1
|
Jin A, Wang Y, Tong L, Liu G, Feng J, Li Y, Shen C, Wu W. Coumarins and flavones from Ficus erecta and their anti-inflammatory activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118472. [PMID: 38901681 DOI: 10.1016/j.jep.2024.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus erecta, a traditional Chinese She Ethnomedicine, has been historically utilized to treat various inflammatory conditions such as arthritis, nephritis, and osteoporosis. However, the underlying mechanisms accounting for its anti-inflammatory activity, as well as its active components, largely remain elusive. AIM OF THE STUDY The purpose of this research was to investigate the chemical constituents of F. erecta that contribute to its anti-inflammatory effects. MATERIALS AND METHODS Coumarins and flavones were obtained from the 95% EtOH extract of F. erecta using virous column chromatography and reversed-phase semipreparative HPLC. The structures of the new compounds were elucidated by extensive analysis of spectroscopic methods, including HRESIMS, 1D and 2D NMR spectra, and CD experiments. Cultured macrophage RAW264.7 cells were utilized for the anti-inflammatory experiments. MTT cell viability assay, Griess reagent method, ELISA, and Western blot experiments were employed to evaluate the anti-inflammatory activity and investigate the related mechanism. RESULTS Four new (1-4) and eleven previously identified (5-16) coumarins, together with one new (17) and six known flavones (18-23) were isolated from the whole plant of F. erecta. Compounds 7 and 17 significantly reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production without cytotoxic effects. Furthermore, compounds 7 and 17 reduced the production of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in a concentration-dependent manner. Western blot analysis indicated that compounds 7 and 17 suppressed the expression of iNOS, COX-2, and p-IκBα in LPS-stimulated RAW264.7 macrophage cells. CONCLUSION The current phytochemical investigations revealed that coumarins and flavones represent the primary chemical constituents of F. erecta. Compounds 7 and 17 exhibit potent anti-inflammatory properties, linked with the inhibition of NF-κB activation by preventing the degradation of IκBα phosphorylation. These compounds may serve as promising candidates for treating or preventing certain inflammatory diseases.
Collapse
Affiliation(s)
- An Jin
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Yuyan Wang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Lingfei Tong
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Guifeng Liu
- Jiangxi Institute for Drug Control, Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, Nanchang, 330029, China
| | - Jinglin Feng
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Ying Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Chengying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Wenming Wu
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| |
Collapse
|
2
|
Siddiquee NH, Talukder MEK, Ahmed E, Zeba LT, Aivy FS, Rahman MH, Barua D, Rumman R, Hossain MI, Shimul MEK, Rama AR, Chowdhury S, Hossain I. Cheminformatics-based analysis identified (Z)-2-(2,5-dimethoxy benzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one as an inhibitor of Marburg replication by interacting with NP. Microb Pathog 2024; 195:106892. [PMID: 39216611 DOI: 10.1016/j.micpath.2024.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family, a non-segmented negative-strand RNA virus. This article represents the computer-aided drug design (CADD) approach for identifying drug-like compounds that prevent the MARV virus disease by inhibiting nucleoprotein, which is responsible for their replication. This study used a wide range of in silico drug design techniques to identify potential drugs. Out of 368 natural compounds, 202 compounds passed ADMET, and molecular docking identified the top two molecules (CID: 1804018 and 5280520) with a high binding affinity of -6.77 and -6.672 kcal/mol, respectively. Both compounds showed interactions with the common amino acid residues SER_216, ARG_215, TYR_135, CYS_195, and ILE_108, which indicates that lead compounds and control ligands interact in the common active site/catalytic site of the protein. The negative binding free energies of CID: 1804018 and 5280520 were -66.01 and -31.29 kcal/mol, respectively. Two lead compounds were re-evaluated using MD modeling techniques, which confirmed CID: 1804018 as the most stable when complexed with the target protein. PC3 of the (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) was 8.74 %, whereas PC3 of the 2'-Hydroxydaidzein (CID: 5280520) was 11.25 %. In this study, (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) unveiled the significant stability of the proteins' binding site in ADMET, Molecular docking, MM-GBSA and MD simulation analysis studies, which also showed a high negative binding free energy value, confirming as the best drug candidate which is found in Angelica archangelica which may potentially inhibit the replication of MARV nucleoprotein.
Collapse
Affiliation(s)
- Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Bangladesh
| | - Ezaz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Labiba Tasnim Zeba
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Mathematics & Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Farjana Sultana Aivy
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Hasibur Rahman
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Durjoy Barua
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Pharmacy, BGC Trust University, Bangladesh
| | - Rahnumazzaman Rumman
- Bioinformatics Laboratory (BioLab), Bangladesh; Department Of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Ifteker Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Bangladesh
| | - Anika Rahman Rama
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Genetic Engineering and Biotechnology, East West University, Dhaka, Bangladesh
| | - Sristi Chowdhury
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Imam Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh.
| |
Collapse
|
3
|
Kowalczyk T, Muskała M, Merecz-Sadowska A, Sikora J, Picot L, Sitarek P. Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies. Antioxidants (Basel) 2024; 13:1143. [PMID: 39334802 PMCID: PMC11428540 DOI: 10.3390/antiox13091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, a class of flavonoid compounds responsible for the vibrant colors of many fruits and vegetables, have received considerable attention in recent years due to their potential health benefits. This review, focusing on evidence from both in vitro and in vivo studies, provides a comprehensive overview of the current state of knowledge regarding the health-promoting properties of anthocyanins. The chemical structure and diversity of anthocyanins, their bioavailability, and their mechanisms of action at the cellular and molecular level are examined. Research on the antioxidant, anti-inflammatory, anticancer, and neuroprotective effects of anthocyanins is critically reviewed. Special emphasis is placed on the role of anthocyanins in the prevention and treatment of chronic diseases such as cardiovascular diseases, diabetes, and neurodegenerative diseases. This review also discusses the challenges of translating in vitro findings to in vivo and highlights the importance of considering dose, bioavailability, and metabolism when assessing the therapeutic potential of anthocyanins. This review concludes with the identification of gaps in current research and suggestions for future directions for anthocyanin studies, including the need for more long-term clinical trials and investigations into potential synergistic effects with other phytochemicals. This comprehensive analysis highlights the promising role of anthocyanins in promoting human health and provides valuable insights for researchers, health professionals, and the nutraceutical industry. This study provides new insights, as it comprehensively investigates the dual anti-inflammatory and anticancer effects of anthocyanins in both in vitro and in vivo models. By uncovering the biological properties of anthocyanins from a variety of natural sources, this research not only expands our knowledge of the action of these compounds at the cellular level, but also enhances their clinical relevance through in vivo validation. Furthermore, the innovative use of anthocyanins may lead to important advances in their therapeutic application in the future.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Martyna Muskała
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France;
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Bajpai D, Rajasekar A. Preparation and Evaluation of the Biological Properties of Ethanolic Extract of Red Clover: An In Vitro Study. Cureus 2024; 16:e59762. [PMID: 38854355 PMCID: PMC11157159 DOI: 10.7759/cureus.59762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Red clover, a perennial herbaceous plant, has been demonstrated to possess blood-purifying, expectorant, and calming properties. This research endeavors to create and evaluate the antimicrobial, antioxidant characteristics, and cytotoxic effects of the ethanolic extract derived from red clover. METHODS A water-based solution of red clover was formulated and subjected to centrifugation. Various concentrations of the extract were applied to the wells of agar plates inoculated with E. coli, Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, and Candida albicans and then left to incubate. The inhibition zones for each concentration were subsequently measured. The antioxidant properties were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, while the cytotoxicity of the extract was assessed through the brine shrimp lethality assay. RESULTS Initially, the extract was tested with a volume of 10 μL, which was subsequently incremented to 20 μL, 30 μL, 40 μL, and 50 μL. According to the DPPH assay, as the concentration of the extract solution increased incrementally by 10 μL, its antioxidant activity also exhibited a corresponding rise. The cytotoxicity assay indicated that the mouthwash formulated with red clover had minimal cytotoxic effects within the range of 5-20 µL. Antibacterial analysis revealed a similar zone of inhibition between the test and control groups. CONCLUSION The ethanolic extract obtained from red clover was identified as a powerful antioxidant, antibacterial, and biocompatible substance. Hence, it can be a potential candidate for application as a mouthwash.
