to distinguish between low-risk and high-risk genotypes. In addition, HPV transmission can occur via simple contact in the genital area. From 50 to 80% of sexually active individuals become infected with both C. trachomatis and HPV viruses during their lifetime, and up to 50% become infected with an HPV oncogenic genotype. The natural history of this coinfection is strongly conditioned by the balance between the host microbiome and immune condition and the infecting agent. Though the infection often regresses, it tends to persist throughout adult life asymptomatically and silently. The partnership between HPV and C. trachomatis is basically due to their similarities: common transmission routes, reciprocal advantages, and the same risk factors. C. trachomatis is a Gram-negative bacteria, similar to HPV, and an intracellular bacterium, which shows a unique biphasic development that helps the latter continue its steady progression into the host throughout the entire life. Indeed, depending on the individual’s immune condition, the C. trachomatis infection tends to migrate toward the upper genital tract and spread to the uterus, and the fallopian tubes open up a pathway to HPV invasion. In addition, most HPV and C. trachomatis infections related to the female genital tract are facilitated by the decay of the first line of defense in the vaginal environment, which is constituted by a healthy vaginal microbiome that is characterized by a net equilibrium of all its components. Thus, the aim of this paper was to highlight the complexity and fragility of the vaginal microenvironment and accentuate the fundamental role of all elements and systems involved, including the Lactobacillus strains (Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus crispatus) and the immune–endocrine system, in preserving it from oncogenic mutation. Therefore, age, diet, and genetic predisposition together with an unspecific, persistent low-grade inflammatory state were found to be implicated in a high frequency and severity grade of disease, potentially resulting in pre-cancerous and cancerous cervical lesions.
Collapse
|
42
|
Ge YM, Lu JC, Xu YH, Tang SS, Zhi SS, Liang YJ. Correlations of joint detection of 22 vaginal microbes with routine examination results of vaginal secretions and assisted reproductive outcomes. Diagn Microbiol Infect Dis 2023; 106:115940. [PMID: 37011545 DOI: 10.1016/j.diagmicrobio.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
The correlations of joint detection of 22 vaginal microbes with routine examination results of vaginal secretions and assisted reproductive outcomes were investigated. There were 37 samples with abnormal vaginal microecology in 107 vaginal secretion samples. The top 5 detection rates of microorganisms were Ureaplasma urealyticum (73.83%), Prevotella sp. (70.09%), Gardnerella vaginalis (53.27%), L. crispatus (52.34%) and L. inerts (51.40%). When the levels of Bacillus and hydrogen peroxide in vaginal secretions decreased or pH increased, the abnormal rates of vaginal microecology increased significantly (P < 0.01). The clinical pregnancy rate (53.66%, 22/41) in the women with normal vaginal microecology was higher than that (37.5%, 9/24) with abnormal vaginal microecology. In conclusions, the joint detection of 22 vaginal microbes can quickly and effectively determine whether the vaginal microecology is normal or not. The evaluation of vaginal microecology may be valuable in predicting the assisted reproductive outcomes of infertile women.
Collapse
|
43
|
Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Recent advances in understanding of multifaceted changes in the vaginal microenvironment: implications in vaginal health and therapeutics. Crit Rev Microbiol 2023; 49:256-282. [PMID: 35312419 DOI: 10.1080/1040841x.2022.2049696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The vagina endures multifaceted changes from neonatal to menopausal phases due to hormonal flux, metabolite deposition, and microbial colonization. These features have important implications in women's health. Several pre-factors show dynamic characteristics according to the phases that shift the vaginal microbiota from anaerobes to aerobes which is a hallmark of healthy vaginal environment. These factors include oestrogen levels, glycogen deposition, and vaginal microstructure. In the adult phase, Lactobacillus is highly dominant and regulates pH, adherence, aggregation, immune modulation, synthesis of bacteriocins, and biosurfactants (BSs) which are antagonistic to pathogens. Maternal factors are protective by favouring the colonization of lactobacilli in the vagina in the neonatal phase, which diminishes with age. The dominance of lactobacilli and dysbiosis in the adult phase depends on intrinsic and extrinsic factors in women, which vary between ethnicities. Recent developments in probiotics used against vaginal microbiome dysbiosis have shown great promise in restoring the normal microbiota including preventing the loss of beneficial bacteria. However, further in-depth studies are warranted to ensure long-term protection by probiotics. This review highlights various aspects of the vaginal microenvironment in different phases of growth and diverse ethnicities. Furthermore, it discusses future trends for formulating more effective population-specific probiotics and implications of paraprobiotics and postbiotics as effective therapeutics.