Collapse
Affiliation(s)
- Devika Bajpai
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvina Rajasekar
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Tzanova MT, Yaneva Z, Ivanova D, Toneva M, Grozeva N, Memdueva N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024; 13:605. [PMID: 38397582 PMCID: PMC10887973 DOI: 10.3390/foods13040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers associate the color of food with its freshness and quality. More and more attention is being paid to natural colorants that bring additional health benefits to humans. Such natural substances are the carotenoids (yellow to orange), the anthocyanins (red to blue), and the betalains (red and yellow), which are very sensitive to exposure to light, air, high temperatures, and chemicals. Stability and diversity in terms of color can be optimized by using environmentally friendly and selective extraction processes that provide a balance between efficacy, safety, and stability of the resulting extracts. Green solvents like water, supercritical fluids, natural deep eutectic solvents, and ionic liquids are the most proper green solvents when combined with different extraction techniques like maceration, supercritical extraction, and ultrasound-assisted or microwave-assisted extraction. The choice of the right extracting agent is crucial for the selectivity of the extraction method and the stability of the prepared colorant. The present work reviews the green solvents used for the extraction of natural food colorants from plants and focuses on the issues related to the selectivity and stability of the products extracted.
Collapse
Affiliation(s)
- Milena Tankova Tzanova
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
- Medical Faculty, Department of Medicinal Chemistry and Biochemistry, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Monika Toneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Neli Grozeva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Neli Memdueva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| |
Collapse
|
6
|
Do VG, Lee Y, Kim JH, Kwon YS, Park JT, Yang S, Park J, Win NM, Kim S. The Synergistic Effects of Environmental and Genetic Factors on the Regulation of Anthocyanin Accumulation in Plant Tissues. Int J Mol Sci 2023; 24:12946. [PMID: 37629128 PMCID: PMC10454628 DOI: 10.3390/ijms241612946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Anthocyanin accumulation is responsible for the coloration of apple fruit, and their accumulation depends on the expression of anthocyanin biosynthesis-related genes. Light is an environmental stimulus that induces fruit color by regulating genes involved in the anthocyanin biosynthesis pathway. In this study, the roles of light and genetic factors on fruit coloration and anthocyanin accumulation in apple fruit were investigated. Three genes in the anthocyanin biosynthesis pathway, MdCHS, MdANS, and MdUFGT1, were synthesized and cloned into a viral-based expression vector system for transient expression in 'Ruby S' apple fruits. Apple fruits were agroinfiltrated with expression vectors harboring MdCHS, MdANS, and MdUFGT1. Agroinfiltrated apple fruits were then either kept in the dark (bagged fruits) or exposed to light (exposed fruits). The agroinfiltrated fruits showed significantly different coloration patterns, transcript expression levels, and anthocyanin accumulation compared to the control fruits. Moreover, these parameters were higher in exposed fruits than in bagged fruits. For stable expression, MdCHS was introduced into a binary vector under the control of the rice α-amylase 3D (RAmy3D) promoter. The ectopic overexpression of MdCHS in transgenic rice calli showed a high accumulation of anthocyanin content. Taken together, our findings suggest that light, together with the overexpression of anthocyanin biosynthesis genes, induced the coloration and accumulation of anthocyanin content in apple fruits by upregulating the expression of the genes involved in the anthocyanin biosynthesis pathway.
Collapse
Affiliation(s)
- Van Giap Do
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea; (Y.L.); (J.-H.K.); (Y.-S.K.); (J.-T.P.); (S.Y.); (J.P.); (N.M.W.)
| | | | | | | | | | | | | | | | - Seonae Kim
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea; (Y.L.); (J.-H.K.); (Y.-S.K.); (J.-T.P.); (S.Y.); (J.P.); (N.M.W.)
| |
Collapse
|
7
|
Gościniak A, Szulc P, Zielewicz W, Walkowiak J, Cielecka-Piontek J. Multidirectional Effects of Red Clover ( Trifolium pratense L.) in Support of Menopause Therapy. Molecules 2023; 28:5178. [PMID: 37446841 DOI: 10.3390/molecules28135178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Red clover is a raw material of interest primarily due to its isoflavone content. However, other groups of compounds may affect the pleiotropic biological effects of this raw material. It is used to alleviate menopausal symptoms, but the fact that there are many varieties of this plant that can be grown makes it necessary to compare the biological activity and phytochemical composition of this plant. Also of interest are the differences between the leaves and flowers of the plant. The aim of this study was to evaluate the properties of the leaves and flowers of six clover varieties-'Tenia', 'Atlantis', 'Milena', 'Magellan', 'Lemmon' and 'Lucrum'-with respect to their ability to inhibit α-glucosidase, lipase, collagenase and antioxidant activity. Therefore, the contents of polyphenols and the four main isoflavones-genistein, daidzein, biochanin and formononetin-were assessed. The study was complemented by testing for permeability through a model membrane system (PAMPA). Principal component analysis (PCA) identified a relationship between activity and the content of active compounds. It was concluded that antioxidant activity, inhibition of glucosidase, collagenase and lipase are not correlated with isoflavone content. A higher content of total polyphenols (TPC) was determined in the flowers of red clover while a higher content of isoflavones was determined in the leaves of almost every variety. The exception is the 'Lemmon' variety, characterized by high isoflavone content and high activity in the tests conducted.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Waldemar Zielewicz
- Department of Grassland and Natural Landscape Sciences, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
8
|
Won JP, Kim E, Hur J, Lee HG, Lee WJ, Seo HG. Red clover (Trifolium pratense L.) extract inhibits ferroptotic cell death by modulating cellular iron homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116267. [PMID: 36796742 DOI: 10.1016/j.jep.2023.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Red clover (Trifolium pratense L.) is a traditional Chinese medicine and use as herbal medicine which has the effects of regulating menopausal symptoms, heart problem, inflammatory disease, psoriasis and cognitive deficits. In previous reported, the studies of red clover were mainly focused on clinical practice. the pharmacological functions of red clover not fully elucidated. AIM OF THE STUDY To identify the molecules that regulate ferroptosis, we examined whether red clover (Trifolium pratense L.) extracts (RCE) affected ferroptosis induced by chemical treatment or cystine/glutamate antiporter (xCT) deficiency. MATERIALS AND METHODS Cellular models for ferroptosis were induced by erastin/Ras-selectiv lethal 3 (RSL3) treatment or xCT deficiency in mouse embryonic fibroblasts (MEFs). Intracellular iron and peroxidized lipid levels were determined using Calcein-AM and BODIPY-C11 fluorescence dyes, respectively. Protein and mRNA were quantified by Western blot and real-time polymerase chain reaction, respectively. RNA sequencing analysis was performed on xCT-/- MEFs. RESULTS RCE significantly suppressed ferroptosis induced by both erastin/RSL3 treatment and xCT deficiency. The anti-ferroptotic effects of RCE correlated to ferroptotic phenotypic changes such as cellular iron accumulation and lipid peroxidation in cellular ferroptosis models. Importantly, RCE affected levels of iron metabolism-related proteins including iron regulatory protein 1, ferroportin 1 (FPN1), divalent metal transporter 1, and transferrin receptor. RNA sequencing analysis of xCT-/- MEFs identified that expression of cellular defense genes was upregulated, while expression of cell death-related genes was downregulated, by RCE. CONCLUSION RCE potently suppressed ferroptosis triggered both by erastin/RSL3 treatment and xCT deficiency by modulating cellular iron homeostasis. This is the first report that RCE has therapeutic potential in diseases associated with ferroptotic cell death, particularly ferroptosis induced by dysregulation of cellular iron metabolism.
Collapse
Affiliation(s)
- Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Gligor O, Clichici S, Moldovan R, Decea N, Vlase AM, Fizeșan I, Pop A, Virag P, Filip GA, Vlase L, Crișan G. An In Vitro and In Vivo Assessment of Antitumor Activity of Extracts Derived from Three Well-Known Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091840. [PMID: 37176897 PMCID: PMC10180766 DOI: 10.3390/plants12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with the aim of establishing a superior herbal extract for antitumor benefits. The phytochemical profile of the extracts was established by HPLC-MS analysis. Further, the selected extracts were screened in vitro for their antitumor activity and antioxidant potential on two cancer cell lines: A549-human lung adenocarcinoma and T47D-KBluc-human breast carcinoma and on normal cells. One extract per plant was selected for in vivo assessment of antitumor activity in an Ehrlich ascites mouse model. The extracts presented high content of antitumor compounds such as caffeoylquinic acids in the case of X. spinosum L. (7.22 µg/mL-xanthatin, 4.611 µg/mL-4-O-caffeoylquinic acid) and green coffee beans (10.008 µg/mL-cafestol, 265.507 µg/mL-4-O-caffeoylquinic acid), as well as isoflavones in the case of T. pratense L. (6806.60 ng/mL-ononin, 102.78 µg/mL-biochanin A). Concerning the in vitro results, the X. spinosum L. extracts presented the strongest anticancerous and antioxidant effects. In vivo, ascites cell viability decreased after T. pratense L. and green coffee bean extracts administration, whereas the oxidative stress reduction potential was important in tumor samples after T. pratense L. Cell viability was also decreased after administration of cyclophosphamide associated with X. spinosum L. and T. pratense L. extracts, respectively. These results suggested that T. pratense L. or X. spinosum L. extracts in combination with chemotherapy can induce lipid peroxidation in tumor cells and decrease the tumor viability especially, T. pratense L. extract.
Collapse
Affiliation(s)
- Octavia Gligor
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Piroska Virag
- Department of Radiobiology and Tumor Biology, Oncology Institute "Prof. Dr. Ion Chiricuță", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Salam SGA, Rashed MM, Ibrahim NA, Rahim EAA, Aly TAA, Al-Farga A. Phytochemical screening and in-vitro biological properties of unprocessed and household processed fenugreek (Trigonella foenum-graecum Linn.) seeds and leaves. Sci Rep 2023; 13:7032. [PMID: 37120447 PMCID: PMC10148852 DOI: 10.1038/s41598-023-31888-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/20/2023] [Indexed: 05/01/2023] Open
Abstract
The impact of household processes on fenugreek leaves and seeds has been analyzed for total phenolic (TP) and total flavonoid content (TF), and in-vitro biological activities such as antioxidant, antimicrobial, and anti-inflammatory properties. Processes included air-drying for leaves and germinating, soaking, and boiling for seeds. Air-dried fenugreek leaves (ADFL) had high TP (15.27 mg GAE g-1 D.W.) and TF (7.71 mg QE g-1 D.W.) (milligram quercetin equivalents per gram dry weight). The TP contents of unprocessed, germinated, soaked, and boiled seeds were 6.54, 5.60, 4.59, and 3.84 mg gallic acid equivalents per gram of dry weight (mg GAE g-1 D.W.), respectively. The TF contents in unprocessed fenugreek seeds, germinated fenugreek seeds, soaked fenugreek seeds, and boiled fenugreek seeds (BFS) were 4.23, 2.11, 2.10, and 2.33 mg QE g-1 D.W., respectively. Sixteen phenolic and nineteen flavonoid compounds has been identified using high-performance liquid chromatography. Antioxidant activity using 2,2-diphenyl-1-picrylhydrazil (DPPH·), 2,2-azinobis (3-ethylbenothiazoline-6-sulfonic acid (ABTS+·), and ferric reducing antioxidant power (FRAP·) assays indicated that ADFL had the highest activity. Antimicrobial activity has been evaluated against each of the eight pathogenic bacterial and fungal strains. ADFL showed the strongest activity with minimum inhibitory concentrations values ranging from 0.03 to 1.06 and 0.04 to 1.18 mg ml·1 against bacterial and fungal strains, respectively. Anti-inflammatory activity was evaluated in-vitro against RAW 264.7 macrophage cells using the nitric oxide (NO) assay. Results revealed that ADFL had the highest cytotoxicity and anti-inflammatory activity according to the NO assay. Household processes significantly reduced the in-vitro biological properties of processed seeds.
Collapse
Affiliation(s)
- Shaimaa G Abdel Salam
- Food Technology Research Institute, Agricultural Research Center, Giza, 12613, Egypt.
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Mohamed M Rashed
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nabih A Ibrahim
- Food Technology Research Institute, Agricultural Research Center, Giza, 12613, Egypt
| | - Emam A Abdel Rahim
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Tahany A A Aly
- Regional Centre for Food and Feed, Agriculture Research Center, Ministry of Agriculture, Giza, Egypt
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, P.O. Box 34, Jeddah, 21959, Saudi Arabia
| |
Collapse
|
11
|
Anti-Neuroinflammatory Potential of Natural Products in the Treatment of Alzheimer's Disease. Molecules 2023; 28:molecules28031486. [PMID: 36771152 PMCID: PMC9920976 DOI: 10.3390/molecules28031486] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related chronic progressive neurodegenerative disease, which is the main cause of dementia in the elderly. Much evidence shows that the onset and late symptoms of AD are caused by multiple factors. Among them, aging is the main factor in the pathogenesis of AD, and the most important risk factor for AD is neuroinflammation. So far, there is no cure for AD, but the relationship between neuroinflammation and AD may provide a new strategy for the treatment of AD. We herein discussed the main etiology hypothesis of AD and the role of neuroinflammation in AD, as well as anti-inflammatory natural products with the potential to prevent and alleviate AD symptoms, including alkaloids, steroids, terpenoids, flavonoids and polyphenols, which are available with great potential for the development of anti-AD drugs.
Collapse
|
12
|
Zhang S, Wang Y, Ye J, Fan Q, Lin X, Gou Z, Jiang S. Dietary supplementation of bilberry anthocyanin on growth performance, intestinal mucosal barrier and cecal microbes of chickens challenged with Salmonella Typhimurium. J Anim Sci Biotechnol 2023; 14:15. [PMID: 36670458 PMCID: PMC9854028 DOI: 10.1186/s40104-022-00799-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/20/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Anthocyanins (AC) showed positive effects on improving the intestinal health and alleviating intestinal pathogen infections, therefore, an experiment was conducted to explore the protective effects of supplemented AC on Salmonella-infected chickens. METHODS A total of 240 hatchling chickens were randomly allocated to 4 treatments, each with 6 replicates. Birds were fed a basal diet supplemented with 0 (CON, and ST), 100 (ACL) and 400 (ACH) mg/kg of AC for d 60, and orally challenged with PBS (CON) or 109 CFU/bird (ST, ACL, ACH) Salmonella Typhimurium at d 14 and 16. RESULTS (1) Compared with birds in ST, AC supplementation increased the body weight (BW) at d 18 and the average daily gain (ADG) from d 1 to 18 of the Salmonella-infected chickens (P < 0.05); (2) AC decreased the number of Salmonella cells in the liver and spleen, the contents of NO in plasma and inflammatory cytokines in ileal mucosa of Salmonella-infected chickens (P < 0.05); (3) Salmonella infection decreased the ileal villi height, villi height to crypt depth (V/C), and the expression of zonulaoccludins-1 (ZO-1), claudin-1, occludin, and mucin 2 (MUC2) in ileal mucosa. AC supplementation relieved these adverse effects, and decreased ileal crypt depth (P < 0.05); (4) In cecal microbiota of Salmonella-infected chickens, AC increased (P < 0.05) the alpha-diversity (Chao1, Pd, Shannon and Sobs indexes) and the relative abundance of Firmicutes, and decreased (P < 0.05) the relative abundance of Proteobacteria and Bacteroidota and the enrichment of drug antimicrobial resistance, infectious bacterial disease, and immune disease pathways. CONCLUSIONS Dietary AC protected chicken against Salmonella infection via inhibiting the Salmonella colonization in liver and spleen, suppressing secretion of inflammatory cytokines, up-regulating the expression of ileal barrier-related genes, and ameliorating the composition and function of cecal microbes. Under conditions here used, 100 mg/kg bilberry anthocyanin was recommended.
Collapse
Affiliation(s)
- Sheng Zhang
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Yibing Wang
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Jinling Ye
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Qiuli Fan
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Xiajing Lin
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Zhongyong Gou
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| | - Shouqun Jiang
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640 Guangdong China
| |
Collapse
|
13
|
Wang B, Tang X, Mao B, Zhang Q, Tian F, Zhao J, Cui S, Chen W. Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites. Crit Rev Food Sci Nutr 2022; 64:2358-2374. [PMID: 36128763 DOI: 10.1080/10408398.2022.2123444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aging, a natural and inevitable physiological process, is the primary risk factor for all age-related diseases; it severely threatens the health of individuals and places a heavy burden on the public health-care system. Thus, strategies to extend the lifespan and prevent and treat age-related diseases have been gaining increasing scientific interest. Anthocyanins (ACNs) are a subclass of flavonoids widely distributed in fruits and vegetables. Growing evidence suggests that ACNs delay aging and relieve age-related diseases. However, owing to the low bioavailability of ACNs, their gut metabolites have been proposed to play a critical role in mediating health benefits. In this review, we introduce the biological fate of ACNs after consumption and highlight ACNs metabolites (phenolic acids) from intestinal microorganisms. Additionally, ACNs and gut metabolites exhibit outstanding anti-aging ability in Caenorhabditis elegans, Drosophila melanogaster, and mouse models, probably associated with increasing antioxidation, anti-inflammation, protein homeostasis, antiglycation, mitochondrial function, and inhibition of insulin/IGF-1 signaling (IIS). ACNs and gut metabolites have great application prospects as functional foods and drugs to delay aging and manage age-related diseases. Further investigation should focus on the interaction between ACNs and gut microbiota, including clarifying the complex metabolic pathway and maximizing the health effects of ACNs.