Collapse
Affiliation(s)
- Sushmita Das
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| | | | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
44
|
Anglenius H, Mäkivuokko H, Ahonen I, Forssten SD, Wacklin P, Mättö J, Lahtinen S, Lehtoranta L, Ouwehand AC. In Vitro Screen of Lactobacilli Strains for Gastrointestinal and Vaginal Benefits. Microorganisms 2023; 11:microorganisms11020329. [PMID: 36838294 PMCID: PMC9967617 DOI: 10.3390/microorganisms11020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Traditional probiotics comprise mainly lactic acid bacteria that are safe for human use, tolerate acid and bile, and adhere to the epithelial lining and mucosal surfaces. In this study, one hundred commercial and non-commercial strains that were isolated from human feces or vaginal samples were tested with regards to overall growth in culture media, tolerance to acid and bile, hydrogen peroxide (H2O2) production, and adhesion to vaginal epithelial cells (VECs) and to blood group antigens. As a result, various of the tested lactobacilli strains were determined to be suitable for gastrointestinal or vaginal applications. Commercial strains grew better than the newly isolated strains, but tolerance to acid was a common property among all tested strains. Tolerance to bile varied considerably between the strains. Resistance to bile and acid correlated well, as did VEC adhesion and H2O2 production, but H2O2 production was not associated with resistance to bile or acid. Except for L. iners strains, vaginal isolates had better overall VEC adhesion and higher H2O2 production. Species- and strain-specific differences were evident for all parameters. Rank-ordered clustering with nine clusters was used to identify strains that were suitable for gastrointestinal or vaginal health, demonstrating that the categorization of strains for targeted health indications is possible based on the parameters that were measured in this study.
Collapse
Affiliation(s)
- Heli Anglenius
- IFF Health and Biosciences, 02460 Kantvik, Finland
- Correspondence:
| | | | | | | | | | - Jaana Mättö
- Finnish Red Cross Blood Service, 00310 Helsinki, Finland
| | | | | | | |
Collapse
|
45
|
The Vaginal Microbiome in Health and Disease-What Role Do Common Intimate Hygiene Practices Play? Microorganisms 2023; 11:microorganisms11020298. [PMID: 36838262 PMCID: PMC9959050 DOI: 10.3390/microorganisms11020298] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
The vaginal microbiome is a dynamic, sensitive microenvironment. The hallmark of a 'healthy' vaginal microbiome is currently believed to be one dominated by Lactobacillus spp., which acidifies the vaginal environment and help to protect against invading pathogens. However, a 'normal' microbiome is often difficult, if not impossible, to characterise given that it varies in response to numerous variables, including pregnancy, the menstrual cycle, contraceptive use, diet, ethnicity, and stress. A Lactobacillus-depleted microbiome has been linked to a variety of adverse vaginal health outcomes, including preterm birth (PTB), bacterial vaginosis (BV), and increased risk of sexually transmitted infections. The latter two of these have also been associated with feminine intimate hygiene practices, many of which are practised without any evidence of health benefits. The most extensively studied practice is vaginal douching, which is known to cause vaginal dysbiosis, predisposing women to BV, pelvic inflammatory disease, and PTB. However, little is known of the impact that intimate hygiene practices and associated products have on the vaginal microbiome. This review aims to outline the major factors influencing the vaginal microbiome and common vaginal infections, as well as to summarise current research surrounding the impact of hygiene products and practices on the vaginal microbiome.
Collapse
|
46
|
Evaluation of Antimicrobial, Antiadhesive and Co-Aggregation Activity of a Multi-Strain Probiotic Composition against Different Urogenital Pathogens. Int J Mol Sci 2023; 24:ijms24021323. [PMID: 36674840 PMCID: PMC9867133 DOI: 10.3390/ijms24021323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The urogenital microbiota is dominated by Lactobacillus that, together with Bifidobacterium, creates a physiological barrier counteracting pathogen infections. The aim of this study was to evaluate the efficacy of a multi-strain probiotic formulation (Lactiplantibacillus plantarum PBS067, Lacticaseibacillus rhamnosus LRH020, and Bifidobacterium animalis subsp. lactis BL050) to inhibit adhesion and growth of urogenital pathogens. The antimicrobial and antiadhesive properties of the probiotic strains and their mixture were evaluated on human vaginal epithelium infected with Candida glabrata, Neisseria gonorrheae, Trichomonas vaginalis, and Escherichia coli-infected human bladder epithelium. The epithelial tissue permeability and integrity were assessed by transepithelial/transendothelial electrical resistance (TEER). Co-aggregation between probiotics and vaginal pathogens was also investigated to elucidate a possible mechanism of action. The multi-strain formulation showed a full inhibition of T. vaginalis, and a reduction in C. glabrata and N. gonorrheae growth. A relevant antimicrobial activity was observed for each single strain against E. coli. TEER results demonstrated that none of the strains have negatively impaired the integrity of the 3D tissues. All the probiotics and their mixture were able to form aggregates with the tested pathogens. The study demonstrated that the three strains and their mixture are effective to prevent urogenital infections.