Collapse
Affiliation(s)
- Bulei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
El-salam SG.A, Rashed MM, Ibrahim NA, Rahim EA, Aly TAA, Al-farga A. Phytochemical screening and in-vitro biological properties of unprocessed and household processed fenugreek (Trigonella foenum- graecum Linn.) seeds and leaves.. [DOI: 10.21203/rs.3.rs-1952713/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The impact of household processes on fenugreek leaves and seeds was analyzed for total phenolic (TP) and total flavonoid content (TF), and in-vitro biological activities such as antioxidant, antimicrobial, and anti-inflammatory properties. Processes included air-drying of leaves and germinating, soaking, and boiling of seeds. Air-dried fenugreek leaves (ADFL) had high TP (15.27 mg GAE/g D.W.) and TF (7.71 mg QE/g D.W.). The TF of unprocessed, germinated, soaked, and boiled seeds had 6.54, 5.60, 4.59, and 3.84 mg GAE/g D.W., respectively. The TF in UFS, GFS, SFS, and BFS were 4.23, 2.11, 2.10, and 2.33 mg QE/g D.W., respectively. Sixteen phenolic and nineteen flavonoid compounds were identified using the HPLC. Antioxidant activity using DPPH•, ABTS+•, and FRAP• assays indicated that ADFL had high activity. Antimicrobial activity was evaluated against each eight pathogenic bacterial and fungal strains. ADFL showed a strong activity with MIC values ranging from 0.03 to 1.06 and 0.04 to 1.18 mg ml− 1 against bacterial and fungal strains, respectively. Anti-inflammatory activity was evaluated in-vitro against RAW 264.7 macrophage cells using of NO assay. Results revealed that ADFL had the highest cytotoxicity and anti-inflammatory activity according to NO assay. Household processes significantly declined the in-vitro biological properties of processed seeds.
Collapse
|
15
|
The Role of Diet in Regulation of Macrophages Functioning. Biomedicines 2022; 10:biomedicines10092087. [PMID: 36140188 PMCID: PMC9495355 DOI: 10.3390/biomedicines10092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The great importance of diet for health and high life-expectancy is established. The impact of nutrients on immune system is a point of growing research interest. Recent studies have found pro- and anti-inflammatory properties of some diet patterns and nutrients that can be used from the bench to the bedside for chronic low-grade inflammatory status correction. In this regard, the assessment of potential effects of nutrition on macrophage differentiation, proliferation, and functioning in health and disease is highly demanded. In this review, we present current data on the effects of nutrients on the macrophage functioning.
Collapse
|
16
|
Yan Z, Sang L, Ma Y, He Y, Sun J, Ma L, Li S, Miao F, Zhang Z, Huang J, Wang Z, Yang G. A de novo assembled high-quality chromosome-scale Trifolium pratense genome and fine-scale phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:332. [PMID: 35820796 PMCID: PMC9277957 DOI: 10.1186/s12870-022-03707-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Red clover (Trifolium pratense L.) is a diploid perennial temperate legume with 14 chromosomes (2n = 14) native to Europe and West Asia, with high nutritional and economic value. It is a very important forage grass and is widely grown in marine climates, such as the United States and Sweden. Genetic research and molecular breeding are limited by the lack of high-quality reference genomes. In this study, we used Illumina, PacBio HiFi, and Hi-C to obtain a high-quality chromosome-scale red clover genome and used genome annotation results to analyze evolutionary relationships among related species. RESULTS The red clover genome obtained by PacBio HiFi assembly sequencing was 423 M. The assembly quality was the highest among legume genome assemblies published to date. The contig N50 was 13 Mb, scaffold N50 was 55 Mb, and BUSCO completeness was 97.9%, accounting for 92.8% of the predicted genome. Genome annotation revealed 44,588 gene models with high confidence and 52.81% repetitive elements in red clover genome. Based on a comparison of genome annotation results, red clover was closely related to Trifolium medium and distantly related to Glycine max, Vigna radiata, Medicago truncatula, and Cicer arietinum among legumes. Analyses of gene family expansions and contractions and forward gene selection revealed gene families and genes related to environmental stress resistance and energy metabolism. CONCLUSIONS We report a high-quality de novo genome assembly for the red clover at the chromosome level, with a substantial improvement in assembly quality over those of previously published red clover genomes. These annotated gene models can provide an important resource for molecular genetic breeding and legume evolution studies. Furthermore, we analyzed the evolutionary relationships among red clover and closely related species, providing a basis for evolutionary studies of clover leaf and legumes, genomics analyses of forage grass, the improvement of agronomic traits.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Lijun Sang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Yue Ma
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Yong He
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Juan Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Lichao Ma
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Shuo Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Fuhong Miao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Zixin Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | | | - Zengyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China.
| | - Guofeng Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China.
| |
Collapse
|
17
|
Comparative Study of Natural Antioxidants from Glycine max, Anethum graveolensand Pimpinella anisum Seed and Sprout Extracts Obtained by Ultrasound-Assisted Extraction. SEPARATIONS 2022. [DOI: 10.3390/separations9060152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The study aimed to evaluate the antioxidant potential of sprout and seed extracts from three species of plants, namely Glycine max (GMsp-sprouts, GMsd-seeds), Anethum graveolens (AGsp-sprouts, AGsd-seeds) and Pimpinella anisum (PAsp-sprouts, PAsd-seeds), which are widely accepted by consumers and have various applications in food flavoring, and also in natural medical treatments in the pharmaceutical industries. These plants are rich in valuable compounds that show a remarkable antioxidant power and are associated with many health benefits. Ethanol extracts were obtained by ultrasound-assisted extraction and they were comparatively evaluated for their in vitro antioxidant properties. The extracts were characterized by HPTLC, HPLC-DAD, total phenol content (TPC), total flavonoid content (TFC) analysis and antioxidant activities with different assays, such as total antioxidant capacity (TAC), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay (ABTS), 1,1-diphenyl 1-2-picryl-hydrazyl (DPPH) and iron binding ability of chelators. Our results showed that the sprout and seed extracts of the studied plants exhibited a high content of phytochemicals and promising antioxidant properties. The highest polyphenols content was detected for AGsd (53.02 ± 0.57 mg/g DW), PAsd (48.75 ± 0.34 mg/g DW) and the highest flavonoids content for PAsp (26.84 ± 0.57 mg/g DW). Moreover, the presence of valuable compounds was demonstrated by using HPTLC, FT-IR and HPLC-DAD techniques. In order to have a better understanding of the relationship between the biological properties and the electronic structure, a molecular modelling study of genistein was also conducted. Our approach to the comparative assessment of these three plant species was based on a priori knowledge from literature data; however, this study demonstrated that these plant extracts of seeds and also sprouts are excellent sources of natural antioxidants. Significant additional differences that were found in the phytochemical composition could be exploited in future research for pharmaceutical purposes.
Collapse
|
18
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
19
|
Zawiślak A, Francik R, Francik S, Knapczyk A. Impact of Drying Conditions on Antioxidant Activity of Red Clover ( Trifolium pratense), Sweet Violet ( Viola odorata) and Elderberry Flowers ( Sambucus nigra). MATERIALS 2022; 15:ma15093317. [PMID: 35591648 PMCID: PMC9105381 DOI: 10.3390/ma15093317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Flowers of red clover (Trifolium pratense), sweet violet (Viola odorata) and elderflowers (Sambucus nigra) were dried by means of air drying at 30 °C and 50 °C and by freeze drying. The content of polyphenols was determined using the Folin–Ciocalteu reagent, while anthocyanins were quantified by the pH differential method. Antioxidant activities of aqueous and ethanolic extracts of the dried flowers were measured by the DPPH and ABTS assays, as well as FRAP and reducing power methods. The highest amount of polyphenols was determined in the ethanolic extracts of fresh red clover flowers (854.76 mg/100 g), while the highest concentration of anthocyanins was determined in the aqueous extracts of fresh sweet violet flowers (99.41 mg/100 g). The results showed that, in general, the extracts of red clover flower were characterized by the highest antioxidant activity, while the sweet violet extracts had the poorest antioxidant properties, although these values fluctuated depending on the method used. There was strong correlation between antioxidant activity and TPC (r = 0.9196, FRAP method). In most cases, freeze drying was found to be the best conservation method, retaining well the antioxidant properties of the tested flowers and the compounds determining these properties.
Collapse
Affiliation(s)
- Agnieszka Zawiślak
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
- Correspondence:
| | - Renata Francik
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
- Institute of Health, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
| | - Sławomir Francik
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (S.F.); (A.K.)
| | - Adrian Knapczyk
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (S.F.); (A.K.)
| |
Collapse
|
20
|
Production and chemical composition of pasture forbs with high bioactive compounds in a low input production system in the Pacific Northwest. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Development of a Sericin Hydrogel to Deliver Anthocyanins from Purple Waxy Corn Cob (Zea mays L.) Extract and In Vitro Evaluation of Anti-Inflammatory Effects. Pharmaceutics 2022; 14:pharmaceutics14030577. [PMID: 35335953 PMCID: PMC8951468 DOI: 10.3390/pharmaceutics14030577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Sericin-alginate hydrogel formulations with purple waxy corn (Zea mays L.) cob extract (PWCC) for topical anti-inflammatory application are developed and evaluated. The physical properties such as viscosity, pH, and anthocyanin release are examined and in vitro anti-inflammatory activities, such as NO inhibition and IL-6, IL-1β, TNF-α, iNOS, and COX-2 expression, are evaluated in LPS-stimulated RAW 264.7 murine macrophages. The sericin-alginate hydrogel is prepared by physical crosslinking through the ionic interaction of the polymers combined with anthocyanin from PWCC at pH 6.5. The hydrogel formulation with 2.00% w/v sericin, 0.20% w/v alginate, and 0.15% w/v PWCC (SN6) shows a suitable viscosity for topical treatment, the highest nitric oxide inhibition (79.43%), no cytotoxicity, and reduced expression of IL-6, IL-1β, and TNF-α mediators. Moreover, the SN6 formulation displays a sustained anthocyanin release over 8–12 h, which correlates with the Korsmeyer–Peppas model. The FT-IR spectrum of SN6 confirmed interaction of the sericin polymer with anthocyanins from PWCC via H-bonding by the shifted peak of amide I and amide III. In addition, the anthocyanin is stable in sericin hydrogels under heating-cooling storage conditions. Therefore, we suggest that this hydrogel formulation has potential as an anti-inflammatory agent. The formulation will be further investigated for in vivo studies and clinical trials in the future.
Collapse
|
22
|
Sottero B, Testa G, Gamba P, Staurenghi E, Giannelli S, Leonarduzzi G. Macrophage polarization by potential nutraceutical compounds: A strategic approach to counteract inflammation in atherosclerosis. Free Radic Biol Med 2022; 181:251-269. [PMID: 35158030 DOI: 10.1016/j.freeradbiomed.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution. Among the factors connected to atherosclerotic disease, lipid species carried by low density lipoproteins and pro-oxidant stimuli strongly promote inflammatory events in the vasculature, also by modulating the macrophage phenotyping. Therapies specifically aimed to balance macrophage inflammatory state are increasingly considered as powerful tools to counteract plaque formation and destabilization. In this connection, several molecules of natural origin have been recognized to be active mediators of diverse metabolic and signaling pathways regulating lipid homeostasis, redox state, and inflammation; they are, thus, considered as promising candidates to modulate macrophage responsiveness to pro-atherogenic stimuli. The current knowledge of the capability of nutraceuticals to target macrophage polarization and to counteract atherosclerotic lesion progression, based mainly on in vitro investigation, is summarized in the present review.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy.
| |
Collapse
|
23
|
Profile of anthocyanins in purple vegetables commonly consumed in China and their relationship with antioxidant abilities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01267-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Wu J, Guo R, Chai J, Xiong W, Tian M, Lu W, Xu X. The Protective Effects of Cath-MH With Anti-Propionibacterium Acnes and Anti-Inflammation Functions on Acne Vulgaris. Front Pharmacol 2021; 12:788358. [PMID: 34955858 PMCID: PMC8696257 DOI: 10.3389/fphar.2021.788358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Acne vulgaris is a common adolescent skin condition which is mainly caused by Propionibacterium acnes overcolonization and subsequent inflammation. Our previous studies have demonstrated that Cath-MH, an antimicrobial peptide from the skin of the frog Microhyla heymonsivogt, possesses potential antimicrobial, LPS-binding, and anti-septicemic properties. However, its protective effects and potential mechanisms against acne vulgaris are still unclear. In the present study, its anti-P. acnes effects were measured by two-fold broth dilution method, agglutination assay, scanning electron microscopy and confocal laser scanning microscopy experiments. Its treatment potential for acne vulgaris was further evaluated in mice ear inoculated by P. acnes. In addition, the binding ability between Cath-MH and LTA was measured by the Circular Dichroism and antibacterial assay. Moreover, the anti-inflammatory efficiency of Cath-MH was evaluated in LTA- and LPS-induced RAW 264.7 macrophage cells. Cath-MH was found to kill P. acnes with a MIC value of about 1.56 μM by membrane disruption mechanism. It also exhibited agglutination activity against P. acnes. Cath-MH was able to bind LTA as well as LPS, inhibit LTA/LPS-stimulated TLR2/4 expression, and subsequently decreased the inflammatory response in RAW 264.7 cells. As expected, Cath-MH alleviated the formation of edema and the infiltration of inflammatory cells in acne mouse model with concurrent suppression of P. acnes growth and inflammatory cytokines expression in vivo. The potent P. acnes inhibition activity combined with powerful anti-inflammatory effect of Cath-MH indicates its potential as a novel therapeutic option for acne vulgaris.
Collapse
Affiliation(s)
- Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ruiyin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Weichen Xiong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Cianciosi D, Forbes-Hernandez TY, Alvarez-Suarez JM, Ansary J, Quinzi D, Amici A, Navarro-Hortal MD, Esteban-Muñoz A, Quiles JL, Battino M, Giampieri F. Anti-inflammatory activities of Italian Chestnut and Eucalyptus honeys on murine RAW 264.7 macrophages. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
26
|
Yin L, Fan SJ, Zhang MN. Protective Effects of Anthocyanins Extracted from Vaccinium Uliginosum on 661W Cells Against Microwave-Induced Retinal Damage. Chin J Integr Med 2021; 28:620-626. [PMID: 34755291 DOI: 10.1007/s11655-021-3527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To study the protective effect of anthocyanins extracted from Vaccinium Uliginosum (VU) on retinal 661W cells against microwave radiation induced retinal injury. METHODS 661W cells were divided into 6 groups, including control, model [661W cells radiated by microwave (30 mW/cm2, 1 h)] and VU groups [661W cells pretreated with anthocyanins extracted from VU (25, 50, 100 and 200 µg/mL, respectively) for 48 h, and radiated by microwave 30 mW/cm2, 1 h]. After treatment with different interventions, the cell apoptosis index (AI) was determined using Heochst staining; contents of malonaldehyde (MDA), glutataione (GSH), and activity of superoxide dismutase (SOD) were measured. mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1(HO-1) were detected by real time quantitative polymerase chain reaction, and the expression of HO-1 protein was examined by Western blot analysis. Nucleus and cytoplasm were separated and Nrf2 protein expression was further verified by Western blot analysis. RESULTS There was significant difference in AI among the groups (F=322.83, P<;0.05). Compared with the control group, AI was significantly higher in the model group and was lower in 4 VU-pretreated groups (P<;0.05). Linear regression analysis showed the decline of AI was in a dose-dependent manner with VU treatment (r=0.8419, P<;0.05). The MDA and GSH contents of 661W cells in VU-treated groups were significantly lower than the model group (P<;0.05). Compared with the model group, the SOD activity in the VU-treated groups (50, 100 and 200 µg/mL) was significantly higher (all P<;0.05). The Nrf2 and HO-1 mRNA expressions were slightly increased after irradiation, and obviously increased in 100 µg/mL VU-treated group. After irradiation, the relative expressions of HO-1 and Nrf2 proteins in nucleus were slightly increased (P<;0.05), and the changes in cytoplasm were not obvious, whereas it was significantly increased in both nucleus and cytoplasm in the VU treatment groups. CONCLUSIONS Anthocyanins extracted from VU could reduce apoptosis, stabilize cell membrane, and alleviate oxidant injury of mouse retinal photoreceptor 661W cells. The mechanism might be through activating Nrf2/HO-1 signal pathway and inducing HO-1 transcription and translation.