Collapse
|
47
|
Liang X, Wang R, Luo H, Liao Y, Chen X, Xiao X, Li L. The interplay between the gut microbiota and metabolism during the third trimester of pregnancy. Front Microbiol 2022; 13:1059227. [PMID: 36569048 PMCID: PMC9768424 DOI: 10.3389/fmicb.2022.1059227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota undergoes dynamic changes during pregnancy. The gut microbial and metabolic networks observed in pregnant women have not been systematically analyzed. The primary purpose of this study was to explore the alterations in the gut microbiota and metabolism during late pregnancy and investigate the associations between the gut microbiota and metabolism. A total of thirty healthy pregnant women were followed from 30 to 32 weeks of gestation to full term. Fecal samples were collected for microbiome analysis and untargeted metabolomic analysis. The characteristics of the gut microbiota were evaluated by 16S ribosomal RNA gene sequencing of the V3-V4 regions. The plasma samples were used for untargeted metabolomic analysis with liquid chromatography-tandem mass spectrometry. The interplay between the gut microbiota and metabolism was analyzed further by bioinformatics approaches. We found that the relative abundances of Sellimonas and Megamonas were higher at full term, whereas that of Proteobacteria was lower. The correlation network of the gut microbiota tended to exhibit weaker connections from 32 weeks of gestation to the antepartum timepoint. Changes in the gut microbiota during late pregnancy were correlated with the absorbance and metabolism of microbiota-associated metabolites, such as fatty acids and free amino acids, thereby generating a unique metabolic system for the growth of the fetus. Decreasing the concentration of specific metabolites in plasma and increasing the levels of palmitic acid and 20-hydroxyarachidonic acid may enhance the transformation of a proinflammatory immune state as pregnancy progresses.
Collapse
Affiliation(s)
- Xinyuan Liang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Rongning Wang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yihong Liao
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaowen Chen
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China,*Correspondence: Xiaomin Xiao,
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,Liping Li,
| |
Collapse
|
48
|
Greenwood EC, Torok VA, van Wettere WHEJ. Characterizing the vaginal microbiota of high and low producing Poll Merino and White Suffolk ewes. Transl Anim Sci 2022; 6:txac133. [PMID: 36324437 PMCID: PMC9616124 DOI: 10.1093/tas/txac133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2023] Open
Abstract
There is a substantial, and growing, body of research focused on manipulating gastrointestinal microbes to affect health and production. However, the maternal vaginal microbiota and its effects on neonatal inoculation and lifetime production have received little attention. We aimed to characterize the vaginal microbes of domesticated sheep to determine whether they differ across sheep breeds with differing meat and wool growth potentials and to determine a link between vaginal microbes and high and low producing animals. A flock of White Suffolk (n = 136) and Poll Merino (n = 210) ewes were sorted by the Australian Sheep Breeding Values (ASBV), for yearling fleece weight in the Merino and by post-weaning weight in the Suffolk ewes. The top and bottom ASBV sheep were selected for sampling and the resulting treatment groups were; High Suffolk (n = 12), Low Suffolk (n = 12), High Merino (n = 12), and Low Merino (n = 12) ewes. A double guarded culture swab was used to sample from the surface of the vaginal epithelium. Diversity profiling analysis of vaginal bacterial communities was conducted using 16S rRNA amplicon sequencing. Breed and ASBV group differences in bacterial communities were tested. Within breed, there were no significant differences in ewe vaginal bacterial communities associated with ewe production parameters; however, there was a significant difference in ewe vaginal bacterial communities between breeds. We have been able to characterize the normal vaginal microbiota of nonpregnant ewes and demonstrate a rich microbial community.