Collapse
Affiliation(s)
- Lan Yin
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Si-Jun Fan
- Department of Ophthalmology, PLA Rocket Characteristic Medical Center, Beijing, 100853, China
| | - Mao-Nian Zhang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
27
|
Pei Y, Parks JS, Kang HW. Quercetin alleviates high-fat diet-induced inflammation in brown adipose tissue. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
28
|
Zhou JT, Ren KD, Hou J, Chen J, Yang G. α‑rhamnrtin‑3‑α‑rhamnoside exerts anti‑inflammatory effects on lipopolysaccharide‑stimulated RAW264.7 cells by abrogating NF‑κB and activating the Nrf2 signaling pathway. Mol Med Rep 2021; 24:799. [PMID: 34523697 PMCID: PMC8456313 DOI: 10.3892/mmr.2021.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
α-rhamnrtin-3-α-rhamnoside (ARR) is the principal compound extracted from Loranthus tanakae Franch. & Sav. However, its underlying pharmacological properties remain undetermined. Inflammation is a defense mechanism of the body; however, the excessive activation of the inflammatory response can result in physical injury. The present study aimed to investigate the effects of ARR on lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to determine the underlying molecular mechanism. A Cell Counting Kit-8 assay was performed to assess cytotoxicity. Nitric oxide (NO) production was measured via a NO colorimetric kit. Levels of prostaglandin E2 (PGE2) and proinflammatory cytokines, IL-1β and IL-6, were detected using ELISAs. Reverse transcription-quantitative (RT-q)PCR analysis was performed to detect the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and IL-1β in LPS-induced RAW246.7 cells. Western blotting, immunofluorescence and immunohistochemistry analyses were performed to measure the expression levels of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins to elucidate the molecular mechanisms of the inflammatory response. The results of the cytotoxicity assay revealed that doses of ARR ≤200 µg/ml exhibited no significant effect on the viability of RAW264.7 cells. The results of the Griess assay demonstrated that ARR inhibited the production of NO. In addition, the results of the ELISAs and RT-qPCR analysis discovered that ARR reduced the production of the proinflammatory cytokines, IL-1β and IL-6, as well as the proinflammatory mediators, PGE2, iNOS and COX-2, in LPS-induced RAW264.7 cells. Immunohistochemical analysis demonstrated that ARR inhibited LPS-induced activation of TNF-associated factor 6 (TRAF6) and NF-κB p65 signaling molecules, while reversing the downregulation of the NOD-like receptor family CARD domain containing 3 (NLRC3) signaling molecule, which was consistent with the results of the western blotting analysis. Immunofluorescence results indicated that ARR reduced the increase of NF-κB p65 nuclear expression induced by LPS. Furthermore, the results of the western blotting experiments also revealed that ARR upregulated heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and Nrf2 pathway molecules. In conclusion, the results of the present study suggested that ARR may exert anti-inflammatory effects by downregulating NF-κB and activating Nrf2-mediated inflammatory responses, suggesting that ARR may be an attractive anti-inflammatory candidate drug.
Collapse
Affiliation(s)
- Jiang Tao Zhou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Kai Da Ren
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jing Hou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jie Chen
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Guan'e Yang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
29
|
Settapramote N, Utama-ang N, Petiwathayakorn T, Settakorn K, Svasti S, Srichairatanakool S, Koonyosying P. Antioxidant Effects of Anthocyanin-Rich Riceberry™ Rice Flour Prepared Using Dielectric Barrier Discharge Plasma Technology on Iron-Induced Oxidative Stress in Mice. Molecules 2021; 26:4978. [PMID: 34443567 PMCID: PMC8399969 DOI: 10.3390/molecules26164978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Redox-active iron generates reactive oxygen species that can cause oxidative organ dysfunction. Thus, the anti-oxidative systems in the body and certain dietary antioxidants, such as anthocyanins, are needed to control oxidative stress. We aimed to investigate the effects of dielectric barrier discharge (DBD) plasma technology in the preparation of Riceberry™ rice flour (PRBF) on iron-induced oxidative stress in mice. PRBF using plasma technology was rich in anthocyanins, mainly cyanidine-3-glucoside and peonidine-3-glucoside. PRBF (5 mg AE/mg) lowered WBC numbers in iron dextran (FeDex)-loaded mice and served as evidence of the reversal of erythrocyte superoxide dismutase activity, plasma total antioxidant capacity, and plasma and liver thiobarbituric acid-reactive substances in the loading mice. Consequently, the PRBF treatment was observed to be more effective than NAC treatment. PRBF would be a powerful supplementary and therapeutic antioxidant product that is understood to be more potent than NAC in ameliorating the effects of iron-induced oxidative stress.
Collapse
Affiliation(s)
- Natwalinkhol Settapramote
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.U.-a.)
- Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Agro-Industry, Faculty of Agriculture and Technology, Surin Campus, Rajamangala University of Technology Isan, Surin 32000, Thailand
| | - Niramon Utama-ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.U.-a.)
- Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Touchwin Petiwathayakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Kornvipa Settakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 71300, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| |
Collapse
|
30
|
Vahdat-Lasemi F, Aghaee-Bakhtiari SH, Tasbandi A, Jaafari MR, Sahebkar A. Targeting interleukin-β by plant-derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother Res 2021; 35:5596-5622. [PMID: 34390063 DOI: 10.1002/ptr.7194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Inflammation is the main contributing factor to atheroma formation in atherosclerosis. Interleukin-1 beta (IL-1β) is an inflammatory mediator found in endothelial cells and resident leukocytes. Canakinumab is a selective monoclonal antibody against IL-1β which attenuates inflammation and concurrently precipitates fatal infections and sepsis. Natural products derived from medicinal plants, herbal remedy and functional foods are widely used nowadays. Experimental and clinical trial evidence supports that some natural products such as curcumin, resveratrol, and quercetin have potential effects on IL-1β suppression. In this review, we tried to document findings that used medicinal plants and plant-based natural products for treating atherosclerosis and its related diseases through the suppression of IL-1β.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
31
|
Tuta-Quintero E, Martínez-Lozano JC, Briceño-Balcázar I, Guerron-Gómez G, Gómez-Gutiérrez A. Management of "stone pain" between the 18th and 19th centuries: A brief history of a medical prescription in the Viceroyalty of New Granada. Actas Urol Esp 2021; 45:507-511. [PMID: 34330692 DOI: 10.1016/j.acuroe.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The presence of stones in the urinary tract is a condition that has accompanied humans since ancient times. In colonial times, this condition was known as "stone pain" and its non-surgical management was based on the use of medicines derived from plants, animals and minerals. OBJECTIVE To contextualize a medical prescription used to modulate stone pain in the 18th century in the New Kingdom of Granada. Additionally, to analyze its components and evaluate the basis of its possible phytotherapeutic effects on the disease and pain. MATERIAL AND METHOD Document search in the Cipriano Rodríguez Santamaría Historical Archive of the Octavio Arizmendi Posada Library at Universidad de La Sabana. The document entitled "Prescription for bladder or kidney stone pain" was analyzed, and a complementary review of current scientific literature and original texts was performed with no time limits, in order to compare this prescription to related findings in the history of medicine. RESULTS The transcription of the source document revealed several phytotherapeutic agents such as chamomile (Matricaria recutita), lilies (Lilium lancifolium), clover (Trifolium pratense), and mallow roots (Malva sylvestris), accompanied by a large amounts of water. CONCLUSIONS There is scientific evidence that could explain the anti-inflammatory and antioxidant effects of all plant-derived medicines used in this prescription. Abundant water intake to increase urine volume was an essential part of treatment. However, the lack of more precise data related to the prescription and the evolution of the patients makes it difficult to analyze its therapeutic efficacy.
Collapse
Affiliation(s)
- E Tuta-Quintero
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia; Grupo Genética Humana, Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - J C Martínez-Lozano
- Grupo Genética Humana, Facultad de Medicina, Universidad de La Sabana, Chía, Colombia.
| | - I Briceño-Balcázar
- Grupo Genética Humana, Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - G Guerron-Gómez
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia; Grupo Genética Humana, Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - A Gómez-Gutiérrez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
32
|
Zhang FX, Li ZT, Yang X, Xie ZN, Chen MH, Yao ZH, Chen JX, Yao XS, Dai Y. Discovery of anti-flu substances and mechanism of Shuang-Huang-Lian water extract based on serum pharmaco-chemistry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113660. [PMID: 33276058 DOI: 10.1016/j.jep.2020.113660] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuang-Huang-Lian preparation has captured wide attention since its clinical applications for the successful treatment of upper respiratory tract infection. However, its functional basis under actual therapeutic dose in vivo was still unrevealed. AIM OF THE STUDY This study aimed to reveal the anti-flu substances and mechanism of Shuang-Huang-Lian water extract (SHL) on H1N1 infected mouse model by a strategy based on serum pharmaco-chemistry under actual therapeutic dose and network pharmacology. MATERIALS AND METHODS H1N1 infected mouse model was employed for evaluation of the anti-flu effects of SHL. A simultaneous quantification method was developed by UPLC-TQ-XS MS coupled switch-ions mode and applied to characterize the pharmacokinetics of the multiple components of SHL under actual therapeutic dose. The potential active ingredients were screened out based on their pharmacokinetic parameters. And then, a compound mixture of these active candidates was re-evaluated for the anti-flu activity on H1N1 infected mouse model. Furthermore, the anti-flu mechanism of SHL was also predicted by network pharmacology coupled with the experimental result. RESULTS SHL significantly increased the survival rate and prolonged survival days on H1N1 infected mice at a dosage of 20 g crude drug/kg/day by reversing the increased lung index, down-regulating the inflammatory cytokines (TNF-α, IL-1β, IL-6) and inhibiting the release of IFN-β in bronchoalveolar lavage fluids (BALF). Concomitantly, the pharmacokinetic parameters of fourteen quantified and twenty-one semi-quantified constituents of SHL were characterized. And then, five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin), which displayed satisfactory pharmacokinetic features, were considered as potential active ingredients. Thus, a mixture of these five ingredients was administered to H1N1-infected mice at a dose of 4.24 mg/kg/day. As a result, the therapeutical effects of the mixture were similar to SHL in terms of survival rate, lung index and the release of cytokines (TNF-α, IL-1β and IL-6) in BALF. Moreover, network pharmacology analysis indicated that the TNF-signal pathways might play a role in the anti-flu mechanism of SHL. CONCLUSIONS A mixture of five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin) were the anti-flu substances of SHL. The strategy based on serum pharmaco-chemistry under actual therapeutic dose provided a new sight on exploring in vivo effective substances of TCM.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China; Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Zi-Ting Li
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Zhi-Neng Xie
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Ming-Hao Chen
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Jian-Xin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
33
|
Management of "stone pain" between the 18th and 19th centuries: A brief history of a medical prescription in the Viceroyalty of New Granada. Actas Urol Esp 2021. [PMID: 33744022 DOI: 10.1016/j.acuro.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The presence of stones in the urinary tract is a condition that has accompanied humans since ancient times. In colonial times, this condition was known as "stone pain" and its non-surgical management was based on the use of medicines derived from plants, animals and minerals. OBJECTIVE To contextualize a medical prescription used to modulate stone pain in the 18th century in the New Kingdom of Granada. Additionally, to analyze its components and evaluate the basis of its possible phytotherapeutic effects on the disease and pain. MATERIAL AND METHOD Document search in the Cipriano Rodríguez Santamaría Historical Archive of the Octavio Arizmendi Posada Library at Universidad de La Sabana. The document entitled "Prescription for bladder or kidney stone pain" was analyzed, and a complementary review of current scientific literature and original texts was performed with no time limits, in order to compare this prescription to related findings in the history of medicine. RESULTS The transcription of the source document revealed several phytotherapeutic agents such as chamomile (Matricaria recutita), lilies (Lilium lancifolium), clover (Trifolium pratense), and mallow roots (Malva sylvestris), accompanied by a large amounts of water. CONCLUSIONS There is scientific evidence that could explain the anti-inflammatory and antioxidant effects of all plant-derived medicines used in this prescription. Abundant water intake to increase urine volume was an essential part of treatment. However, the lack of more precise data related to the prescription and the evolution of the patients makes it difficult to analyze its therapeutic efficacy.
Collapse
|
34
|
Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb. Molecules 2020; 25:molecules25225295. [PMID: 33202848 PMCID: PMC7697956 DOI: 10.3390/molecules25225295] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed to isolate, prepare and identify the main flavonoids from a standardized Smilax glabra flavonoids extract (SGF) using preparative HPLC, MS, 1H NMR and 13C NMR, determine the contents of these flavonoids using UPLC, then compare their pharmacological activities in vitro. We obtained six flavonoids from SGF: astilbin (18.10%), neoastilbin (11.04%), isoastilbin (5.03%), neoisoastilbin (4.09%), engeletin (2.58%) and (−)-epicatechin (1.77%). The antioxidant activity of six flavonoids were evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS+) radical scavenging activity and ferric reducing antioxidant power (FRAP). In addition, the anti-inflammatory activity of six flavonoids were evaluated by determining the production of cytokines (IL-1β, IL-6), nitric oxide (NO) using enzyme linked immunosorbent assay and the NF-κB p65 expression using Western blotting in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results showed that (−)-epicatechin, astilbin, neoastilbin, isoastilbin and neoisoastilbin had strong antioxidant activities, not only in DPPH and ABTS+ radicals scavenging capacities, but in FRAP system. Furthermore, all the six flavonoids could significantly inhibit the secretion of IL-1β, IL-6, NO (p < 0.01) and the protein expression of NF-κB p-p65 (p < 0.01) in LPS-stimulated RAW264.7 cells. This study preliminarily verified the antioxidant and anti-inflammatory activities of six flavonoids in S. glabra.
Collapse
|
35
|
Zhang FX, Li ZT, Li M, Yuan YLL, Cui SS, Chen JX, Li RM. Dissection of the potential anti-influenza materials and mechanism of Lonicerae japonicae flos based on in vivo substances profiling and network pharmacology. J Pharm Biomed Anal 2020; 193:113721. [PMID: 33147537 DOI: 10.1016/j.jpba.2020.113721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Lonicerae japonicae flos.(LJF) was widely used as a drug to treat upper respiratory tract infection or a tea to clear heat in Asian countries for thousands of years. Despite of its curative effects confirmed by modern pharmacological methods, its functional materials and mechanism against influenza were still unclear and needed further investigation. In this study, an integrated strategy based on in vivo substances profiling and network pharmacology was proposed and applied to screen out the potential anti-influenza substances and mechanism of LJF. An UHPLC/Q-TOF MS method was utilized to profile the chemical components in LJF and their metabolites in rats. The targets of absorbed prototypes were predicted by Swiss Target Prediction, and they were further analyzed by String and Kyoto Encyclopedia of Genes and Genomes (KEGG). As a result, a total of 126 chemical components mainly featuring three chemical structure types were characterized, including 70 iridoid glycosides, 17 caffeoylquinic acids, 24 flavonoids, and 15 other types compounds. Among them, ten N-contained iridoid glycosides were characterized as potential novel compounds. Moreover, 141 xenobiotics (74 prototypes and 67 metabolites) were clearly screened out in rat plasma and urine after ingestion of LJF. Phase II reactions (sulfation, glucuronidation, methylation) and phase I reactions (dehydroxylation, hydrogenation, hydrolysis, N-heterocyclization) were the main metabolic reactions of LJF in rats. Further, a total of 338 targets were predicted and TNF, PTGS2 and EGFR were the three main targets involved in the pathology of influenza. In addition to normal NF-κB pathway, T cell signal pathway and mTOR signal pathway were the other patterns for LJF to achieve its anti-flu effects. Our work provided the meaningful data for further pharmacological validation of LJF against influenza, and a new strategy was also proposed for minimizing the process to reveal the mechanism and functional basis of TCMs.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zi-Ting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min Li
- Hainan Trauma and Disaster Rescue Key Laboratory, The First Affiliated Hospital of Hainan Medical College, Haikou 571199, China
| | - Yu-Lin-Lan Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Shuang-Shuang Cui
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Rui-Man Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
Solaiman MA, Ali MA, Abdel-Moein NM, Mahmoud EA. Synthesis of Ag-NPs developed by green-chemically method and evaluation of antioxidant activities and anti-inflammatory of synthesized nanoparticles against LPS-induced NO in RAW 264.7 macrophages. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Kang JK, Hyun CG. 4-Hydroxy-7-Methoxycoumarin Inhibits Inflammation in LPS-activated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation. Molecules 2020; 25:molecules25194424. [PMID: 32993156 PMCID: PMC7583757 DOI: 10.3390/molecules25194424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Coumarins are natural products with promising pharmacological activities owing to their anti-inflammatory, antioxidant, antiviral, anti-diabetic, and antimicrobial effects. Coumarins are present in many plants and microorganisms and have been widely used as complementary and alternative medicines. To date, the pharmacological efficacy of 4-hydroxy-7-methoxycoumarin (4H-7MTC) has not been reported yet. Therefore, in this study, we investigated the anti-inflammatory effects of 4H-7MTC in LPS-stimulated RAW264.7 cells as well as its mechanisms of action. Cells were treated with various concentrations of 4H-7MTC (0.3, 0.6, 0.9, and 1.2 mM) and 40 μM L-N6-(1-iminoethyl)-L-lysine (L-NIL) were used as controls. LPS-stimulated RAW264.7 cells showed that 4H-7MTC significantly reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production without cytotoxic effects. In addition, 4H-7MTC strongly decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2). Furthermore, 4H-7MTC reduced the production of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. We also found that 4H-7MTC strongly exerted its anti-inflammatory actions by downregulating nuclear factor kappa B (NF-κB) activation by suppressing inhibitor of nuclear factor kappa B alpha (IκBα) degradation in macrophages. Moreover, 4H-7MTC decreased phosphorylation of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase/stress-activated protein kinase (JNK), but not that of p38 MAPK. These results suggest that 4H-7MTC may be a good candidate for the treatment or prevention of inflammatory diseases such as dermatitis, psoriasis, and arthritis. Ultimately, this is the first report describing the effective anti-inflammatory activity of 4H-7MTC.