Collapse
Affiliation(s)
- Emma C Greenwood
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Valeria A Torok
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
- South Australian Research and Development Institute (SARDI), Food Sciences, Urrbrae, South Australia 5064, Australia
| | - William H E J van Wettere
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| |
Collapse
|
49
|
Garcia-Segura S, del Rey J, Closa L, Garcia-Martínez I, Hobeich C, Castel AB, Vidal F, Benet J, Ribas-Maynou J, Oliver-Bonet M. Seminal Microbiota of Idiopathic Infertile Patients and Its Relationship With Sperm DNA Integrity. Front Cell Dev Biol 2022; 10:937157. [PMID: 35837328 PMCID: PMC9275566 DOI: 10.3389/fcell.2022.937157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new biomarkers for human male infertility is crucial to improve the diagnosis and the prognosis of this disease. Recently, seminal microbiota was shown to be related to sperm quality parameters, suggesting an effect in human fertility and postulating it as a biomarker candidate. However, its relationship to sperm DNA integrity has not been studied yet. The aim of the present study is to characterize the seminal microbiota of a western Mediterranean population and to evaluate its relationship to sperm chromatin integrity parameters, and oxidative stress. For that purpose, 14 samples from sperm donors and 42 samples from infertile idiopathic patients were obtained and were analyzed to assess the composition of the microbiota through full-length 16S rRNA gene sequencing (Illumina MiSeq platform). Microbial diversity and relative abundances were compared to classic sperm quality parameters (macroscopic semen parameters, motility, morphology and concentration), chromatin integrity (global DNA damage, double-stranded DNA breaks and DNA protamination status) and oxidative stress levels (oxidation-reduction potential). The seminal microbiota observed of these samples belonged to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. The most abundant genera were Finegoldia, Peptoniphilus, Anaerococcus, Campylobacter, Streptococcus, Staphylococcus, Moraxella, Prevotella, Ezakiella, Corynebacterium and Lactobacillus. To our knowledge, this is the first detection of Ezakiella genus in seminal samples. Two clusters of microbial profiles were built based on a clustering analysis, and specific genera were found with different frequencies in relation to seminal quality defects. The abundances of several bacteria negatively correlate with the sperm global DNA fragmentation, most notably Moraxella, Brevundimonas and Flavobacterium. The latter two were also associated with higher sperm motility and Brevundimonas additionally with lower oxidative-reduction potential. Actinomycetaceae, Ralstonia and Paenibacillus correlated with reduced chromatin protamination status and increased double-stranded DNA fragmentation. These effects on DNA integrity coincide in many cases with the metabolism or enzymatic activities of these genera. Significant differences between fertile and infertile men were found in the relative presence of the Propionibacteriaceae family and the Cutibacterium, Rhodopseudomonas and Oligotropha genera, which supports its possible involvement in male fertility. Our findings sustain the hypothesis that the seminal microbiome has an effect on male fertility.
Collapse
Affiliation(s)
- Sergio Garcia-Segura
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Javier del Rey
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Laia Closa
- Histocompatibility and Immunogenetics Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iris Garcia-Martínez
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Carlos Hobeich
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
| | | | - Francisco Vidal
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
| | - Jordi Benet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, University of Girona, Girona, Spain
| | - Maria Oliver-Bonet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
50
|
Kwon MS, Lee HK. Host and Microbiome Interplay Shapes the Vaginal Microenvironment. Front Immunol 2022; 13:919728. [PMID: 35837395 PMCID: PMC9273862 DOI: 10.3389/fimmu.2022.919728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
The female reproductive tract harbors a unique microbiome, especially the vagina. The human vaginal microbiome exhibits a low diversity and is dominated by Lactobacillus species, compared to the microbiome of other organs. The host and vaginal microbiome mutually coexist in the vaginal microenvironment. Host cells provide Lactobacillus glycogen as an energy source, and Lactobacillus produce lactic acid, which lowers vaginal pH thereby preventing growth of other bacteria. Bacterial vaginosis can modulate host immune systems, and is frequently associated with various aspects of disease, including sexually transmitted infection, gynecologic cancer, and poor pregnancy outcomes. Because of this, numerous studies focused on the impact of the vaginal microbiome on women`s health and disease. Furthermore, numerous epidemiologic studies also have demonstrated various host factors regulate the vaginal microbiome. The female reproductive tract undergoes constant fluctuations due to hormonal cycle, pregnancy, and other extrinsic factors. Depending on these fluctuations, the vaginal microbiome composition can shift temporally and dynamically. In this review, we highlight the current knowledge of how host factors modulate vaginal microbiome composition and how the vaginal microbiome contributes to maintaining homeostasis or inducing pathogenesis. A better understanding of relationship between host and vaginal microbiome could identify novel targets for diagnosis, prognosis, or treatment of microbiome-related diseases.
Collapse
|