Collapse
|
38
|
Bastin A, Sadeghi A, Nematollahi MH, Abolhassani M, Mohammadi A, Akbari H. The effects of malvidin on oxidative stress parameters and inflammatory cytokines in LPS-induced human THP-1 cells. J Cell Physiol 2020; 236:2790-2799. [PMID: 32914418 DOI: 10.1002/jcp.30049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/29/2023]
Abstract
Malvidin is an anthocyanin which is involved in inhibiting inflammatory-related mediators in inflammatory diseases; however, its mechanism of action in THP-1 cells is not yet known. THP-1 is a human monocytic cell line that is derived from patients with acute monocytic leukemia. The present study aimed to investigate the effect of malvidin on inflammatory responses and oxidative stress in lipopolysaccharide (LPS)-induced THP-1 cells. THP-1 cells were stimulated with LPS (50 ng/ml) to induce inflammation in the presence or absence of malvidin. The anti/proinflammatory cytokines were evaluated by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Total protein levels/phosphorylation of c-Jun N-terminal kinase (JNK), P65-NF-κB, and IKKα/IKKβ were evaluated by western blot analysis. Malondialdehyde (MDA) and nitric oxide (NO) metabolite levels, ferric reducing antioxidant power (FRAP), total thiol (T-SH) content, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity were measured to evaluate the antioxidant activity of malvidin in THP-1 cells. Treatment of LPS-stimulated THP-1 cells with malvidin (100 and 200 μM) led to the significant inhibition of interleukin-6 (IL-6), tumor necrosis factor-α, and IL-1β messenger RNA (mRNA) expression and protein levels as well as a significant increase in the IL-10 mRNA expression and protein secretion. Moreover, 200 μM malvidin treatment reduced the phosphorylation of JNK, IKKα/IKKβ, and P65-NF-κB. These findings showed that malvidin not only decreased the MDA and NO metabolite levels but also increased the FRAP and T-SH content as well as SOD and GPx activities. The findings of the present study demonstrated the potential role of malvidin in blocking inflammation and oxidative stress induced by LPS in THP-1 cell line, suggesting that malvidin is likely to be a therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Alireza Bastin
- Herbal and Traditional Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Asie Sadeghi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
39
|
Dharmawansa KS, Hoskin DW, Rupasinghe HPV. Chemopreventive Effect of Dietary Anthocyanins against Gastrointestinal Cancers: A Review of Recent Advances and Perspectives. Int J Mol Sci 2020; 21:ijms21186555. [PMID: 32911639 PMCID: PMC7554903 DOI: 10.3390/ijms21186555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Anthocyanins are a group of dietary polyphenols, abundant mainly in fruits and their products. Dietary interventions of anthocyanins are being studied extensively related to the prevention of gastrointestinal (GI) cancer, among many other chronic disorders. This review summarizes the hereditary and non-hereditary characteristics of GI cancers, chemistry, and bioavailability of anthocyanins, and the most recent findings of anthocyanin in GI cancer prevention through modulating cellular signaling pathways. GI cancer-preventive attributes of anthocyanins are primarily due to their antioxidative, anti-inflammatory, and anti-proliferative properties, and their ability to regulate gene expression and metabolic pathways, as well as induce the apoptosis of cancer cells.
Collapse
Affiliation(s)
- K.V. Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Microbiology and Immunology, and Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Correspondence: ; Tel.: +1-902-893-6623
| |
Collapse
|
40
|
Banach M, Wiloch M, Zawada K, Cyplik W, Kujawski W. Evaluation of Antioxidant and Anti-Inflammatory Activity of Anthocyanin-Rich Water-Soluble Aronia Dry Extracts. Molecules 2020; 25:E4055. [PMID: 32899830 PMCID: PMC7570557 DOI: 10.3390/molecules25184055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
Aronia fruits contain many valuable components that are beneficial to human health. However, fruits are characterized by significant variations in chemical composition dependent on the growing conditions and harvesting period. Therefore, there is a need to formulate the extracts with a precisely defined content of health-promoting substances. Aronia dry extracts (ADE) were prepared from frozen pomace applying water extraction, followed by purification and spray-drying. Subsequently, the content of anthocyanins, phenolic acids, and polyphenols was determined. The high-quality chokeberry pomace enabled obtaining extracts with anthocyanin content much higher than the typical market standards. Moreover, it was found that the antioxidant capacity of aronia extracts exceeded those found in other fruit preparations. Antioxidant and free-radical scavenging properties were evaluated using a 2,2'-diphenyl-1-picrylhydrazyl using Electron Paramagnetic Resonance (EPR) spectroscopy (DPPH-EPR) test and Oxygen Radical Absorbance Capacity (ORAC) assay. The inhibition of lipid peroxidation and the level of inflammatory markers have been also investigated using lipopolysaccharide (LPS)-stimulated RAW 264 cells. It was revealed that ADE standardized to 25% of anthocyanins depresses the level of markers of inflammation and lipid peroxidation (Interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and malondialdehyde (MDA)) in in vitro conditions. Additionally, it was confirmed that ADE at all analyzed concentrations did not show any cytotoxic effect as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Collapse
Affiliation(s)
- Mariusz Banach
- Greenvit Ltd., 27A Wojska Polskiego Avenue, 18-300 Zambrów, Poland; (M.B.); (W.C.)
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | | | - Katarzyna Zawada
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Wojciech Cyplik
- Greenvit Ltd., 27A Wojska Polskiego Avenue, 18-300 Zambrów, Poland; (M.B.); (W.C.)
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
41
|
Fan H, Wu Q, Peng L, Li D, Dong Y, Cao M, Liu P, Wang X, Hu X, Wang Y. Phyllolobium chinense Fisch Flavonoids (PCFF) Suppresses the M1 Polarization of LPS-Stimulated RAW264.7 Macrophages by Inhibiting NF-κB/iNOS Signaling Pathway. Front Pharmacol 2020; 11:864. [PMID: 32625088 PMCID: PMC7314944 DOI: 10.3389/fphar.2020.00864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Background M1 macrophage plays an important role in inflammatory reaction. In this study, potential anti-inflammatory effect of Phyllolobium chinense Fisch flavonoids (PCFF) was assessed via Zebrafish acute inflammation model in vivo and LPS-induced pro-inflammatory M1 macrophage model in vitro. Methods The quality control of P. chinense Fisch flavonoids (PCFF) was analyzed by HPLC. Anti-inflammatory effect of PCFF on the acute injured zebrafish was evaluated by the migration of fluorescence labeled macrophages and neutrophils, and the gene expression of inflammatory factors. In addition, the anti-inflammatory mechanism of PCFF was investigated by the related gene expression and related signaling pathway regulation of pro-inflammatory mediators in LPS-induced pro-inflammatory M1 RAW264.7 macrophage. Results P. chinense Fisch flavonoids (PCFF) markedly suppressed macrophage and neutrophil migration and iNOS gene expression in acute injured zebrafish with tail-cutting. PCFF significantly inhibited NO overproduction and iNOS gene overexpression in LPS-sitimulated pro-inflammatory M1 RAW264.7 macrophages. What's more, PCFF could evidently decrease p65 protein production, but had no effect on the production of P38, JNK and ERK1/2 proteins. Conclusion P. chinense Fisch flavonoids (PCFF) have a remarkable inhibitory effect on the inflammatory response in acute injured zebrafish and LPS-stimulated M1 RAW264.7 macrophage. The pharmacological mechanism may be related to the regulation of NO overproduction and the inhibition of NF-κB/iNOS signaling pathway.
Collapse
Affiliation(s)
- Hua Fan
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longping Peng
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Du Li
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xudong Hu
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youhua Wang
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|